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Solvent Selection for Polymers Enabled by Generalized
Chemical Fingerprinting and Machine Learning†

Joseph Kern,a Shruti Venkatram,a Manali Banerjee,a Blair Brettmann,a and Rampi
Ramprasad∗a

We present machine learning models trained on experimental data to predict room-temperature
solubility for any polymer-solvent pair. The new models are a significant advancement over past
data-driven work, in terms of protocol, validity, and versatility. A generalizable fingerprinting method
is used for the polymers and solvents, making it possible, in principle, to handle any polymer-solvent
combination. Our data-driven approach achieves high accuracy when either both the polymer and
solvent or just the polymer has been seen during the training phase. Model performance is modest
though when a solvent (in a newly queried polymer-solvent pair) is not part of the training set.
This is likely because the number of unique solvents in our data set is small (much smaller than the
number of polymers). Nevertheless, as the data set increases in size, especially as the solvent set
becomes more diverse, the overall predictive performance is expected to improve.

1 Introduction
Solvent selection is an important component of polymer synthesis
and processing as well as a multitude of polymer applications like
microlithography, membrane formation, drug delivery systems,
recycling, and waste processing1. In microlithography, polymers
are exposed to electromagnetic radiation to cause changes to their
chemical structure, then immersed in a solvent to dissolve ei-
ther the exposed or unexposed region2. When forming mem-
branes using non-solvent induced phase separation, a polymer is
dissolved in a solvent to create a homogeneous dope solution.
This solution is cast as a liquid film on a substrate which is then
placed in a coagulation non-solvent bath to remove the solvent
and form the membrane3. In drug delivery systems, water solu-
ble polymers are used to increase the solubility of poorly soluble
drugs by dispersing the drug in the polymer structure4,5. Wa-
ter soluble polymers are also used as stabilisers and mechanical
supports for sustained release of drugs6. In efforts to chemi-
cally recycle industrially relevant polymers like polystyrene and
high-density polyethylene in a single process stream, solvent se-
lection was identified as the most critical parameter7. In water
treatment, water-soluble polymeric materials are used to remove
heavy metal ions and arsenic8. Water soluble polymers used in
cosmetics and laundry detergents can also leach into the environ-
ment and need to be removed via sorption9. When using solvents
during the creation of polymers, toxic solvents can remain in the
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polymers post-processing and come into contact with humans, so
ideally safe alternatives to commonly used solvents could also be
determined for every polymer10. Given how important polymer
solubility is in these numerous processes, it is critical to have a
method of estimating what solvents will dissolve polymers.

To enable informed solvent identification, several empirical
methods have been proposed with varying degrees of success,
including the Hildebrand and Hansen methods. In the Hilde-
brand method, polymers and solvents with similar Hildebrand
parametric values (which are related to the cohesive energy den-
sity) are predicted as good solvents and those with values differ-
ing by more than a threshold are predicted as bad solvents1,11.
In the Hansen method, the difference between three parameters
quantifying dispersion, dipolar, and hydrogen bonding interac-
tions for the polymer and solvent are used to provide an estimate
of the solubility of the polymer in the solvent12. Previous work
by Venkatram et al. showed the Hansen method performed only
marginally better than the Hildebrand method despite its greater
complexity13.

Several computational approaches have been used to estimate
these solubility parameters, including group contribution meth-
ods14 and a variety of machine learning techniques. Sanchez-
Lengeling et al. used gaussian process regression with Morgan
and MACCS fingerprints to estimate Hansen solubility parameters
for 31 polymers and 193 solvents, achieving reasonable R2 per-
formance (0.56-0.83)15. Kurotani et al. used only four pieces of
analytical data to predict Hansen solubility parameters for poly-
mers as well, and while their R2 performance was lower than
Sanchez-Lengeling et al, they posited that it may be useful for
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new polymers with unknown SMILES strings16. Others have used
descriptors derived from atomic structure and quantum chemi-
cal calculation for small molecules representing polymer repeat
units to predict the Hildebrand solubility parameters using ker-
nel ridge regression and multi-linear regression models17. Most
recently, Liu et al. collected data on 81 polymers and 1,221 sol-
vents and created more easily interpretable regression models to
predict Chi, Hildebrand, and Hansen parameters18. They featur-
ized their polymers and solvents using RDKit generated chemi-
cal fingerprints such as the count, density and weighted sum for
atoms, and 2nd order features generated from the 3d structures
of trimers and solvents such as LUMO, HOMO and heat of forma-
tion.

Meanwhile, previous work by Chandrasekaran et al.19, in-
spired by the promise of machine learning in the materials do-
main20,21, showed that a deep neural network trained on a data
set of 4,595 polymers and 24 solvents could dramatically outper-
form the Hildebrand approach to estimating solubility1,11. This
method utilized chemical features to represent polymers and a
one-hot (label-based) encoding to represent the solvents which
were used to train a multilayer perceptron neural network that
could classify whether a particular polymer-solvent combination
was soluble or insoluble. They also found that a Hildebrand gaus-
sian process model’s classification accuracy was much worse than
the neural network, correctly classifying good-solvents only 50%
of the time and bad solvents 70% as opposed to the over 90%
accuracy for the neural network. The downside to their neural
network approach, however, was that solubility estimations could
be performed for only the 24 solvents within the training data due
to the one-hot encoding; i.e., predictions could not be generalized
to cases outside the list of 24 solvents.

In the present work, we demonstrate a method to generalize
machine learning models to any solvent so predictions can be
made on previously unseen solvents. Moreover, we perform a
critical analysis of the strengths and weaknesses of any such data-
driven approach and identify situations where caution is man-
dated. First, a data set of 3,373 polymers and 51 solvents was
collected. Next, we structurally fingerprinted the polymers and
solvents using a hierarchical methodology that is generalizable to
any polymer-solvent pair, unlike the one-hot encoding method.
Finally, these fingerprints and solubility data were used to train
a random forest classifier and a deep neural network binary clas-
sifier that predicts if a polymer-solvent pair is soluble or insolu-
ble. A production version of the random forest model has been
deployed to our online polymer informatics platform, Polymer
Genome (https://www.polymergenome.org)22,23.

In the Methods section we provide details on the dataset, fea-
turization of the polymers and solvents, and the model infras-
tructures. In the Results and Discussion section, we analyze the
performance of the two machine learning models with respect to
the quality and diversity of the data they have been exposed to,
the differences between the two models, areas of caution, and
potential next steps.

2 Methods

2.1 Dataset
The dataset used is manually curated from a plethora of published
works including published journals, printed handbooks, and on-
line repositories.24–29 The chemical space the polymers span in-
cluded the following elements: C, O, Se, N, F, P, S, Br, Si, Cl, I,
B, and H. Copolymers, polymer blends, polymers with additives,
and cross-linked polymers are not considered in this study. We
also limit this study to the investigation of room-temperature sol-
ubility and do not consider partial solubility or high-temperature
solubility.

The training data set consisted of 3,373 polymers and 51 sol-
vents (see Table S1) making up 11,913 soluble pairs and 8,843
insoluble pairs. An additional 2,909 polymers and 7 solvents (see
Table S2) making up 7,736 soluble data points and 1,129 insol-
uble data points were tested with the final model. These 2,909
polymers and 7 solvents did not have instances of being both sol-
uble and insoluble, thus, they were excluded from the training
data to prevent the model from incorrectly learning that the spe-
cific polymer or solvent is always one class (either soluble or in-
soluble). A full analysis is available in the supplementary section
(Figures S1 and S2) describing why this was done.

2.2 Fingerprinting
For polymers, three hierarchical levels of descriptors, compris-
ing 690 features, that correspond to three different length scales
were used22,30. The first (lowest) level counts the number of
atomic triplets (e.g., H1 −C4 −H1, representing two one-fold co-
ordinated hydrogen, and a four-fold coordinated carbon). The
second (middle) level of fingerprint components captures a pop-
ulation of predefined chemical building blocks (e.g., −C6H4−,
−CH2−, −C(= O)−). The third (highest) level comprises quanti-
tative structure-property relationship (QSPR) descriptors that are
characteristic features of the polymers, such as molecular fea-
tures including molecular quantum numbers and molecular con-
nectivity chi indices, as well as additional descriptors such as the
number of non-hydrogen atoms, molecular weight, the fraction
of atoms that are part of side chains and the length of the largest
side chain. Note that the total number of features can vary due
to factors such as the number of atomic triplets and the blocks in
the data set.

For solvents, either one-hot encoding or structural fingerprint-
ing was used. One-hot encoding creates 51 columns (correspond-
ing to the number of training solvents). Each row represents a
polymer/solvent combination with the column corresponding to
the solvent being 1 and all other solvent columns being 0. The
structural fingerprint uses the same three hierarchical levels of
descriptors, comprising 155 features, inspired by previous work
on polymer fingerprinting22,30. There are differences between
the solvent and polymer fingerprints, however. For instance, the
solvent fingerprints sample separate blocks and some QSPR de-
scriptors are not used, such as the fraction of atoms that are part
of side chains and length of the largest side chain.

To determine if our hierarchical solvent fingerprint adequately
represents the solvents and to visualize the high dimensional fin-
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gerprint in two dimensions, we used a Uniform Manifold Approx-
imation and Projection (UMAP) plot shown in Figure 1. From
this plot, we find that similar solvents cluster together in the fin-
gerprint space. Acids, like nitric acid or formic acid, are clus-
tered together, as are cyclic compounds like benzene and phe-
nol. There were two grouping of halides: ones with carbons that
contain hydrogen atoms, like chloroform, and ones without hy-
drogen atoms, like trichloro(fluoro)methane. The second group-
ing also contains carbon disulfide. There is a small grouping of
dimethyl solvents that contain either P, S, and or N that also con-
tain a double bond O. These include solvents like dimethylfor-
mamide (DMF) and dimethylsulfoxide (DMSO). Finally, there are
the alkanes, alcohols, and other solvents that contain only carbon
or carbon and oxygen. Note that UMAP plots are stochastic and
affected by hyper-parameters such as n_neighbors (a constraint in
the size of the local neighborhood UMAP looks at), min_dist (the
minimum distance apart points are allowed to be in the low di-
mensional representation) and metric (how distance is computed
in the ambient space of the input data). We used default values
except for n_neighbors = 3, min_dist = 0.99, with a cosine met-
ric for this image31. The n_neighbors value of 3 allowed us to
observe the local manifold structure as opposed to global. The
min_dist of 0.99 was to prevent points from being too close to-
gether for visualization purposes. The cosine metric was chosen
because it has been found to be a better metric for chemical simi-
larity calculations than Euclidean or Manhattan metrics32.

2.3 Model Details

We have employed two ML algorithms, one based on deep neu-
ral networks and another based on random forests. Each model
was assessed using the F1 score, which is defined as a harmonic
sum of precision and recall, with precision being the proportion
of predicted positives that are truly positive, and recall being the
proportion of actual positives correctly classified.

F1 score =
2×Precision×Recall

Precision+Recall
(1)

Precision =
True Positive

True Positive+False Positive
(2)

Recall =
True Positive

True Positive+False Negative
(3)

.

When assessing performance, the training dataset of 3,373
polymers and 51 solvents was split using five-fold cross valida-
tion. Three types of splits were done: a random split stratified by
solubility, a split by the polymer, and a split by the solvent. The
random split stratified by solubility was meant to measure how
the model performed on previously seen polymers and solvents.
The split by the polymer was meant to measure how the model
performed on unseen polymers but previously seen solvents. The
split by solvent was meant to measure how the model performed
on unseen solvents but previously seen polymers. Each split type
created five-folds of equal size. The model was trained on four of
the folds and tested on the fifth five times, so each fold was a test
fold once.

For the neural network, We used the same multilayer percep-
tron neural network infrastructure and hyperparameters as de-
scribed by Chandrasekaran et al. The neural network consists
of two input branches, one for the solvent fingerprints and the
other for the polymer fingerprints. Two hidden layers are used
for the solvent branch and three are used for the polymer branch.
Each hidden layer has 100 neurons. A final layer of 20 neurons
is added to the end of each branch which are concatenated and
fed into a final set of layers. The final set of layers consists of
four hidden layers with 100 neurons each. The final output of
the NN is a single neuron with a sigmoid activation function. An
activation value of 1 means the polymer is soluble in the solvent
and an activation of 0 means it is insoluble. The threshold to dif-
ferentiate between the two is 0.5. Each hidden layer in the NN
uses a parametrized rectified linear unit (PReLU) activation func-
tion19. The input layer for the solvent is altered when the struc-
tural fingerprint is used instead of the one-hot encoding. This
neural network will be referred to as SolNet2 to distinguish it
from an earlier model (SolNet) that used one-hot fingerprinting
for solvents.

For the random forest classifier, SciKit-Learn was used33,34.
BayesSearchCV, a method using Bayesian optimization over hyper
parameters implemented with the scikit optimize package35, with
five-fold cross validation for 25 iterations optimizing max_depth
= [None, 50, 100], max_features = [.5, .75, ’log2’, ’sqrt’],
min_samples_leaf = [2, 6], and n_estimators = [100, 500] was
used for hyperparameter optimization. We performed hyperpa-
rameter optimization for each split type, but found that model
test F1 score did not significantly improve after hyperparame-
ter optimization, whereas the model training time was dramat-
ically slowed. As such, we used the default parameters with
n_estimators=100, max_depth=None, max_features=’sqrt’, and
min_samples_leaf= 1 for the reported trees.

3 Results and Discussion

First, we analyzed how the SolNet2 model performed when a
solvent structural fingerprint was used as opposed to a one-hot
encoding (SolNet). Next, we compared the SolNet2 model to a
random forest classifier. Then, learning curves were generated
for the random forest model to assess how the models performs
on polymer-solvent pairings where both the polymer and solvent
have not been seen before. Finally, we analyzed how the random
forest classifier did when estimating solubility for the held out
2,909 polymers and 7 solvents (refer back to Table S2 for details
on this data set). The SolNet2 model was not considered as the
random forest model outperformed it in all metrics.

3.1 SolNet2 Model Performance

Figure 2 shows a comparison between the F1 scores of the Sol-
Net model trained using a one-hot encoding for solvents vs the
SolNet2 model trained using the structural fingerprint. The error
bars indicate the standard deviation of F1 score between test folds
of 5-fold cross validation splits. The split was done via a random
split stratified by solubility, group split by polymer, or group split
by solvent. For both solvent encodings, the same data was used
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Fig. 1 UMAP plot of 51 solvents. Colors and shapes correspond to unique functional groups and/or elements within the solvents. Circled groupings
have their unique characteristic labeled. Default values were used except for n_neighbors= 3, min_dist= 0.99, with a cosine metric. An interactive
plot that varies n_neighbors and min_dist is available at https://mybinder.org/v2/gh/Ramprasad-Group/polymer_in_solvent_solubility_
modeling/main.
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for each split with only the solvent fingerprint changing.
The splitting method used for five-fold cross validation dictated

model F1 score. For instance, when a random split stratified by
solubility was chosen to split the training and test sets of the
model, the F1 score for insoluble pairing predictions was 0.866
± 0.020 for SolNet. When the training and test data was split so
no polymer in the training data was in the test data, the F1 score
for insoluble pairing predictions dropped to 0.840 ± 0.010 for
SolNet. This was likely because, in the former case, i.e., when a
random split was used, the model had seen most of the polymers
and solvents before in the training data. Even though the test
polymer-solvent combination was unique, the model could more
readily extrapolate to this new case based on similar experiences
with the same polymer and solvent in the past. In a polymer split,
the model hadn’t seen the test polymers before, so it had to solely
extrapolate from train polymers that had similar chemistry to the
test polymers. The differences in the polymer chemistry would
then have an impact on the predictive accuracy. This trend held
for the models trained using a structural fingerprint too.

The model performed slightly better with the solvent structural
encoding (SolNet2) and had tighter error bars. For example, the
F1 score for insoluble predictions for a random split was 0.877
± 0.004 as opposed to 0.866 ± 0.020 for SolNet. However, this
difference is small and the structural fingerprint required a dra-
matically larger fingerprint. The main strength of the structural
encoding was that it was able to generalize to solvents outside of
the data set. In fact, SolNet is incapable of handling the solvent
split case (which is why Figure 2 does not have this case repre-
sented). SolNet2, on the other hand, can handle solvent splits.
Nevertheless, even in this case, a solvent split resulted in poorer
performance than the random-split and polymer split (having a
smaller F1 score of 0.612 ± 0.121 for insoluble pairings). This
was likely due to three reasons: solvent scarcity, polymer scarcity
within splits, and a greater imbalance in classes.

Regarding solvent scarcity, only 51 solvents were in the data
set in contrast to the 3,373 polymers. During a polymer split, the
test polymers are more likely to have chemically similar neighbors
that have been paired with the specific solvent before, whereas
this was unlikely in the solvent split due to solvent scarcity. This
may provide an explanation for why the polymer split F1 score
was between 0.83-0.89 for each of the five test fold versus 0.34-
0.74 for the solvent split test folds.

The second potential reason for the low F1 score of the sol-
vent split could be the polymer scarcity within a train-test split.
For instance, a polymer in the test set may have nine instances
in the train set, but each instance in the train set may be sol-
uble while the test case pairing was insoluble. Thus the model
will incorrectly classify the test polymer-solvent combination as
soluble when it is actually insoluble because it has never seen an
instance of this polymer being soluble. For each split there are be-
tween 122 to 194 polymers that have soluble pairings in the test
set but only insoluble pairings in the train set and between 48 to
994 polymers that have insoluble pairings in the test set but only
soluble pairings in the train set. This does not fully explain the
variation in F1 score between splits though. For instance, while
one split had 994 polymers that had an insoluble pairing in the

test set but only soluble pairings in the train set, the model cor-
rectly predicted the class in 83.6% of these test pairings and the
total insoluble F1 score for that split was 0.734. Conversely, splits
with relatively low numbers of these cases (where <5% of data
has a class for a polymer in the test split that has not been seen in
the train split) have low F1 scores of 0.32 to 0.48. Thus, while the
polymer scarcity within a train-test may contribute to the varia-
tion in the F1 score, it does not seem to be the dominant reason
for the discrepancy.

The final possibility could be due to class imbalance within the
test splits. The F1 metric is a harmonic mean of precision and re-
call, and precision is highly affected by class imbalances36. Some
generated examples of the effect of data imbalance on F1 scores
are shown in Figure S3 in the supplementary section. During
stratified random splits, 57% of the test data is soluble and 43%
is insoluble. Polymer splits are very close to this as well (55%
to 59% of test data is soluble). For both these split types, the
variability in class imbalance was lower and the classes were not
heavily imbalanced, so variability in precision due to class imbal-
ance was expected to be low. For solvent splits, the soluble test
data makes up 41%, 50%, 50%, 71%, and 75% of the data with
insoluble data being the remainder. When the soluble percentage
is close to 50%, precision for soluble and insoluble predictions
are almost equivalent (0.02 difference between precision values).
When the soluble percentage is larger (71 or 75%), precision val-
ues for soluble predictions are 0.81 and 0.90 respectively, whereas
precision for insoluble predictions are 0.4 and 0.34 respectively.
This large difference is likely due to the class imbalance. How-
ever, after assessing the cross-fold variability in recall (shown in
figure S4), this effect does not seem to be the main cause of the
variability in F1 score for folds. As such, we believe the dominant
issue was the solvent scarcity, as discussed further below.

3.2 Random Forest Performance

A random forest classifier was also trained on the solvent struc-
tural fingerprint, but not the one-hot encoding. The random for-
est approach was chosen because it requires less training time
than the SolNet2 model, it is good at binary predictions on tabular
data, and ensemble models typically perform well while avoiding
over fitting. A comparison between the performance of the ran-
dom forest model and SolNet2 model is shown in Figure 3. As
before, the splits were done via a random split stratified by sol-
ubility, group split by polymer, or group split by solvent. Both
models were trained and tested on the same train-test splits of
data, with the error bars resulting from the different test result
from five-fold cross validation.

The random forest classifier outperforms the SolNet2 model
across all methods of splitting data. For instance, in the random
split stratified by solubility the average F1 score was 0.935 ±
0.003 for soluble pairings vs the SolNet2 performance of 0.904
± 0.005. The largest improvement was in the group split by sol-
vents, with a jump for insoluble predictions from 0.612 ± 0.121 in
the SolNet2 model to 0.682 ± 0.097 in the random forest model
and a jump for soluble predictions from 0.539 ± 0.195 in the Sol-
Net2 model to 0.725 ± 0.137 in the random forest model. The
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Fig. 2 Average F1 score of SolNet infrastructure models for soluble and insoluble classification using either a one-hot encoding for solvents (SolNet)
or a structural fingerprint (SolNet2). Five-fold cross validation splits were chosen using either a random split stratified by solubility (left), group split
by polymer (middle), or group split by solvent (right). Error bars represent the standard deviation for the F1 score of those splits.

Fig. 3 Average F1 score of SolNet2 infrastructure neural network and Random Forest Classifier models for soluble and insoluble classification using
structural fingerprint for solvents. Five-fold cross validation splits were chosen using either a random split stratified by solubility (left), group split by
polymer (middle), or group split by solvent (right). Error bars represent the standard deviation for the F1 score of those splits.
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superior performance of the random forest classifier could be be-
cause the random forest’s ensemble method reduces the chance
of over-fitting or because the dataset is too small for a neural net-
work to outperform the random forest.

3.3 Performance on Completely Unseen Data

Since the random forest model outperformed the SolNet2 model
and trains faster, we used it for the remaining analysis. To test
how the random forest model performed on completely unseen
data, especially unseen solvents, we performed a leave one out
(LOO) analysis of the solvents. Each of the 51 solvents and all
of their associated polymers were held out as a test case and 51
models were trained with the remaining polymers and solvents.
The models’ recall metric on their test solvent/polymer combi-
nations was used in this analysis instead of F1 score due to the
large test set imbalance in classes for some solvents. The UMAP
from Figure 1 was modified into two plots shown in Figure 4: one
color coded according to soluble recall, and the other to insoluble
recall.

As seen in Figure 4, there are, in general, two cases that oc-
cur depending on the solvent: one where the recall for one class
is high and the other low (e.g., for many alcohols) and another
where both soluble and insoluble recalls are roughly the same
(e.g., for several aromatic compounds). In either case, the model
performs best when (1) the left-out solvent is similar to some
training solvents, (2) the polymers accompanying the left-out sol-
vent are similar to the polymers accompanying the similar train-
ing solvents, and (3) the polymer-solvent combination of the test
cases fall in the same class as the similar pairs in the train set. The
model performs worst if there is a similar test solvent with sim-
ilar training polymers, but the classification of the similar train-
ing combinations are opposite (i.e., counter to requirement (3)
above). For instance, despite the alcohols having many similar
solvents in the training data (according to Figures 1 and 4), the
model often struggled to correctly classify soluble pairings. For
the alcohol methanol, this is due to the addition of water. Based
on Figure 1 and a Tanimoto similarity score of 0.53 (Equation
S1, 0 is completely different, 1 is chemically equivalent), water
is somewhat chemically similar to methanol. The water data also
contains a significant number of training polymers that are chem-
ically similar to the test polymers paired with methanol. For in-
soluble methanol-polymer combinations these chemically similar
water-polymer combinations were the same class, but for soluble
methanol-polymer pairings the chemically similar water-polymer
combinations were the opposite class (i.e., insoluble). Thus, the
model often performs poorly for these soluble methanol-polymer
pairings because it’s been trained on oppositely classified but
chemically similar water-polymer pairs, hence the low soluble re-
call. A more in-depth learning curve analysis of the LOO analysis
is shown in the "Learning Curve" subsection in the supplementary
material.

Finally, we assessed the random forest model’s performance on
the additional 2,909 polymers and 7 solvents making up 7,736
soluble data points and 1,129 insoluble data points that were held
out since the polymers and solvents only had one class associated

with them. Confusion matrices for the predictions on this set are
shown in Figure 5. The top left matrix represents all data, the top
right represents the pairings where both the polymer and solvent
were unseen by the model, the bottom right represent the pairings
where the solvents had been seen by the model but the polymers
had not been, and the bottom left represents the pairings where
the polymers had been seen by the model, but the solvents had
not been.

The recall for these predictions was 0.624 for insoluble points
and 0.862 for soluble points. Due to the extremely large imbal-
ance in soluble to insoluble data points (87% of data is soluble),
assessing precision and F1 score would not be useful. All insolu-
ble pairs were instances where the polymer was not seen by the
model before, but the solvent was seen previously. This suggests
we should have seen an insoluble recall closer to the group split
by polymer levels (0.83 - 0.89). This lower recall could be due to
a number of factors such as an extremely new polymer space or
inaccuracies in the experimental data set. With regards to the new
polymer space, these new polymers had 42 new, unique chemi-
cal fragments that were not seen in the training data, 32 unique
atomic triplets, and the element iodine only appeared once in the
training data vs six times in the test data. On the other hand,
there were only 31 test polymers with no similar training poly-
mers (defined as a Tanimoto similarity score, Equation S1, greater
than 0.75). As such, it’s also possible that, while the polymers had
been seen before, they had not been tested in solvents similar to
the test solvents or, if they had been tested in similar solvents,
it’s possible that the true solubility was opposite in those similar
solvents. With respect to inaccuracies in the experimental data
set, this is hard to measure without manual experiments. We col-
laborated with experimetalists to test some combinations at room
temperature and found that a small percentage did conflict. How-
ever, polymer solubility can be significantly impacted by molecu-
lar weight and concentration, so two experiments could have dif-
ferent results depending on these values. Future work could ex-
plore how this uncertainty can impact model performance, as has
been done with Tg predictions on polymers, and it is important
future work consider these critical engineering parameters37.

4 Conclusions & Outlook
The two-fold goal of this work was to (1) create a generalizable
fingerprint for solvents that allows machine learning models to
predict polymer solubility in solvents not seen during the train-
ing phase, and (2) evaluate the strengths and limitations of these
machine-learning-based methods for solubility prediction while
considering the data the models are exposed to during training.
We experimented with random forest machine learning models
and compared these models and the generalizable fingerprint, re-
spectively, to previously designed neural network-based models
and a one-hot (or labeling-based) encoding for solvents19. The
generalizable solvent fingerprint used covered three hierarchical
levels of descriptors (atomic, block, and QSPR based) and was
inspired by previous work on polymer fingerprinting22,30. To test
where solubility predictions succeeded and failed for the differ-
ent ML models, five-fold cross validation was used with three
different data splitting methods: a random split stratified by sol-
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Fig. 4 UMAP of 51 solvents color coded according to either soluble (left) or insoluble (right) recall. Recall was calculated from a LLO analysis where
all solvents and their associated polymers were held out individually as a test set with the remaining polymers and solvents being used to train a
random forest classifier model.

ubility, a split by polymer, and a split by solvent. The random
split represented a scenario where the polymer and solvent had
been seen by the model during training, but the combination was
unique. The split by polymer (solvent) represented a scenario
where the solvent (polymer) had been seen by the model dur-
ing training, but the polymer hadn’t. A leave one out analysis of
solvents and their respective polymers was also performed with
the random forest models to assess the scenario where both the
polymer and solvent had not been seen before. Finally, a random
forest model trained on all of the data was used to predict on an
additional data set of polymers and solvents that was not used for
testing. A production level random forest model to predict poly-
mer solubility in solvents has been deployed at polymer genome
(https://www.polymergenome.org)23.

This work has a few key takeaways:

1. Our generalizable solvent fingerprint was as effective as a
previously used one-hot encoding method and could predict
on solvents unseen by the model during training, unlike the
one-hot encoding method.

2. The models were more accurate for predictions on unseen
polymers vs unseen solvents, likely due the larger polymer
data set size (3,373) compared to solvent data set size (51).

3. The model performance was modest on unseen solvents,
likely because the model either had not seen similar sol-
vents during training, or because the polymer-solvent com-
binations seen during training were too dissimilar (either

chemically or by classification) to the test polymer-solvent
combinations.

4. The random forest model outperformed the neural network
based models in all splitting methods.

5. The random forest models can make accurate predictions
for polymer-solvent pairings where both the polymer and
solvent had never been seen if they were trained on similar
polymer-solvent pairings (chemically and by classification).

The purely data-driven framework described in this work can
be systematically improved as it is exposed to an even larger
quantity and diversity of data. It is critical that future data incor-
porates more solvents, and that the quantity and chemical diver-
sity of polymers tested in each of these solvents is increased. Fu-
ture works should also focus on including other features that af-
fect solubility, such as concentration, molecular weight, and tem-
perature, and it could expand to include partial solubility and sol-
vent mixtures. Additionally, lower-fidelity solubility predictions
(e.g., Hildebrand predictions) may be useful for creating multi-
fidelity models with increased data set size and diversity. Finally,
an active learning approach might be beneficial, where the chem-
ical space of both polymers and solvents are evaluated in order to
choose representative samples to experiment on.
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