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Effects of Dilution in Ionic Liquid Supercapacitors†

Samuel Varner and Zhen-Gang Wang∗

Room-temperature ionic liquids (RTILs) are synthetic electrolytes that have a large electrochemical
stability window, making them attractive candidates for electric double-layer capacitor (EDLC) ap-
plications. Due to their high viscosities and low ionic conductivities, RTILs are often diluted with
organic solvent for practical use. We study the effects of dilution on the performance of RTIL EDLCs
using a simple mean-field model. We find that dilution diminishes the unfavorable hysteresis that
results from a spontaneous surface charge separation (SSCS). As a result, the RTIL concentration
can be used to modulate the proximity to the SSCS transition, and maximize capacitance. The
interplay between the concentration and the correlation strength gives rise to complex zero-potential
phase behavior, including a tricritical point and a λ -line, very similar to the Blume–Capel dilute Ising
model. Additionally, electrodes that are solvophilic aid in the prevention of SSCS by drawing solvent
molecules to the electrode and displacing ions. Solvophilic electrodes give rise to a phase transition at
finite potential where the surface charge rapidly increases with a small increase in potential, leading
to a substantial increase in capacitance and energy storage.

Introduction
Electric double-layer capacitors (EDLCs), a subset of supercapac-
itors (SCs), are devices that store charge in an electric double-
layer within an electrolyte near charged electrodes. EDLCs are
extensively studied because they may have the capability to match
the power density (PD) of traditional capacitors with the energy
density (ED) of batteries.1–3 When an electric field is applied be-
tween two electrodes, the formation of the double-layer is very
rapid due to high ion mobility, especially for electrolytes with low
bulk resistance (high ionic conductivity). This makes them useful
for applications that require high cyclability and power delivery,
such as in regenerative braking for electric vehicles.4.

Since the maximum energy that can be stored by an EDLC
scales as CV 2/2 (for constant C), increasing the cell potential V
is a very effective way to improve EDLC devices.5 The cell poten-
tial is determined by the electrolyte material being used, which
can range from aqueous electrolytes and polyelectrolytes to or-
ganic electrolytes and even ionic liquids (ILs).6 Both the PD and
ED are greatly improved if the cell potential of the EDLC can be
increased, ceteris paribus. Aqueous electrolytes remain electro-
chemically stable up to ~1 V, whereas organic replacements such
as acetonitrile (AN) and propylene carbonate (PC) have wider
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potential windows up to ~2.5 V.7 More recently, ILs are being
studied as electrolytes for EDLCs due to their low volatility, high
potential window and improved electrochemical stability.1,5,8

Room temperature ionic liquids (RTILs) are a special class of
ILs that differ from traditional molten salts in many ways. A
neat RTIL is typically made up of a bulky organic cation (e.g.
imidazolium, pyrrolidinium, phosphonium) and a weakly coor-
dinated organic/inorganic anion (e.g. tetrafluoroborate, triflu-
oromethanesulfonate, trifluoromethanesulfonimide).5,9 Due to
the organic and bulky nature of the ions, RTILs can exist as liquids
at room temperature despite strong Coulomb interactions. Addi-
tionally, RTILs are non-volatile and can remain stable up to ~5 V,
making them much more stable than aqueous and organic elec-
trolytes. Their desirable properties make them prime candidates
as electrolytes in EDLCs.10–12

For practical application of RTILs in EDLCs, it is crucial to un-
derstand the structure and behavior of the electric double-layer
(EDL). The capacitance and energy storage are directly deter-
mined by the response of the EDL to applied potentials. The
study of EDL structure goes back to Helmholtz in 1853.13 At that
time the EDL was described as a single layer of ions adjacent to
a charged electrode which yielded a constant capacitance at all
potentials. Now, more sophisticated theories incorporate physics
like electrostatic correlation, non-electrostatic interactions and fi-
nite ion size.14–21 The advent of more advanced theories was mo-
tivated by the discovery that electrostatic correlation and finite
size effects are essential to the EDL behavior of RTILs.22–24 Ko-
rnyshev15 studied the finite size effects using a mean-field lattice-
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gas model with only single-occupation sites. The effect of ion
crowding near the electrode with increasing potential gave a bell-
shaped capacitance–potential curve, rather than the typical U-
shaped curve that was predicted by Helmholtz. More interest-
ingly, Kornyshev also discovered that there is a transition from
bell-shaped to camel-shaped capacitance curves when the void
space in the system was high enough, specifically for an ion vol-
ume fraction of γ < 1/3.

The Kornyshev model was then extended by Bazant–Storey–
Kornyshev (BSK) to allow for electrostatic correlation phe-
nomenologically via the incorporation of a non-local relative per-
mittivity.16 It was shown that short-ranged electrostatic correla-
tions in neat RTILs can lead to overscreening, where the surface
charge is overscreened in subsequent layers, leading to an oscil-
latory charge density profile that decays to the bulk value away
from the electrode. This oscillatory behavior has been observed
experimentally and in simulations of dense electrolytes such as
RTILs where short-ranged electrostatic correlations are expected
to be important.25–27. While the BSK model was successful at
incorporating electrostatic correlations, the model was restricted
to a fixed correlation strength, and did not incorporate dilution
effects. The non-local relative permittivity introduced in the BSK
model maps to a composite Coulomb–Yukawa potential, U(r) =
(1− e−r/ℓc)/4πλ 2

Dr, where the Yukawa potential incorporates the
short-ranged electrostatic correlations and non-electrostatic inter-
actions.28,29 Here ℓc is the correlation length, λD is the Debye
length, and r is the interparticle distance. The BSK model was
further expanded upon by allowing for the correlation strength to
vary with the parameter α, U(r) = (1−αe−r/ℓc)/4πλ 2

Dr.18,30,31.
The correlation strength α incorporates the strength of electro-
static correlations as well as short-ranged non-electrostatic inter-
actions between the bulky ions of RTILs. Caetano et al. first used
this model to describe hydration mediated interactions in aque-
ous electrolytes.17 The observed hysteresis in RTIL EDLCs32,33

was first explained by Limmer as a result of a fluctuation induced
first-order surface phase transition.34 This spontaneous surface
charge separation (SSCS) was also predicted using the compos-
ite Coulomb–Yukawa potential with a correlation strength above
a critical value α > αs,c.18,30 The symmetry breaking transition
is made possible by the short-ranged attraction of co-ions result-
ing from non-electrostatic (dispersion) interactions. Typically, in
an inorganic electrolyte with small ions, the Coulomb repulsion
would prevent the coions from coalescing at an electrode with-
out a driving force. In the case of ILs, short-ranged dispersion
forces offset the Coulomb repulsion and allow coions to gather
at an electrode, inducing a surface charge. The result is a stable
double layer formed spontaneously through ion density fluctua-
tions and surface polarization. The image charge interactions are
crucial for the surface transition. Recent coarse-grained molec-
ular dynamics simulations show that SSCS is possible only with
attractive image charges from a metal electrode.35 The discussed
mean-field theories (MFTs) do not distinguish the electrode type.

While there have been many studies about neat RTILs near elec-
trified interfaces, there has been little work on diluted RTILs with
account for finite size and electrostatic correlation, and little dis-
cussion on their capacitance and energy storage behavior. The

high viscosity of RTILs at room temperature causes a low ionic
conductivity and thus low PD.7,36 High bulk resistance gives rise
to slow charging/discharging dynamics. This is one of the main
issues faced when using RTILs as the electrolyte for EDLCs. The
most popular way to get around the high viscosity is by using
mixtures of ILs and organic solvents, such as AN.37–39 While the
addition of organic solvents generally decreases the cell poten-
tial, exploratory studies have discovered RTIL–solvent mixtures
that maintain a cell potential above 3V with high cyclability.12,39

In most commercial applications, RTILs are diluted with AN or
PC to achieve acceptable power delivery.36 Incorporating neutral
solvent into existing theories of RTIL EDLCs is crucial to more
accurately model real systems and predict trends in ED and PD.

In this work, we further analyze the MFT used in recent
works30,31 by incorporating a neutral solvent. We investigate the
effect of dilution on SSCS, capacitance, and energy storage for a
single plate system. We also investigate the effects of preferen-
tial adsorption of solvent on the phase behavior, capacitance, and
energy storage.

Model and Theory

The MFT is similar to that developed earlier17 to describe hydra-
tion mediated interactions in dilute electrolyte where a Yukawa
potential was used to account for correlations, and the Biker-
man mixing entropy was used to account for finite ion size.40

The model was more recently used to study the thermodynamic
stability of neat ionic liquids and the spontaneous surface phase
transition arising from ion–ion correlations.18,30,31 These theo-
ries, however, have not yet been used to study the thermodynamic
stability of diluted ionic liquids and the capacitance behavior in
the charge separated regime. Briefly, a planar electrode is im-
mersed in a size-symmetric 1:1 diluted RTIL where each ion car-
ries unit charge ±e and has volume v and we define b = v1/3 as
the length scale of the ion. For simplicity, we assume the solvent
also has molecular volume v. In the framework of the lattice-gas-
like model, v corresponds to the volume of a lattice site where
each lattice site can be occupied by a single particle. In principle,
ion size asymmetry could be accounted for either phenomenolog-
ically as was done by Kornyshev,15 or in an asymmetric lattice
gas model as done by Han et al which uses a Flory–Huggins en-
tropy.41 We focus on the symmetric case in order to study the
effects of dilution and ion–ion correlations. The dielectric con-
stant of the RTIL is ε. The bulk ion volume fractions are φ B

± = vcB
±

where cB
i is the bulk number density of species i. A neat RTIL

corresponds to φ B
+ = φ B

− = 1/2. The solvent volume fraction is
given by the incompressibility condition φ B

s = 1− φ B
+ − φ B

−. We
use the B superscript to denote bulk values, while the inhomo-
geneous system profiles are denoted φ+ = φ+(r), φ− = φ−(r) and
φs = φs(r) = 1− φ+− φ−. The electrode carries surface charge σ

while the system remains charge neutral.

We start with the modified BSK equation16,17,31,42 with the ad-
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dition of the chemical potential in the grand canonical ensemble,

βΩ =
∫

dr [φ+ lnφ++φ− lnφ−+(1−φ+−φ−) ln(1−φ+−φ−)]

+
1

8πλ 2
0

∫
dr

∫
dr

φ(r)φ(r′)
|r− r′|

− α

8πλ 2
0

∫
dr

∫
dr′

φ(r)e−
|r−r′ |
ℓc φ(r′)

|r− r′|

−
∫

dr||
∫

dz [H+(z)φ+(r)+H−(z)φ−(r)]

−
∫

dr [µ+φ+(r)+µ−φ−(r)] (1)

where the integration dimensions are normalized by the ion size
b. The first integral is the translational entropy of the mixture
proposed by Bikerman40 with the incompressibility condition en-
forced. This is the most widely used model to account for fi-
nite ion size in MFTs of ionic liquids.15–18,30,31 We drop the ex-
plicit notation for spatial dependence as it is understood that
these profiles can be inhomogeneous. The second term is the
coulombic interactions where φ = φ+−φ− is the local dimension-
less charge density. The nondimensionalized nominal screening
length is given by λ0 = [εrε0b/βe2]1/2 with β = 1/kBT , elementary
charge e, temperature T , Boltzmann constant kB, vacuum permit-
tivity ε0, and relative permittivity εr. The third term is a Yukawa
potential which accounts for the ion–ion correlations and the non-
electrostatic interactions between the bulky organic ions, with α

controlling the strength and the correlation length ℓc controlling
the range. In principle, as shown by de Souza and Bazant42, α

and ℓc will vary with concentration; however, we assume they
are independent and choose a particular section of the parameter
space to explore. One could expand the model to include more
chemical specificity by using a different α and ℓc for each pair
of species.30 Alternatively a Flory χ could be included between
each species pair which is a much simpler local interaction that
would still allow for chemical specificity.43 The fourth term mod-
els the preferential adsorption/desorption of ions with the elec-
trode, where r|| is the 2-dimensional position in the directions
parallel to the electrode, z is position normal to the electrode,
and H± are the adsorption potentials for the ions relative to the
solvent. Note that the adsorption potentials H±(z) only depend
on position normal to the surface, z. The last term contains the
contributions from the chemical potentials µ+ and µ− where the
solvent term is eliminated using the incompressibility condition.
The system is grand canonical as it is connected to a bulk reservoir
at fixed species chemical potentials.

For the single plate geometry, assuming the transverse direc-
tions are vast compared to the normal direction, we can reduce
the model to a one-dimensional system. Instead of the vector po-
sition, r, dependence is reduced to the coordinate z normal to the
electrode face (normalized by b). Since the single-plate system is
semi-infinite, we introduce a second plate at a sufficiently large
distance L from the first plate to simplify numerical calculations.
The two plates have the same magnitude of surface charge σ with

opposite sign, and are located at z = ±L/2. They are far enough
that a significant region centered at z = 0 is at the bulk condition
of φ± = φ B

±.

The Coulomb term, the second term in Eq. (1) can be rewrit-
ten identically using an identity transform for quadratic interac-
tions.44,45 This introduces the nondimensional electrostatic po-
tential ψ = βeΨ that is coupled to the mean charge density, φ .
We also include preferential adsorption potentials to account for
non-electrostatic electrode–electrolyte interactions.18 The nondi-
mensional grand free energy per unit area for the single plate
system is

βΩ

A
=
∫ L/2

−L/2
dz [φ+ lnφ++φ− lnφ−+(1−φ+−φ−) ln(1−φ+−φ−)]

+
∫ L/2

−L/2
dz

{[
φ +σδ

(
z+

L
2

)
−σδ

(
z− L

2

)]
ψ − λ 2

0
2

∣∣∣∣∂ψ

∂ z

∣∣∣∣2
}

+
α

2λ 2
0

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′U(z− z′)φ(z)φ(z′)

−
∫ L/2

−L/2
dz [H+φ++H−φ−]

−
∫ L/2

−L/2
dz [µ+φ++µ−φ−] (2)

where the Yukawa potential is U(z− z′) = − ℓc
2 e−|z−z′|/ℓc and A is

the electrode area. The fourth term accounts for the preferential
adsorption/desorption of ions and solvent. The solvent contri-
bution is eliminated from this term using the incompressibility
condition. We use the same short-ranged preferential adsorption
potential that was used by Chao and Wang (CW) in their study
of preferential adsorption of ionic liquids.18 This form was in-
voked for numerical stability and to maintain consistency with
the length scale of the RTIL, b. In principle the potential could be
a delta function at each surface, rather than be position depen-
dent. We choose to use a smooth potential for numerical stability.

H±(z) =


(1− z− L

2 )
2∆h± −L/2 ≤ z <−L/2+1

0 −L/2+1 ≤ z < L/2−1

(1+ z− L
2 )

2∆h± L/2−1 ≤ z ≤ L/2

(3)

where strength of the harmonic adsorption for each ion type rel-
ative to the solvent is denoted ∆h± = h± − hs.18 In general, the
strength of the interaction can be different for cations and an-
ions. However, for simplicity, we assume that ∆h = ∆h+ = ∆h−,
and therefore H = H+ = H−. Note, the negative sign in front of
the adsorption term of eqn (2) means that when ∆h is negative,
the electrode has a higher affinity for the solvent than the ions.

Setting the variation of the free energy Ω with respect to ψ and
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φ± to zero, we obtain the following set of self-consistent equations

−λ
2
0

∂ 2ψ

∂ z2 = φ +σδ

(
z+

L
2

)
−σδ

(
z− L

2

)
(4)

ln
(

φ+

1−φ+−φ+

)
+ψ +Y −H+−µ+ = 0 (5)

ln
(

φ−
1−φ+−φ−

)
−ψ −Y −H−−µ− = 0 (6)

where we have introduced the Yukawa field Y defined by the con-
volutional integral

Y (z) =
α

λ 2
0

∫ L/2

−L/2
dz′U(z− z′)φ(z′) (7)

Since the system is symmetric, we have the condition ∂zψ|z=0 = 0.
Integrating over the domain and noting that inside the electrodes
∂zψ = 0 yield the boundary conditions

− λ
2
0

∂ψ

∂ z

∣∣∣∣
z=±L/2

= σ (8)

The Poisson equation, eqn (4), can be solved efficiently via finite
difference, or can be solved via direct integration

ψ(z) = ψ(0)− 1
λ 2

0

∫ z

0
dz′(z− z′)φ(z′) (9)

where ψ(0) = 0 for the symmetric two-plate system. Although
one can obtain Y (z) in terms of φ(z) using the integral form of
eqn (7), computationally it is more convenient to solve for Y (z)
from a differential equation. To this end, differentiating eqn (7)
twice yields

∂ 2Y
∂ z2 − Y

ℓ2
c
=

α

λ 2
0

φ(z) (10)

Differentiating eqn (7) once and setting z = 0 yields the boundary
condition

∂Y
∂ z

∣∣∣∣
z=±L/2

=∓Y (±L/2)
ℓc

(11)

which agrees with previously obtained results30,31 for no Yukawa
source at the electrode. Assuming the bulk is a homogeneous
1:1 ionic liquid with ion volume fractions φ B

± = φ B, we may set
ψ = Y = H = φ = 0. Using the bulk conditions in addition to the
equilibrium conditions µ+ = µB

+ and µ− = µB
−, we obtain an equa-

tion for the chemical potential.

µ = µ+ = µ− = ln
(

φ B

1−2φ B

)
(12)

Inserting eqn (12) into eqn (5) and eqn (6) gives equations for
the ion density profiles in terms of the potentials ψ, Y , and H,

φ+ =
e−(ψ+Y )

(1/φ B −2)e−H +2cosh(ψ +Y )
(13)

φ− =
eψ+Y

(1/φ B −2)e−H +2cosh(ψ +Y )
(14)

Equations (4), (10), (13) and (14), along with boundary condi-

tions in eqn (8) and eqn (11) constitute a set of self-consistent
equations which can be solved iteratively with an initial guess for
φ(z). For all calculations we set T = 300K and b = 1nm. BSK
predicted that the correlation length is on the order of the molec-
ular size; therefore, we set ℓc = v1/3.16 We choose εr = 10 in ac-
cordance with experimental measurements of imidazolium-based
ionic liquids.46 These values result in a nominal screening length
of λ0 = 0.12.

Zero applied field

For the case of no applied potential, the electrostatic potential
difference between the two separated plates is zero, ∆V =ψ−L/2−
ψL/2 = 0. The mean-field equations are solved self-consistently via
the following algorithm. An initial guess is made for φ(z). ψ(z)
is calculated from eqn (4) with the boundary conditions in eqn
(8). Y (z) is calculated from eqn (10) with the boundary condition
given in eqn (11), and H(z) is calculated from eqn (3). ψ, Y , and
H are used in eqn (13) and eqn (14) to calculate new profiles φ+

and φ−, and therefore φ(z) = φ+ − φ−. This process is repeated
until the maximum difference in local charge density between
subsequent iterations is below a tolerance, set to 10−10 for our
calculations.

Applied field

In the case of an applied field, ψ−L/2 = −ψL/2 ̸= 0 and we spec-
ify the surface charge on the left and right plate to be σ and −σ

respectively. For each σ , we calculate the equilibrium profiles
and extract the surface potential on each plate, which effectively
yields the relationship σ(∆V ), where ∆V is the difference in sur-
face potential between the two plates. The differential capaci-
tance is calculated as

Cdiff =
∂ |σ |
∂∆V

(15)

and the energy storage per surface area is calculated as

∆F =
∫

σ(∆V )

σ(0)
udσ =

∫
∆V

0
Cudu (16)

where σ , ∆V , Cdiff and ∆F are in units of e/b2, kBT/e, e2/kBT b2

and kBT/b2 respectively.

Results and Discussion

Effect of dilution on spontaneous surface charge separation

We first study the effect of dilution on spontaneous surface charge
separation when there is no applied potential, ∆V = 0. We vary
the Yukawa interaction strength from α = 0 to α = 1, and the
bulk ion volume fraction from ρB = φ B

+ + φ B
− = 0.05 to ρB = 1.

It is expected that dilution should weaken the effect of correla-
tions31, making the critical correlation strength for SSCS, αs,c,
larger. Thus, a neat RTIL that undergoes SSCS at a particular αs,c

may not undergo any SSCS after dilution. We can observe SSCS
by varying the bulk ion concentration ρB at a fixed correlation
strength α.

We find that when α is moderately above the transition value
for neat IL SSCS, the transition density decreases, but the transi-
tion remains second-order. When α is well above the transition
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Fig. 1 (a) second-order SSCS transition, for a specified α, the transition
occurs at a critical bulk ion concentration. Note, ρB = φ B

++φ B
− = 2φ B is

the total ion concentration in the bulk. There are two branches because
the symmetry can spontaneously break in either direction. (b) first-order
SSCS transition, for a specified α, the transition occurs at different bulk
ion concentrations depending on the initial state of the system, indicating
metastability of the two phases. Solid lines correspond to paths taken
starting from homogeneous states, whereas dashed lines correspond to
paths taken starting from a charge-separated state. Vertical lines do not
represent real trajectories, they are merely visual to guide the eye. The
transition is discontinuous in the first-order region.

value for neat IL SSCS, the transition can happen at a lower den-
sity and the nature of the transition changes from second-order to
first-order. Fig. 1 shows SSCS in systems with α moderately (a)
and significantly (b) above the neat ionic liquid transition value
of αs,c = (λ0/ℓc)

2 + 2(λ0/ℓc) = 0.25 for λ0/ℓc = 0.12.31. Fig. 1a
shows a second-order transition in the surface charge density with
increasing ρB while Fig. 1b shows a first-order transition. Addi-
tionally, as conjectured in Ref. 31, stronger correlations lead to a
lower transition density.

The first-order behavior is characterized by metastability. When
starting from a charge separated state and slowly decreas-
ing the bulk concentration, the charge separated state remains
metastable until a lower ρB value than when starting from a

homogeneous state and slowly increasing ρB, as shown in Fig.
1b. Furthermore, note that the surface charge no longer in-
creases continuously from 0 upon SSCS. Instead, the surface
charge jumps from 0 to a finite value at the disordered spinodal
and similarly jumps from a finite value down to 0 at the ordered
spinodal. The true equilibrium transition ρB value is determined
by the equality of the grand free energy density between the two
branches. See the ESI† for more information on determining the
transition point. The grand free energy is obtained by using the
converged profiles ψ, Y , and φ±.

Charge overscreening and crowding

SSCS is accompanied by the presence of decaying oscillatory
charge density profiles away from a charged electrode. The
overcompensation of surface charge and the resulting oscilla-
tory charge density and electrostatic potential profiles have been
described as overcharging, or overscreening.16,27,47 This phe-
nomenon has been well documented for dense ionic systems near
charged surfaces. In the case of BSK, the surface is charged and
the ionic liquid overcompensates the surface charge, whereas
in our case the surface charge is generated by the spontaneous
charge separation of the ionic liquid. In either case, overscreening
of the charge occurs. An example of an oscillatory charge density
profile for a neat RTIL is given in Fig. 2a. The oscillations become
more pronounced as the correlation strength α increases.

For very strong correlations (e.g. α = 1.1), the effects of lat-
tice saturation, or crowding, are observed. For the red and green
curves in Fig. 2a, the layer adjacent to the electrode extends out
into the solution. This is a result of the finite size of the ions in
the lattice-gas-like model. Since the charge density cannot exceed
unity, as the driving force for separation increases, the counterion
layer adjacent to the electrode grows.

As the RTIL is diluted, the effect of correlations decreases and
the driving force for SSCS decreases with it. As a result, both over-
screening and crowding should be diminished as the RTIL concen-
tration decreases. Indeed this is shown in Fig. 2c. As the RTIL is
diluted, the extent of overscreening is diminished until eventually
SSCS no longer occurs.

Phase diagram for SSCS at zero potential

For neat RTILs, the CW model shows a second-order transition
at a critical alpha value, αs,c, at zero potential (∆V = 0).18 The
spontaneous surface charge separation is similar to the sponta-
neous magnetization in the mean-field Ising model, where the
surface charge is the analog of the magnetization.

It is of interest to determine the exact nature of the first-
order and second-order behavior in the relevant parameter space.
Specifically, what is the location of the tricritical point with re-
spect to concentration (or µ) and correlation strength? To answer
this question a phase diagram in α − µ space was generated nu-
merically. For a comprehensive description of the algorithm, see
the ESI†.

As shown, dilution decreases the effects of SSCS, meaning that
a dilute system will have a higher αs,c than a neat RTIL. This can
be easily understood since the neutral solvent increases the aver-
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Fig. 2 (a) Charge density profiles near a positively charged electrode for a neat RTIL, ρB = 1. Profiles for various α are shown, all with ∆V = 0. (b)
Potential profiles corresponding to the charge density profiles in (a) where the electrostatic potential is given by solid lines and the Yukawa potential is
given by dashed lines. (c) Charge density profiles near a positively charged electrode for a diluted RTIL with α = 1 and ∆V = 0. (d) Potential profiles
corresponding to the charge density profiles in (c) where the electrostatic potential is given by solid lines and the Yukawa potential is given by dashed
lines.

age distance between ions, reducing the effects of short-ranged
correlations. The CW model shows that for neat RTILs the tran-
sition value is determined by αsc,neat = 2λ0/ℓc +λ 2

0 /ℓ
2
c .31 For any

dilute system, it should hold that αsc,dilute >αsc,neat . Thus, For any
α < αsc,neat there will never be SSCS at any bulk ion density. This
sets a lower bound for the value of α in the α–µ phase diagram.

The phase diagram in α − µ space is given in Fig. 3. At the
lower right part of the phase diagram, the SSCS transition is
second-order as indicated by a line of critical points (the λ -line;
the dashed green curve). For larger α and low bulk density, the
transition becomes first-order indicated by the solid blue binodal,
which is flanked by the spinodals of the disordered phase (solid
black line) and the spinodal of the SSCS state (solid red line).
The λ -line and the binodal meet at the tricritical point, where the
two spinodal lines also terminate with a common tangent. The
tricritical point occurs at µ = − ln4 or ρB = 1/3. We note that
this volume fraction is the same value that results in a transition
from bell to camel-shaped capacitance curves, as shown by Ko-
rnyshev.15 The transition in the shape of the capacitance curves

occurs even without consideration of correlations and is a result
of the finite ion size as treated with the lattice model. We see in
the case of the diluted RTIL with correlations that the transition
in the shape of the capacitance curve at critical dilution coincides
with a transition in the phase behavior.

Beyond the mean-field, fluctuations will change the nature of
the transition. It has been shown that the transition in concen-
trated ILs is weakly first-order rather than second-order, putting
it in the Brazovski universality class.34,48 Coarse-grained molec-
ular dynamics simulations of neat RTILs also indicate a weakly
first-order transition.35

Connection to Blume–Capel Model
The SSCS is a transition involving spontaneous symmetry break-
ing in the presence of a diluent. This is reminiscent of the sponta-
neous magnetization in the diluted Ising model, the spin-1 Ising
model or the Blume–Capel (BC) model (a subset of the well
known Blume–Emery–Griffiths model).49–52 The BC/BEG model
accurately captures the tricritical behavior of He4 −He3 mixtures,
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Fig. 3 RTIL SSCS phase diagram in α −µ space. The dashed λ -line is
a line of critical points where second-order transitions occur. The blue
coexistence line and the black and red spinodals are a region of first-order
transitions. The transition from second-order to first-order occurs at the
tricritical point.

where the fluid-superfluid transition goes from second-order to
first-order at a critical amount of He3 impurity. The diluted RTIL
shows a transition from second-order to first-order phase behav-
ior below a certain ion concentration, where the neutral solvent
plays the role of impurities. To show the comparison, we briefly
derive results of the BC model.

The Hamiltonian of the BC model in the constrained grand
canonical ensemble is given by,

H({s},N,T,µA,µB) =− J
2 ∑

i

n.n.

∑
j

sis j −∆µ ∑
i

s2
i (17)

where si is the spin on particle i (±1 for interacting particles, A,
and 0 for impurities, B), J > 0 is the ferromagnetic interaction
strength, and ∆µ = µA − µB is the chemical potential difference
between particle types. The sum over j is over the nearest neigh-
bors of spin i.

We define the relative magnetization order parameter m =

∑i si/NA and the type A spin concentration x = NA/N in order
to write the mean-field Hamiltonian. The Gibbs Entropy is used
with the mean-field Hamiltonian to write a variational free en-
ergy, G = ⟨H⟩−T S. The non-dimensional variational free energy
per spin is

g =
G

NkBT
=−1

2
αx2m2 −µx+ x

1+m
2

ln
(

x
1+m

2

)
+

+x
1−m

2
ln
(

x
1−m

2

)
+(1− x) ln(1− x) (18)

where α ≡ zJ/kBT , µ ≡ ∆µ/kBT , and z is the coordination number
of the lattice. Minimizing the free energy gives the mean field

equations

m = tanh(αxm) (19)

µ = ln
x

1− x
−αxm2 +

1+m
2

ln
1+m

2
+

1−m
2

ln
1−m

2
(20)

which can be analyzed to obtain a phase diagram for the fluid-
superfluid transition. The α −µ phase diagram for the BC model
has the same characteristic shape as the phase diagram for the
dilute RTIL model in this study. We observe tricritical behavior

−4 −2 0 2 4

µ

2
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8

α
=

z
J

k
B
T

disordered spinodal
ordered spinodal
coexistence
λ-line

Fig. 4 α −µ phase diagram for the mean-field BC model.

at the same chemical potential, which corresponds to µ = − ln4
or x = ρB = 1/3. Note, this is the same concentration, γ = 1/3,
discovered by Kornyshev15 where the capacitance curve transi-
tions from bell to camel-shaped. This analysis confirms the strong
analogy between the currently studied dilute RTIL model and the
dilute Ising model. The BC model and variants have also been
used to study confined ionic liquids, and similar tricritical phase
behavior is reported.53,54 That the tricritical point for both the
SSCS transition and the BC/BEG model occurs at ρ = 1/3 is strik-
ing. However, the exact reason for this remains to be understood.

Capacitance and energy storage of dilute RTIL
Modulation of the distance to the αs,c can be beneficial in multi-
ple ways, first by preventing unwanted hysteresis in charging and
discharging, but also by allowing for a large zero-potential capac-
itance. We have shown that addition of neutral solvent increases
αs,c; here we discuss how this affects the capacitance and energy
storage.

In order to see the effect of α in dilute systems, we first look at
the α = 0 case that was studied by Kornyshev.15. He observed a
transition from bell to camel-shaped capacitance curves at signif-
icant dilution.15 The framework developed in our theory success-
fully reproduces the results of Kornyshev when α = 0, as shown in
Fig. 3 in the ESI†. The transition from bell to camel-shaped curves
occurs at ρB = 1/3, as expected. While the zero-potential capaci-
tance is lower for the dilute RTIL, at high potentials, the more di-
lute RTILs have higher capacitance. As pointed out by May55, the
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increase in capacitance with dilution at high potential comes from
a frustration relief of the EDL, where coions near the surface are
replaced by solvent molecules. Recent works have discovered a
"bird-shaped" capacitance curve that occurs near the RTIL–solvent
demixing transition when ionophilic electrodes are used.56 While
we did not observe this shape with the given model, we believe
this shape can be achieved by adding a local repulsion between
ions and solvent via a Flory χ parameter. Ionophilic electrodes
can be modeled by setting ∆h to a positive value. We leave this
exploration for a future study.

With correlations accounted for in the Yukawa potential, di-
lution effectively raises αs,c. Figure 5a shows that hysteresis in
charging/discharging can be minimized or even prevented via di-
lution. The σ −∆V curve for ρB = 1.0 (purple) exhibits metasta-
bility where σ and ∆V have opposite signs, while the stability
condition ∂σ/∂∆V > 0 is still satisfied. There is also a region of
instability indicated by a dashed line where ∂σ/∂∆V < 0. For a
given α, instability and metastability can be mitigated by diluting
enough with a neutral solvent such that α ≤ αs,c. For α = 0.35 we
see that at the corresponding critical concentration of ρB = 0.55
the slope diverges at ∆V = 0. See the red curve in Fig. 5a. This
means that for an RTIL with α = 0.35, one can maximize the zero-
potential capacitance by diluting the RTIL down to 55% v/v. We
again acknowledge that α for a given RTIL could generally de-
pend on the ion concentration;42 however, the extent and form
of the dependence is not the focus of this study. Here, we as-
sume that α is independent of the concentration and explore the
parameter space.

Capacitance curves for α = 0.35 are shown in Fig. 5b and c. The
zero-potential capacitance first increases upon dilution (purple to
red). The maximum capacitance is reach when the concentra-
tion is such that α = αs,c. Further dilution results in a decrease
in zero-potential capacitance (red to green to orange to blue) be-
cause it brings the system further below αs,c. For ρB < 1/3 the
maximum in capacitance characteristic of the camel shaped ca-
pacitance curves is still present. Similarly, for high enough poten-
tials, the capacitance increases with dilution due to EDL frustra-
tion relief.

Figure 6 show the zero-voltage capacitance as a function of ρB

at different values of α. The capacitance diverges for a critical ρB

value whose αs,c becomes equivalent to α for the given RTIL.
Since dilution leads to a higher capacitance at high potentials,

it is conceivable that the energy storage could be higher in more
dilute RTILs at the same charging potential. The energy storage
is calculated via eqn (16) and plotted in Fig. 7 for an RTIL with
α = 0.35. If the capacitor is charged to higher potentials, it is evi-
dent that more dilute RTILs can store more energy per unit area.
This is because of the higher capacitance in dilute RTILs at high
potential, which is shown in Fig. 5b and c. We see that even at the
critical concentration of ρB = 0.55 where the zero-voltage capaci-
tance diverges, the energy storage is relatively low. As explained
by Chao and Wang18, this is due to the peak in capacitance being
counterbalanced by the zero of potential in the integral in eqn
(16). In order to combat this, Chao and Wang proposed prefer-
ential adsorption where one ion is preferentially attracted to a
particular electrode. The result was a shifted diverging capaci-
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Fig. 5 (a) σ vs ∆V plotted for a RTILs with varying dilution and α = 0.35.
The dashed portion of ρB = 1.0 (purple) curve is the region of instability.
The inset shows the ρB = 1.0 curve with arrows indicating the trajectory
the system would follow when slowly charging or discharging. Starting
on the bottom solid curve at -3 and increasing the voltage, the system
becomes metastable once 0 is crossed. As the potential is increased
further, the system may jump up to the positive branch. The arrow
is located at the spinodal, where the system must jump to the stable
positive branch. (b) and (c) Cdiff vs ∆V plotted for RTILs with varying
dilution on semi-log and log-log scales respectively. The capacitance
curves are calculated using only the stable and metastable portions of
the σ −∆V curves. The legend in (a) applies to (b) and (c) as well.
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Fig. 6 Cdiff(∆V = 0) vs ρB for different values of α. Note that α is below
the value at the tricritical point, and therefore the transition remains
second-order.

tance which leads to a substantial increase in energy storage. We
would expect similar results with asymmetric ion adsorption in
diluted RTILs, so we instead focus on solvent adsorption which is
specific to our work.

Preferential adsorption of solvent
We assume the same short-ranged preferential adsorption for the
solvent that has previously been used to describe preferential ad-
sorption of ions in neat RTILs18,31. The form of the potential is
given in eqn (3). We assume that the two ions have the same
interaction with the electrodes while the solvent interaction dif-
fers. Under the assumption of indifferent adsorption between the
cation and anion, the relevant interaction is the difference be-
tween the solvent and the ions with the surface. A negative ∆h
implies that the solvent is preferentially attracted to the electrode,
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∆
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Fig. 7 Energy storage per unit area for an RTIL with α = 0.35 at various
levels of dilution.

or that the electrode is solvophilic. We expect that a solvophilic
electrode will diminish unfavorable hysteresis and SSCS by draw-
ing solvent to the electrode and pushing ions away. To study the
SSCS behavior we set zero surface potential and vary the bulk
ion concentration. The α − µ phase diagram for a diluted RTIL
with ∆h = −5 is given in Fig. 8. The main effect on the zero-
voltage behavior is that for a given chemical potential, a higher α

is required to induce SSCS.
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Fig. 8 α−µ phase diagram for a dilute RTIL with a solvophilic electrode,
∆h = −5. The black superimposed phase diagram is the result for no
preferential adsorption.

Preferential adsorption of solvent repels ions away from the
electrode. At low potential, this leads to a lower differential
capacitance as the driving force for ions to replace the solvent
molecules is low. As the potential increases, the system under-
goes a surface transition where the solvent molecules are replaced
with counterions. We note that this finite potential transition can
occur in systems with no preferential adsorption, so long as the
RTIL concentration is sufficiently low, and the correlation strength
is sufficiently high. Preferential adsorption of solvent enhances
the effect and shifts the transition to higher concentrations where
RTILs are typically used. Near the transition at finite potential,
the capacitance becomes very large.

In Fig. 9, the surface charge, differential capacitance, and en-
ergy storage are plotted as a function of the applied potential
for a solvophilic electrode. We see that the spike in capacitance
(Fig. 9b) at a finite potential difference leads to a sudden rapid
increase in the energy storage (Fig. 9c), which naturally comes
from the definition of energy storage given in eqn (16). Previ-
ous studies that focused on ion adsorption into nanopores have
shown a similar increase in energy storage when using ionopho-
bic electrodes.57–60 Generally, wider peaks in capacitance shifted
to larger applied potentials lead to more energy storage. Also, we
still observe the trend that more dilute RTILs store more energy
when charged to relatively higher potentials. This is due to the
higher differential capacitance at higher potential. In the high
potential limit we still observe the expected ∆V−1/2 behavior.15
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Fig. 9 (a) σ vs ∆V plotted for a RTILs with varying dilution, α = 0.50,
and a solvophilic electrode (∆h =−5.0). The dashed portion of ρB = 1.0
(purple) curve is the region of instability. (b) Cdiff vs ∆V plotted for
RTILs with varying dilution on semi-log scale and (c) energy storage ∆F
vs ∆V for diluted RTILs. The legend in (a) applies to (b) and (c) as well.

Conclusions
The RTIL concentration is a powerful design handle for EDLCs.
While some factors such as the correlation strength and length, or
the chemical nature of the electrode can be difficult and expen-
sive to vary, concentration is very simple, yet effective for tuning
capacitance and energy storage. For example, the hysteresis in
RTILs due to strong correlation effects18,32–34 can be mitigated
by dilution. Addition of a neutral solvent works to separate ions
and decrease the effect of the short-ranged correlations. By di-
luting, one can modulate the proximity to SSCS to fine tune and
bolster the capacitance.

When a neutral solvent is added, there is also a rich phase
behavior similar to that of the well known BC (or BEG) model.
At high concentrations SSCS is a second-order transition at the
mean-field level, whereas at low concentrations SSCS is a first-
order transition. The transition from second-order to first-order
occurs at the tricritical point which exists at a bulk ion volume
fraction of ρB = 1/3, the same volume fraction of the tricritical
point in the BC model. This volume fraction also corresponds to
the transition between bell and camel-shaped capacitance curves
as discovered by Kornyshev.15

If the electrode shows preference for the solvent, this further
reduces the effect of SSCS, pushing the transition to finite po-
tentials where ions are attracted to the charged electrodes. This
preference for solvent can lead to a surface charge transition at
a finite potential where the surface charge rapidly increases (or
even jumps), and the electric double layer is flooded with ions
to counteract the charge. The rapid increase in surface charge is
favorable when continuous due to the increased capacitance and
energy storage. However, a jump in surface charge could lead
to unfavorable hysteresis in charging and discharging similarly to
neat RTILs.32,33 We achieved a significant increase in energy stor-
age without considering asymmetric adsorption of the ions as in
Ref. 18. The presence of solvent allows for the phase transition
at finite potential, which could not occur in a neat RTIL without
introducing asymmetry.

Based on these results, the ideal charging behavior is achieved
when the concentration and correlation strength are such that the
system is near but not above the critical concentration for a finite
potential surface phase transition. The solvent choice and concen-
tration serve as easy handles for modulating the phase behavior
and maximizing the capacitance.

While we only apply a mean-field treatment of RTILs with
a phenomenological correction for ion–ion correlations, similar
models have been used to predict qualitative behavior observed
in experiments.15,17,18,30,31 The lattice-gas-like model used here
is not able to incorporate any ion packing effects. Future works
should consider more sophisticated theories that account for liq-
uid structure such as classical density functional theory (cDFT)
and weighted density theories. Size asymmetry can be incorpo-
rated into future studies where the solvent, cation, and anion can
be treated explicitly with different sizes. Size asymmetry has been
previously considered using Monte Carlo, cDFT,61 MFT without
ion–ion correlations,41 and continuum theory,62 but there has
not been work looking at the phase behavior and energy storage
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performance in asymmetric systems. Size asymmetry will shift
the peak in the capacitance from zero potential in a similar man-
ner to preferential adsorption, enhancing the energy storage from
charging. It is also of interest to look at RTIL behavior in curved
environments. Some studies are already looking at the EDL struc-
ture for RTILs near curved surfaces5,63,64, but there is still work
to be done specifically in confined systems with curvature. With
the advent of wearable technology, supercapacitors are being tar-
geted for power delivery in flexible electronics, where electrode
curvature is of utmost importance.65 Much work can be done
even at the mean-field level. Future works should incorporate the
effects explored in this work such as dilution, correlations, and
non-electrostatic interactions, while including additional effects
such as size asymmetry, curvature, and confinement.
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Appendix A: Nomenclature
Abbreviations

RTIL Room temperature ionic liquid

EDLC Electric double layer capacitor

SSCS Spontaneous surface charge separation

SC Supercapacitor

PD Power density

ED Energy density

AN Acetonitrile

PC Propylene carbonate

IL Ionic liquid

EDL Electric double layer

BSK Bazant–Storey–Kornyshev

MFT Mean-field theory

CW Chao–Wang

BC Blume–Capel

BEG Blume–Emery–Griffiths

cDFT Classical Density Functional Theory

Symbols

C Capacitance

V Cell potential

γ Compacity

U Potential energy

r Particle distance

ℓc Correlation length

λD Debye length

α Correlation strength

αs,c Surface critical correlation strength

v Molecular volume

b Molecular size, v = b3

φ B
i Bulk volume fraction of species i

cB
i Bulk number density of species i

ε Dielectric constant

r Vector position

β Inverse temperature, 1/kBT

kB Boltzmann constant

T Temperature

Ω Grand free energy

λ0 Nominal screening length

µi Chemical potential of species i

εr Relative permittivity

φ Local charge density

ε0 Vacuum permittivity

e Elementary charge

z Coordinate normal to electrode

r|| 2-dimensional position parallel to electrode

χ Flory-chi parameter

L Electrode separation

Ψ Electrostatic potential

ψ Nondimensional electrostatic potential, βeΨ

A Electrode surface area

σ Surface charge density

U Yukawa potential

Hi Preferential adsorption potential

hi Preferential adsorption strength of species i

∆hi Relative adsorption strength of species i (relative to
solvent)

∆h Symmetric relative adsorption strength

Y Yukawa field
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µB
i Bulk chemical potenital of species i

µ Ion chemical potential in symmetric IL

∆V Electrode potential difference

ψ±L/2 Electrostatic potential on electrode

Cdiff Differential capacitance

∆F Stored energy per surface area

ρB Bulk ion volume fraction

αsc,neat Surface critical correlation strength in neat RTIL

αsc,dilute Surface critical correlation strength in dilute RTIL

H Hamiltonian

N Particle number

s Spin configuration

si Spin on particle i

µA,µB Chemical potential of particle type A, and B

J Ferromagnetic interaction strength

∆µ Chemical potential difference between A and B

m Relative magnetisation order parameter

x Mole fraction of type A

G Variational free energy

S Entropy
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