
Inferring entropy production rate from partially observed 
Langevin dynamics under coarse-graining

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-07-2022-003064

Article Type: Paper

Date Submitted by the 
Author: 06-Jul-2022

Complete List of Authors: Ghosal, Aishani; Tel Aviv University, Department of Biomedical 
Engineering
Bisker, Gili; Tel Aviv University, Biomedical Engineering

 

Physical Chemistry Chemical Physics



  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

Inferring entropy production rate from partially observed 

Langevin dynamics under coarse-graining 

Aishani Ghosala and Gili Bisker *a,b,c,d 

The entropy production rate (EPR) measures time-irreversibility in systems operating far from equilibrium. The challenge in 
estimating the EPR for a continuous variable system is the finite spatiotemporal resolution, and the limited accessibility to 
all of the nonequilibrium degrees of freedom. Here, we estimate the irreversibility in partially observed systems following 
oscillatory dynamics governed by coupled overdamped Langevin equations. We coarse-grain an observed variable of a 
nonequilibrium driven system into a few discrete states, and estimate a lower bound on the total EPR. As a model system, 
we use hair-cell bundle oscillations, driven by molecular motors, such that the bundle tip position is observed but the 
positions of the motors are hidden. In the observed variable space, the underlying driven process exhibits second-order 
semi-Markov statistics. The waiting time distributions (WTD), associated with transitions among the coarse-grained states, 
are non-exponential and convey the information on the broken time-reversal symmetry. By invoking the underlying time-
irreversibility, we calculate a lower bound on the total EPR from the Kullback-Leibler divergence (KLD) between WTD. We 
show that the mean dwell-time asymmetry factor – the ratio between the mean dwell-times along the forward direction 
and the backward direction, can qualitatively measure the degree of broken time reversal symmetry and increases with finer 
spatial resolution. Finally, we apply our methodology to a continuous-time discrete Markov chain model, coarse-grained 
into a linear system exhibiting second-order semi-Markovian statistics, and demonstrate the estimation of a lower bound 
on the total EPR from irreversibility manifested only in the WTD.  

1 Introduction 

Irreversible processes in living systems lead to the 
production of entropy, which is a measure of energy dissipation and 
a signature of the arrow of time.1–5 Quantifying the entropy 
production can shed light on the underlying nonequilibrium 
dynamics and provide insights on the thermodynamic burden of 
biological processes. 6–8 There are primarily two methods to infer 
that a system is out-of-equilibrium: (i) invasive methods, 9–12 and (ii) 
non-invasive 13–16 methods. In invasive methods, the system's 
response to a perturbation is measured following an external 
manipulation, and the violation of the fluctuation-dissipation 
theorem (FDT) 9,17–22 confirms the nonequilibrium nature of the 
underlying process. On the other hand, non-invasive methods do not 
require a direct perturbation to a system, and can detect the 
nonequilibrium nature of the process from various system 
properties, such as broken time-reversal symmetry,23,24 presence of 
net probability current of observables,7,13,16,25–29 or asymmetric 
probability density function (PDF) of the timing of maximal 
observable values.30  

One can estimate the EPR for discrete31 and continuous systems 
32–34 given that all out-of-equilibrium system variables are accessible;  

 
otherwise, the EPR estimation becomes challenging, 35–39 and the 
best estimate would be a lower bound on the total EPR value. Several 
studies focused on the fluctuations of the EPR calculated from partial 
information.40–48 The mathematical relations that bound the EPR 
using the fluctuations of time asymmetric and generic variables are 
known as the thermodynamic uncertainty relation (TUR) 49–54 and 
kinetic uncertainty relation (KUR) 55, respectively. These relations 
have also been generalized for semi-Markov processes.56,57 Recently, 
a unified relation considering both thermodynamic and kinetic 
quantities has been proposed.58–60 For systems with partial 
information, estimators like the passive partial entropy production 
47,61,62 and the informed partial entropy production 61–64 are helpful 
to get a dissipation bound; however, these fail to provide a tight 
bound on the total EPR for vanishing net current. These average 
partial entropy production estimators satisfy fluctuations theorems, 
and as such, they can be derived as a Kullback-Leibler divergence 
between the forward trajectory and the backward trajectory under 
auxiliary dynamics. 61  

The k-variable irreversibility measure is defined as, 𝜎𝑘 ≡

𝑘𝐵 lim
𝑡→∞

1

𝑡
𝐷[𝑃(Γ𝑘||Γ̃𝑘)], where 𝑘𝐵  is the Boltzmann constant, 

𝐷[𝑝||𝑞] denotes the Kullback-Leibler divergence (KLD) 65,66 between 
two probability distributions 𝑝 and 𝑞, defined by 𝐷[𝑝||𝑞] =

 ∫ 𝑑𝑥 𝑝(𝑥) log(𝑝(𝑥) 𝑞(𝑥)⁄ ) and calculated on the positive support. 66 
It is a measure of distinguishability 67 between two probability 
distributions, being non-negative in general, and zero for identical 

distributions. Γ𝑘  denotes the forward path of k nonequilibrium 

variables for a time duration t, whereas Γ̃𝑘  denotes the 
corresponding backward path. Owing to the chain-rule of the relative 
entropy, 68 the more nonequilibrium variables (larger k) included in 
the path probability measure, the better the KLD bound is, 
i.e., 0 ≤ 𝜎1 ≤ ⋯ ≤ 𝜎𝑘 ≤ 𝜎𝑘+1 ≤ ⋯ ≤ 𝜎𝑡𝑜𝑡, where 𝜎𝑡𝑜𝑡 is the total 
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EPR calculated by the KLD between the forward and reverse 
trajectories with all the nonequilibrium degrees of freedom.69,70 
Obtaining a tight bound for a continuous variable system using the 
KLD estimator is challenging since some of the nonequilibrium 
variables may be inaccessible and sampling the distribution of paths 
becomes difficult. 

In a recent study, 71 Roldan et al. transformed the forward 
and backward time series data of an observed variable of a 
continuous hair bundle system into two independent and identically 
distributed time series using a whitening approximation to estimate 
the KLD from two univariate distributions. They first calculated the 
EPR bound using only the observed degree of freedom, i.e., the tip 
position of the hair bundle. Moreover, they used the finite time 
thermodynamic uncertainty relation to obtain a lower bound on the 
total EPR using two observables, the tip position and the 
transduction current, and found a better lower bound on the EPR 
compared to the one calculated using only one variable, as expected. 
The EPR estimate calculated with only one observed degree of 
freedom was typically three orders of magnitude smaller than the 
total EPR. However, using two observables and the TUR, their 
measure was three orders of magnitude better than their single-
variable result for the oscillatory regime and few fold smaller than 
the total EPR, but in the quiescent regime, the result was three 
orders of magnitude smaller than the total EPR. 

An estimator based on the KLD between waiting time 
distributions of the time forward and the time backward transitions 
between discrete states was shown to provide a lower bound on the 
total EPR,64 given that the time-reversal operator does not lead to 
kinetic hysteresis.72–74 Applied to a semi-Markov process, or a 
continuous time random walk (CTRW), this KLD estimator of the EPR 
breaks into two contributions,64 the affinity EPR, EPRaff, which 
accounts for the net flux and affinity or the thermodynamic force,68,70 
and the waiting-time-distribution (WTD) EPR, EPRWTD, which 
accounts for the broken time-reversal symmetry in the waiting time 
distributions.64 If the coarse-graining procedure commutes with the 
time-reversal, the EPRWTD vanishes for semi-Markov processes.72–75 
However, for second-order semi-Markov processes, which naturally 
emerge when “lumping” adjacent states,64,76 the EPRWTD can provide 
a lower bound on the total EPR, even when the system does not have 
any net current observed and EPRaff = 0. Describing processes by 
transitions instead of states,77 the KLD estimator for the EPR was 
further applied to waiting times in between observed transitions.75,78  

Skinner et al. presented new estimators to obtain the 
lower bound on the entropy production rates using optimization 
techniques.79,80 They found an estimator given observables 
characterizing one-step transitions and two successive transitions, 
whereas in another publication the authors proposed an estimator 
given the observed waiting time distributions.80 

There are several studies on the effect of coarse-graining 
(CG) on the EPR estimation81–94 specifically discussing whether the 
CG procedure preserves the EPR fluctuations or not. In a recent 
study, using a Markovian model of a driven molecular motor, Hartich 
et al. compared different coarse-graining schemes, “milestoning” 
and “lumping”, and found that the “milestoning” method can restore 
Markovian dynamics in the case of time-scale separation and 
preserves local detailed balance.76,86  

The quantitative effect of the coarse-graining on the EPR 
was estimated in an experimental system of steady-state trajectories 
of a microtubule length using an optimization procedure of a two-
step estimator, where it was demonstrated that increasing the 
spatial and temporal resolution while coarse-graining leads to an 
improved EPR bound.79 Moreover, a recent study by Tan et al.95 has 

found that the time-irreversibility varies non-monotonically with the 
lag time, i.e., the time intervals between the position measurements, 
which determines the dissipation timescale.95 

Here, we quantify the irreversibility using a non-invasive 
method to provide a lower bound on the total EPR in a partially 
observed model system with continuous variables following 
oscillatory dynamics, where one of its observables is coarse-grained 
into a few discrete states. We simulate an oscillating hair-bundle 
model in which the bundle's tip position is experimentally observed, 
whereas the position of the molecular motor is hidden. The coarse-
grained process follows second-order semi-Markov statistics in the 
reduced state space (tip position variable space). In this model, the 
affinity entropy production contribution vanishes; therefore, the 
irreversibility information can only be accessed from the 
asymmetries of the waiting time distributions of the forward and the 
reversed transitions. After the decimation, we exploit the underlying 
broken time-reversal symmetry stemming from the difference in the 
PDFs of the waiting times for the upward and the corresponding 
downward transitions among different coarse-grained states, to 
calculate the EPR bound, EPRWTD, by applying the KLD estimator. We 
show that the ratio of the means of the dwell time PDFs of the 
forward and reverse trajectories, termed the mean dwell-time 
asymmetry factor, can qualitatively detect the broken time reversal 
symmetry, and its variation with the number of coarse-grained states 
is studied. We further calculate the ratio between the EPRWTD and 
the total EPR as a function of the number of coarse-grained states to 
evaluate the tightness of the lower bound, and find that with finer 
resolution (larger number of coarse-grained states), the EPRWTD 
provides a better lower bound on the dissipation rate. 

The paper is organized as follows. First, we introduce the 
model system and outline the calculation of the total EPR. Then, we 
describe our coarse-graining procedure, second-order semi-
Markovian dynamics of the coarse-grained system, different 
contributions to the EPR, and mean dwell-time asymmetry factor in 
the next section. Subsequently, the effect of coarse-graining on the 
broken time-reversal symmetry, the EPR estimate, and the tightness 
of the lower bound as a function of number of coarse-grained states 
are discussed. Finally, we summarize and provide a future outlook.   

2 Model System 

We estimate the entropy production rate in a partially 
observed system described by a Langevin equation. To do so, we 
consider a model which captures the experimental observation of 
spontaneous oscillations of mechanosensory hair bundles of 
auditory hair cells.71,96–100 These oscillations help to amplify the 
sound stimuli in the ear of vertebrates, and provide sensitivity and 
frequency selectivity. Moreover, these oscillations are known as 
“active” oscillations, and they are distinct from “passive” oscillations 
that are obtained by blocking the corresponding transduction ion 
channels.71 The activity originates from various molecular motors, 
which cannot be experimentally accessed. However, another degree 
of freedom coupled to the activity of the molecular motors – the tip 
position of the hair bundle (𝑋1) is experimentally observed. Due to 
the presence of activity, the system is out-of-equilibrium, and its 
dynamics is governed both by a conservative force𝑉(𝑋1, 𝑋2), where 
𝑋2 represents the position of the center of mass of the molecular 
motors, and a non-conservative driving force, 𝐹𝑎𝑐𝑡(𝑋1, 𝑋2). The 
system can be described by the following coupled stochastic 
differential equations.71,96–98 
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         𝜆1�̇�1 = −
𝜕𝑉(𝑋1,𝑋2)

𝜕𝑋1
+ √2𝑘𝐵𝑇𝜆1𝜉1                             (1)          

        𝜆2�̇�2 = −
𝜕𝑉(𝑋1,𝑋2)

𝜕𝑋2
− 𝐹𝑎𝑐𝑡(𝑋1, 𝑋2) + √2𝑘𝐵𝑇𝑒𝑓𝑓𝜆2𝜉2              (2)                       

 
where 𝜆1 and 𝜆2 are the friction coefficients of the hair bundle tip 
and the molecular motor, respectively, 𝑇 and 𝑇𝑒𝑓𝑓  are the 

environment temperature and the effective temperature 
characterizing the motor fluctuations, respectively, with ratio 
𝑇𝑒𝑓𝑓 𝑇⁄ > 1. 𝜉1 and 𝜉2 are two independent white noise terms with 

zero-mean and correlation 〈𝜉𝑖(𝑡)𝜉𝑗(𝑡′)〉 = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′), and 𝑘𝐵  is 

the Boltzmann constant. The functional form of the conservative 
force, 𝑉(𝑋1, 𝑋2), which is proportional to the difference between the 
positions of the coupled variables96–98, is: 

        𝑉(𝑋1, 𝑋2) =
𝑘𝑔𝑠Δ𝑋2+𝑘𝑠𝑝𝑋1

2

2
− 𝑁𝑘𝐵𝑇 ln [e

(
𝑘𝑔𝑠𝐷Δ𝑋

𝑁𝑘𝐵𝑇
)

+ 𝐴]           (3)  

where 𝑘𝑔𝑠 and 𝑘𝑠𝑝 are the stiffness coefficients, Δ𝑋 = 𝑋1 − 𝑋2 is the 

separation between the position of the hair bundle and the 
molecular motors, D is the gating swing, and 𝑁 is the number of 

transduction channels. 𝐴 = exp[(Δ𝐺 + (𝑘𝑔𝑠𝐷2) 2𝑁⁄ ) (𝑘𝐵𝑇)⁄ ], and 

Δ𝐺 is the energy difference between the open and closed states of 
the ion channel. The active non-conservative force exerted by the 

molecular motors is defined by 𝐹𝑎𝑐𝑡(𝑋1, 𝑋2) =  𝐹𝑚𝑎𝑥(1 −

𝑆𝑃0(𝑋1, 𝑋2)). The probability of the transduction channel being open 

is 𝑃0(𝑋1, 𝑋2), and is defined by 𝑃0(𝑋1, 𝑋2) =

1 [1 + 𝐴exp(−𝑘𝑔𝑠𝐷Δ𝑋 𝑁𝑘𝐵𝑇⁄ )]⁄  . The non-conservative force 

depends on the maximum motor force acting on the system (𝐹𝑚𝑎𝑥), 
and the calcium-mediated feedback strength (𝑆). The main sources 
of the non-equilibrium drive come from the ratio 𝑇𝑒𝑓𝑓 𝑇⁄  being 

greater than unity, and the maximal force (𝐹𝑚𝑎𝑥) exerted by the 
molecular motors. This model 71,96–98 was shown to agree well with 
experimental results. 

First, we numerically solve the coupled differential 
equations (Eq. 1 and Eq. 2) for a fixed ratio between the effective 
temperature and the temperature of the environment 
(𝑇𝑒𝑓𝑓 𝑇 = 1.5) ⁄ , and different values of S (0.5, 1, 1.5) and 𝐹𝑚𝑎𝑥 (70 

pN, 80 pN, 90 pN) to obtain simulated trajectories of the hair bundle 
tip position and the motor position (see Figure 1 for details on all the 
parameters used). Although there is clearly a directional current in  
the 𝑋1 - 𝑋2 plane (Figure 1a) manifesting the nonequilibrium nature 
of the process, its signature is not obviously present in the 
trajectories of 𝑋1 or 𝑋2 as a function of time, which oscillate around 
their respective mean values (as shown in Figure 1b and Figure 1c) 
for a particular set of the driving parameter values, and 
Supplementary Information, Figure S1 for additional realizations 
with different parameters).  

 
 

 
Figure 1 Simulated trajectories of the observed (𝑋1 , the tip position of the 

hair bundle) and the hidden (𝑋2 , the position of the molecular motors) 
variables and the coarse-grained trajectory of the observed variable after 
spatial coarse-graining (a) The trajectories in the 𝑋1 − 𝑋2 plane for fixed 

values of driving parameters: 𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, S = 1, 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5). The color 
of the curve represents time going from dark to bright (b) 𝑋2 = 𝑋2 − 〈𝑋2〉, as 
a function of time for fixed values of driving (𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, S = 1, 𝑇𝑒𝑓𝑓 𝑇⁄ =

1.5 ). (c) 𝑋1 = 𝑋1 − 〈𝑋1〉, as a function of time for the same values of driving 
parameters, which does not show any sign of net flux, (d) The coarse-grained 
trajectory for 3 CG states at above-mentioned parameter values. All the 

quantities plotted are calculated for the following additional parameter 
values:𝜆1 = 2.8 𝑝𝑁 𝑚𝑠/𝑛𝑚, 𝜆2 = 10 𝑝𝑁 𝑚𝑠/𝑛𝑚, 𝑘𝑔𝑠 = 0.75𝑝𝑁/
𝑛𝑚, 𝑘𝑠𝑝 = 0.6𝑝𝑁/𝑛𝑚, 𝐷 = 61𝑛𝑚, 𝑘𝐵𝑇 = 4 𝑝𝑁 𝑛𝑚, 𝛥𝐺 = 10𝑘𝐵𝑇. 

As the system is driven out-of-equilibrium by the non-
conservative force and the effective temperature, there is a positive 
dissipation rate. The total entropy production rate can be calculated 
from the forces and their conjugated currents: 71,101 

                            EPRtot = −〈�̇�1〉 (
1

𝑇
−

1

𝑇𝑒𝑓𝑓
) +

〈�̇�𝑎𝑐𝑡〉

𝑇𝑒𝑓𝑓
                          (4)                   

where 〈… 〉 represents the steady state average. The steady state rate 

of the dissipated heat to the reservoir at temperature 𝑇 is 〈�̇�1〉 =
〈(𝜕𝑉 𝜕𝑋1⁄ ) ∘ �̇�1〉, with ∘ being the Stratonovich product, and 
〈�̇�𝑎𝑐𝑡〉 = −〈𝐹𝑎𝑐𝑡 ∘ �̇�2〉 is the rate of work done by the active force.  

3 Coarse-graining, lower bound on the total 
entropy production rate, and the mean dwell-
time asymmetry factor 

We used two approaches for spatial coarse-graining to 
discretize the continuous variable space (the trajectories of the tip 
position of the hair bundle, 𝑋1) into discrete states: (i) dividing the 
continuous variable space equally into N (N = 3, 4, 5, 6, 7) coarse-
grained states with the ratios 1:1:1, 1:1:1:1, 1:1:1:1:1, 1:1:1:1:1:1, 
and 1:1:1:1:1:1:1, respectively. This type of equal coarse-graining is 
only possible for a smooth trajectory for a particular choice of the 
driving parameter values (Figure S1, Supplementary Information, e.g. 
𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, 𝑆 = 1, and 𝐹𝑚𝑎𝑥 = 80 𝑝𝑁, 𝑆 = 1), (ii) diving the 
continuous variable space into unequal division, where N (N = 3, 4, 5, 
6, 7) coarse-grained states correspond to dividing the trajectory with 

the ratios 1:1:1, 1:
1

2
:

1

2
: 1, 1:

1

3
:

1

3
:

1

3
: 1, 1:

1

4
:

1

4
:

1

4
:

1

4
: 1, and 

1:
1

5
:

1

5
:

1

5
:

1

5
:

1

5
: 1, respectively, as shown schematically in Figure S2 of 
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the Supplementary Information. This type of coarse-graining is better 
suited to track the irregular oscillations of the tip of the hair cell 
bundle for driving parameter values 𝐹𝑚𝑎𝑥= 90 pN, S = 1, and 𝐹𝑚𝑎𝑥= 
80 pN, S = 1.5 etc. (see Supplementary Information, Figure S1). 

We have two layers of coarse-graining in this manuscript: 
(I) one of the dynamical variables describing the system is decimated 
(In our example, the tip position of the hair bundle is observed, but 
the positions of the molecular motor are hidden) (II) we further 
coarse-grained the observed variable into a few discrete states.  

Our system is coarse-grained such that the topology of the 
coarse-grained system is linear, without any cycles. The probability 
for a transition between the neighbouring states is non-zero, but the 
transition probability from one boundary state to the other boundary 
state is zero, and vice versa. For example, in a 3 coarse-grained 
system (N= 3, 1:1:1 spatial division), the probabilities of jumping from 
macro-state 2 to state 3 or 1 are both non-zero, whereas given the 
system is in state 1, the probability of finding it in state 3 in the next 
jump is zero, and vice versa. The waiting time distribution of the 
dwell time at state 2 depends, however, on the state visited before, 
whether it was state 3 or state 1, rendering the process a second 
order Markov process. Thus, we consider states composed of the 
current state, 𝑖, and previous state, 𝑗, i.e., [𝑖, 𝑗] when applying the 
KLD estimator. Similarly, the approach can be generalized to higher 
order semi-Markov processes.  

Estimating dissipation is non-trivial in the absence of the 
observable currents, or flows, but as dissipated systems exhibit 
broken time-reversal symmetry, time irreversibility can be exploited 
to infer the out of equilibrium nature of the underlying process from 
the time series. 64 Martínez et al. developed an estimator based on 
the waiting time distributions containing information about 
irreversibility in hidden states even at the absence of visible 
transitions among the observed states. They applied the technique 
64 for a partially hidden network where a subset of states are hidden, 
and a molecular motor system where the internal states are 
unresolved. In both cases, their estimator is able to predict a non-
zero bound on the entropy production rate at the stalling driving 
force (the driving parameter value at which the current between the 
observed states vanishes). 

To estimate the lower bound of the irreversibility, we use 
the KLD estimator101,102, which relies on the broken time-reversal 
symmetry of the underlying waiting-time distributions. 64 Due to the 
presence of coupled hidden degrees of freedom, the jump process in 
the observed variable space becomes a second-order64 semi-Markov. 
The jump probability depends on the previous state, the time since 
the last jump, and the final state. The last two conditions make the 
system direction-time dependent, 91 which means that the joint 
distribution of times and transitions (𝜓𝑛𝑛′(𝑡)) cannot be written as a 
product of the probability distribution for a transition (Φ𝑛𝑛′) and the 
probability distribution of the time 𝑡 the system waits at the initial 
state 𝑛 (𝜓𝑛(𝑡)). As proved earlier, 64 the KLD estimator of the EPR for 
a semi-Markov process consists of two contributions: the affinity EPR 
(EPRaff) and the waiting-time-distribution EPR (EPRWTD). 
EPRaff accounts for the net current and the thermodynamic force of 
the system. It is sometimes called the “equivalent dissipation”.91 A 
non-Markovian system and its memoryless counterpart – a system 
with the same network topology generating Markovian sequence of 
states – have the same expression, but, the rate constants are 
replaced with the effective rate constants for the non-Markovian 
system. The affinity EPR is written as  

         EPRaff =
1

𝜏
∑ 𝑝(𝑖𝑗𝑘) ln

𝑝([𝑖𝑗]→[𝑗𝑘])

𝑝([𝑘𝑗]→[𝑗𝑖])𝑖𝑗𝑘                             (5) 

where 𝑝(𝑖𝑗𝑘) =  𝑅[𝑖𝑗]𝑝([𝑖𝑗] → [𝑗𝑘]) is the probability to observe the 

sequence 𝑖 → 𝑗 → 𝑘. 𝑅[𝑖𝑗] denotes the normalized occupancy 

probability at the CG state 𝑗 given the previous CG state was 𝑖. The 
numerator and the denominator of the argument of the logarithmic 
function are of the form 𝑝([𝑖𝑗] → [𝑗𝑘]), which denotes the 
probability that the system makes a transition from a CG state 𝑗 to a 
CG state 𝑘 given that the previous CG state was 𝑖. 𝜏 is the mean step 
duration given by 𝜏 =  ∑ 𝑅[𝑖,𝑗]𝜏[𝑖,𝑗]𝑖𝑗 , where 𝜏[𝑖,𝑗] is the mean time 

the system spends at a CG state 𝑗 given that the previous CG state 
was 𝑖. The sum is performed over all CG states (𝑖, 𝑗, 𝑘). For the active 
hair bundle system, there is no contribution to the EPR from the 
affinity EPR, since the coarse-grained system is a linear chain of 
states. 

The other component of the KLD estimator comes from the 
broken time-reversal symmetry in the waiting-time distributions and 
is obtained using the following equation:  

                  EPRWTD  =
1

𝜏
∑ 𝑝(𝑖𝑗𝑘)𝐷[𝛹(𝑡|𝑖𝑗𝑘)||𝛹(𝑡|𝑘𝑗𝑖)]           (6) 𝑖𝑗𝑘                 

Where 𝛹(𝑡|𝑖𝑗𝑘) denotes the probability density function of the time 
𝑡 the system spends at a CG state 𝑗 before jumping to another CG 
state 𝑘, given that the previous CG state was 𝑖, i.e., for 𝑖 → 𝑗 → 𝑘 
transition. The WTD estimator, EPRWTD, or the “memory 
dissipation”, 91 is the additional contribution that only exists for non-
Markovian systems in contrast to their memoryless Markovian 
counterpart. It was shown that a semi-Markov process results in non-
exponential waiting time distributions,103 which relate to memory. 91  

Since there is no net current in the observed variable 
space, the position of the hair-bundle tip, 𝑋1, we use the KLD 
estimator 64 to calculate a lower bound on the total EPR. In order to 
apply this estimator, which was developed for discrete states, to a 
continuous variable system, we coarse-grain the observed variable 
into a few discrete states (a realization of 3 CG states is shown in 
Figure 1d), from which the lower bound is estimated by EPRWTD, and 
study how the bound varies as a function of the number of coarse-
grained states. 

      In order to demonstrate that a lower bound on the total EPR 
can be inferred from the WTD asymmetry in a system with second-
order Markov process statistics with a linear topology having zero net 
current, we use a simple 6-state (𝑖 = 1,2,3 and 𝑖′ = 1′, 2′, 3′, where 
states 𝑖 and 𝑖′ are indistinguishable) continuous-time Markov chain 
(CTMC) model coarse-grained into a 3-state linear continuous time 
second-order semi-Markov system (observed states  1′′, 2′′, 3′′) as 
shown in Figure 2a. The net current in the 6-state model mimics the 
net current in the 𝑋1-𝑋2 plane of the active hair bundle model Figure 
1a, whereas the coarse-grained 3-state system resembles the coarse-
grained, observed hair-bundle position, 𝑋1. We simulated 
trajectories using the Gillespie algorithm104 for 108 steps, where 
after the decimation, we were left with approximately 106 jumps. 
Figure 2b shows the difference in the distribution of the times the 
system waits at state 2′′ for an upward transition (1′′ → 2′′ →
3′′) and the corresponding downward transition (3′′ → 2′′ → 1′′). 
The non-exponential distribution originates from the non-Markovian 
statistics of the coarse-grained trajectory, whereas the difference 
between the distributions of the upward and downward waiting 
times originates from the nonequilibrium nature of the process. 64 
Therefore, we can measure the irreversibility from the Kullback-
Leibler divergence between the waiting time probability density 
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functions EPRWTD, for the coarse-grained system with zero EPRaff to 
provide a lower bound on the total EPR. 

 

Figure 2 The 𝑋1 − 𝑋2 trajectory of the hair bundle system coarse-grained into 

a linear topology in 𝑋1 state space after decimation of the 𝑋2 states with zero 
net flux motivates to use KLD estimator of the waiting times: (a) The circles 
with the lines represents a 6 state system, which after decimation is reduced 

to a linear 3 state system, (b) non-zero contribution from the Kullback-Leibler 
divergence of the waiting time distributions: the distribution of the waiting 
times the system waits at CG state 2′′ for an ( 1′′ → 2′′ → 3′′) upward 

transition (blue solid line) and (3′′ → 2′′ → 1′′) the downward transition (red 
solid line) for the following parameter values: 𝑢1 =10, 𝑢2 =3, 𝑑1 
=2, 𝑑2=4, 𝑟1=3, 𝑟2=3, 𝑙1=1, 𝑙2=1. 

 

For an example, the waiting time distributions for the hair bundle 
system at equilibrium (𝐹𝑚𝑎𝑥 = 0 𝑝𝑁, 𝑇 = 𝑇𝑒𝑓𝑓) and at 

nonequilibrium condition driven according to Eq. 1 and Eq. 2 are 
shown in Figure 3a and Figure 3b, respectively. The distinguishability 
between the two WTD in the latter case b), results in a positive KLD 
which bounds the total EPR. The estimation of the 𝐸𝑃𝑅𝑊𝑇𝐷 improves 
with increasing the number of simulation steps (Figure 3c) as evident 
from the decreasing error and the plateauing of the estimation value 
for the active hair bundle model governed by Eq. 1 and Eq. 2. 64 

  

 

Figure 3 Entropy production rate estimation from the Kullback-Leibler 

divergence between the waiting time distributions for 3 equally spaced 
coarse-grained states of the active hair bundle's tip position: Probability 
density functions of times t that the system stays at state 2 for an upward 

transition (blue solid line), and for a downward transition (red solid line) for 
two different parameter values: (a) 𝐹𝑚𝑎𝑥=0 pN, 𝑇𝑒𝑓𝑓 = 𝑇 , and 𝑆 = 1.5, 
(b) 𝐹𝑚𝑎𝑥=70 pN, 𝑇𝑒𝑓𝑓 = 1.5 𝑇, and 𝑆 = 1.5, (c) EPRWTD (𝑠−1) as a function of 

length of the simulation for 𝐹𝑚𝑎𝑥 =70 pN, 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5, and 𝑆 = 1.5.The 
error bar at each point describes the standard error of the mean.  

The unimodal nature of the waiting time distributions also 
refers to the underlying network topology. If a network has internal 
cycles, the densities could exhibit multimodal behaviour.75 For a 
second-order semi-Markov process, the waiting time distributions 

are direction-time dependent. Thus, the mean dwell-times that the 
system spends at a particular state for the forward and the reverse 
transitions are not necessarily identical, and a deviation of their ratio 
from one provides information regarding the irreversible nature of 
the process. 80 We calculate the mean dwell-time asymmetry factor 
(MDAF), i.e., the ratio between the means of the dwell time 
distributions (〈𝜏𝑘→𝑗→𝑖 〉 or 〈𝜏𝑘𝑗𝑖〉) of times spent at a CG state 𝑗 before 

transitioning to 𝑖, given that it arrived from 𝑘, 𝑘 → 𝑗 → 𝑖, to the mean 
time the system spends at a CG state 𝑗 for a 𝑖 → 𝑗 → 𝑘 
transition, (〈𝜏𝑖→𝑗→𝑘 〉 or 〈𝜏𝑖𝑗𝑘〉). The ratio between the mean times 

the system spends at a particular state before transitioning to 
another state and the mean times along the opposite direction 
(〈𝜏𝑘𝑗𝑖〉 〈𝜏𝑖𝑗𝑘〉⁄ ) being not equal to unity indicates a broken time-

reversal symmetry in the system. To obtain the total MDAF for a 
system with 𝑁 coarse-grained states, we average the individual 
MDAF of different transitions among the 𝑁 coarse-grained states. 
Therefore, the total MDAF equals 𝑁−1 ∑ 〈𝜏𝑘𝑗𝑖〉 〈𝜏𝑖𝑗𝑘〉⁄ . The ratios 

stemming from the transitions among different coarse-grained 
states are plotted in the Supplementary Information (Figure S3).  

In the following, we calculate the contribution of the 
EPRWTD from Eq. 6, and the effect of coarse-graining on the EPR and 
the MDAF, or the time-reversal symmetry breaking.  

4 Effect of coarse-graining on the entropy 
production rate estimation and mean dwell-time 
asymmetry factor 

We exploit the time-reversal symmetry breaking in the coarse-
grained system to estimate the EPR. Since the affinity EPR vanishes, 
the signature of the irreversibility can only be tracked from the KLD 
between waiting time distributions, EPRWTD.  

First, The EPR estimate (EPRWTD) values are calculated 
using Eq. 6 by coarse-graining the 𝑋1 variable into 𝑁 CG states (where 
𝑁 =  3, 4, 5, 6, 7) by equal partitioning of the state space, and 
plotted as a function of 𝑁 (Figure 4a), for 𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, 𝑆 = 1, and 
𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5. The lower bound on the EPR estimate is improved 

with increasing resolution. The maximal value of EPRWTD EPRtot⁄ =
0.0013 at 7 coarse-grained states. Moreover, the MDAF is plotted as 
a function of the number of the coarse-grained states (Figure 4b). 

Next, we calculate the EPRWTD for several driving 
parameter values (𝐹𝑚𝑎𝑥 = 70𝑝𝑁, 𝐹𝑚𝑎𝑥 = 80 𝑝𝑁, 𝐹𝑚𝑎𝑥 = 90 𝑝𝑁, 
and 𝑆 = 0.5, 1, 1.5) and for unequal spatial spacing of the coarse-
grained states (𝑁 = 3,4,5,6,7). Both the estimate of the EPR (Figure 
5a) and the mean dwell-time asymmetry factor (Figure 5b) increase 
with increasing spatial resolution. Indeed, the EPR estimate is 
correlated with the MDAF (Figure 5c), which is related to the non-
Markovian nature of the process and the memory involved. 105 

As we mentioned EPRWTD was calculated for equal (Figure 4) and 
unequal (Figure 5) partitioning of the observed trajectory. For a 
certain driving parameter values at which the trajectories are not 
that smooth or regular. In that case, the equal partition of the 
trajectory space of the observed variable would lack enough 
statistics for the boundary states in the time series. Therefore, we 
consider unequal spatial partitioning of the trajectory.  
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Figure 4 Entropy production rate estimation and the mean dwell-time 

asymmetry factor (MDAF) for equal spacing coarse-grining of 𝑋1 trajectory: 
(a) EPRWTD (𝑠−1) (WTD estimate of the EPR) as a function of the number of 
CG states with equal spacing for parameter values 𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, 𝑆 = 1, 

and 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5 (b) MDAF (mean dwell-time asymmetry factor ) as a 
function of the number of CG states. The other parameter values are the same 
as mentioned in Figure 1. The lines are drawn to as a guide to the eye. The 

total EPR for this set of paramter values is 7.3312 𝑠−1. 

 

 

Figure 5 Effect of coarse-graining on the EPRWTD (𝑠−1) and the mean dwell-

time asymmetry factor (MDAF): (a) EPRWTD (𝑠−1) as a function of number of 
CG states (3 CG: 1: 1: 1, 4 CG: 1: 1/2: 1/2: 1, 5 CG : 1: 1/3: 1/3: 1/3: 1, 6CG: 
1: 1/4: 1/4: 1/4: 1/4: 1, and 7CG: 1: 1/5: 1/5: 1/5: 1/5: 1/5: 1) for different 

parameter values, (left) 𝐹𝑚𝑎𝑥=70 pN for S = 0.5,1,1.5, (middle) 𝐹𝑚𝑎𝑥 = 80 pN 
for S = 0.5,1,1.5, and (right) 𝐹𝑚𝑎𝑥 = 90 pN, S = 0.5,1,1.5.(b) The MDAF as a 
function of number of CG states for different parameter values: (left) 𝐹𝑚𝑎𝑥 =

70 𝑝𝑁, S = 0.5,1,1.5; (middle) 𝐹𝑚𝑎𝑥 = 80 pN, S = 0.5,1,1.5; (right) 𝐹𝑚𝑎𝑥 = 90 
pN, S = 0.5,1,1.5. In both panels: red circle symbols correspond to 𝑆 = 0.5, 
blue square symbols correspond to 𝑆 =  1, and magenta triangle symbols 

correspond to 𝑆 = 1.5. (c) The values of EPRWTD as a function of the MDAF for 
all transitions and all parameter values as mentioned earlier. The other 
parameter values used in these figures are mentioned in Figure 1.  

To assess the tightness of the bound, we compare the ratio 
between EPRWTD estimates and the total EPR (EPRtot) calculated for 
different driving parameter values, 𝐹𝑚𝑎𝑥  = 70 𝑝𝑁, 80 𝑝𝑁, 90 𝑝𝑁, 
𝑆 = 0.5, 1, 1.5, and for different coarse-graining levels (Figure 6), and 
find that the tightest bounds is obtained for 7 CG states (N = 7), 
where the EPRWTD values are between 1 to 2 orders of magnitude 
smaller than the total EPR (Figure 6). The tightness of the bounds for 

unequal partitioning for 7 CG states are given in Table 1 of 
Supplementary Information.  

 

Figure 6 Tightness of the EPR bound (EPRWTD) as a function of number of CG 
states: Ratio between the EPR estimates from the waiting time distribution 

(EPRWTD (𝑠−1)) and the total entropy production rate (EPRtot(𝑠−1)) for 
different parameter values. The coarse-graining corresponds to unequal 
divisions of the 𝑋1 state space. The parameter values are 𝐹𝑚𝑎𝑥=70 pN, S = 

0.5,1,1.5 (upper row), 𝐹𝑚𝑎𝑥=80 pN, S = 0.5,1,1.5 (middle row), 𝐹𝑚𝑎𝑥=90 pN, S 
= 0.5,1,1.5 (lower row). The other parameter values used in this figure are as 
mentioned in Figure 1. 

5 Discussion 

Most of the previous studies on partially observed systems 
were performed on Markov chains where some nodes are observed, 
and the rest are either traced out or lumped together into a hidden 
state. These processes are performed with the constraints of 
preserving different quantities (depending on the applied coarse-
graining method) like the transition flux among the observed states 
93 or preserving the mean value and fluctuations of the entropy 
production rate at stationary state 87 before and after the coarse-
graining. In this paper, we have discussed a different partially 
observed system where one of the coupled variables following the 
Langevin dynamics is observed experimentally, and the other is 
hidden. In addition, we have two layers of coarse-graining, where we 
preserve the equilibrium density of a particular state before and after 
the coarse-graining, but due to the linear topology, it cannot support 
current; therefore, it loses the net current of the original system. We 
have shown the benefit of using the waiting time distributions in 
estimating the dissipation rate using the hair bundle cell oscillations 
as an example. If the edge current vanishes in the observed states, 
the waiting time distributions may capture the broken time-reversal 
symmetry in the case of driven systems, depending on the network 
topology. We infer the irreversibility of the dynamics by coarse-
graining the observed system variable into a few discrete states and 
applying the KLD estimator.64 The coarse-grained linear system 
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considered in our study is non-Markovian, but rather a second-order 
semi-Markov system, and the breaking of time-reversal symmetry is 
manifested in the KLD between the non-exponential waiting time 
distributions of the forward and the reversed transitions among 
different coarse-grained states.64 We show that instead of using the 
full probability distributions, the first cumulants of the dwell time 
distributions (easier to obtain in experimental scenarios), already 
provide predictions for the broken time-reversal symmetry and the 
dissipation rates. This quantity is much easier to quantify, both 
experimentally and theoretically, serving as a straightforward 
footprint for time-irreversibility. We further study the mean dwell 
time asymmetry factor variation with the number of the coarse-
grained states.  

Berezhkovskii et al.105–108 discussed the case of low-
resolution experimental observables in nonequilibrium systems, 
where the non-Markovian dynamics breaks time-reversal symmetry 
manifested in differences in the forward and backward waiting 
times. As suggested by several studies, 105–108 the time asymmetry in 
the active hair bundle system arises when the following two 
conditions hold: (i) the reduced variable system follows non-
Markovian statistics, and (ii) the system is out-of-equilibrium. Using 
a 6-state CTMC model which is coarse-grained into a linear 3-state 
system (Figure 2), (mimicking the hair cell bundle system with one 
degree of freedom is decimated), we demonstrate that the resulting 
waiting time distributions calculated by the Gillespie algorithm104 
show characteristics of second-order semi-Markov statistics, and 
break time-reversal symmetry under nonequilibrium driving, and 
thus KLD estimator would be the good choice for the estimation of 
the EPR. The 6-state network decimated into 3 states mimics the 
coarse-graining of the 𝑋1 trajectory into 3 coarse-grained states 
(Figure 1d), in which a fundamental cycle is lost, and the contribution 
of the EPRaff vanishes. Indeed, we infer a lower bound on the total 
EPR, which can be calculated from the KLD between the 
distributions.  

We calculate EPR estimates (EPRWTD) of the continuous-
space model system, an oscillating hair cell bundle, after coarse-
graining the observed 𝑋1 trajectory to equal (Figure 4a) and unequal 
(Figure 5a) spatial divisions. Comparing the results for a particular set 
of parameter values, 𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, 𝑆 = 1, and 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5, for 

which the trajectory is rather smooth and regular (see 
Supplementary Information, Figure S1). For the equal and unequal 
coarse-graining, the lower bounds on the total EPR (i.e., 
EPRWTD EPRtot⁄ ) are 0.0013, and 0.0024, respectively at parameter 
values 𝐹𝑚𝑎𝑥 = 70 𝑝𝑁, 𝑆 =1, and 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5.  

The tightness of the lower bounds on the total EPR, i.e., 
EPRWTD EPRtot⁄ , is found to be 0.0013 for equal spatial division 
(Figure 4a) for 𝑁 = 7 CG state at parameter value 𝐹𝑚𝑎𝑥 =
70 𝑝𝑁, 𝑆 =1, and 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5. Whereas, for unequal spatial 

division (Figure 6), EPRWTD EPRtot⁄  equals to 0.1244 for 𝑁 = 7 
coarse-grained states at 𝐹𝑚𝑎𝑥 = 80 𝑝𝑁, 𝑆 =0.5, 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5, 

respectively. The similar values of the EPRWTD EPRtot⁄  ratio results 
from the smooth nature of the 𝑋1 trajectory at the chosen parameter 
set (as can be seen from Figure 1c) in contrast to the other parameter 
values (Supplementary Information, Figure S1). Equal spatial division 
for 𝑁 = 5, 6, 7 coarse-grained states becomes challenging for 
parameter values that lead to very rugged trajectories due to the lack 
of statistics for the boundary states.  

The inferred time-irreversibility and the EPRWTD estimate 
increase with finer spatial resolution, i.e., larger number of CG states. 
Testing a wide range of parameter values, the EPRWTD lower bound 
is smaller by 1 to 2 orders of magnitude compared to the total ERP 
for the largest spatial resolution (𝑁 = 7) considered and unequal 

spacing of the observed 𝑋1 trajectory, where the tightest bound, 
EPRWTD EPRtot~0.1244⁄ , is obtained for 𝐹𝑚𝑎𝑥 = 80 𝑝𝑁, 𝑆 =0.5, 
and 𝑇𝑒𝑓𝑓 𝑇⁄ = 1.5. All the ratios (EPRWTD EPRtot⁄ ) for 7 coarse-

grained states are listed in Table 1 in the Supplementary Information. 

6 Conclusions 

In summary, the hair bundle system was used as a model to study 
the effect of coarse-graining on the lower bound on the total entropy 
production rate, and the mean dwell-time asymmetry factor. The 
lower bound on the EPR was estimated using the underlying broken 
time reversal symmetry induced by the active force for a system with 
Langevin dynamics and zero net current along the reduced variable 
space. This approach can be applied to a system following Langevin 
dynamics with an arbitrary number of observed and hidden states 
carrying a net flux which vanishes on the observed state-space to 
quantify the deviation from thermal equilibrium manifested in the 
irreversibility of the observed degrees of freedom.   

Author Contributions 

A.G. and G.B. designed research, performed research, analysed data, 

and wrote the paper. 

Conflicts of interest 

There are no conflicts to declare. 

Acknowledgements 

G. Bisker acknowledges the Zuckerman STEM Leadership Program, 
and the Tel Aviv University Center for AI and Data Science (TAD). A. 
Ghosal acknowledges the support of the Pikovsky Valazzi scholarship. 
This work was supported by the ERC NanoNonEq 101039127, the Air 
Force Office of Scientific Research (AFOSR) under award number 
FA9550-20-1-0426, and by the Army Research Office (ARO) under 
grant number W911NF-21-1-0101. The views and conclusions 
contained in this document are those of the authors and should not 
be interpreted as representing the official policies, either expressed 
or implied, of the Army Research Office or the U.S. Government. 

Notes and references 

1 C. Jarzynski, Equalities and Inequalities: Irreversibility and 

the Second Law of Thermodynamics at the Nanoscale, 

Annu. Rev. Condens. Matter Phys., 2011, 2, 329–351. 

2 U. Seifert, Stochastic thermodynamics, fluctuation theorems 

and molecular machines, Reports Prog. Phys., , 

DOI:10.1088/0034-4885/75/12/126001. 

3 U. Lucia, G. Grisolia and A. L. Kuzemsky, Time, 

irreversibility and entropy production in nonequilibrium 

systems, Entropy, 2020, 22, 1–12. 

4 J. M. R. Parrondo, C. Van Den Broeck and R. Kawai, 

Entropy production and the arrow of time, New J. Phys., , 

DOI:10.1088/1367-2630/11/7/073008. 

Page 7 of 11 Physical Chemistry Chemical Physics



ARTICLE PCCP 

8 | PCCP, 2022, 00, 1-10 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

5 A. Gomez-Marin, J. M. R. Parrondo and C. Van Den 

Broeck, The ‘footprints’ of irreversibility, EPL, , 

DOI:10.1209/0295-5075/82/50002. 

6 C. W. Lynn, E. J. Cornblath, L. Papadopoulos, M. A. 

Bertolero and D. S. Bassett, Broken detailed balance and 

entropy production in the human brain, Proc. Natl. Acad. 

Sci., 2021, 118, e2109889118. 

7 F. S. Gnesotto, F. Mura, J. Gladrow and C. P. Broedersz, 

Broken detailed balance and non-equilibrium dynamics in 

living systems: A review, Reports Prog. Phys., , 

DOI:10.1088/1361-6633/aab3ed. 

8 G. Lan, P. Sartori, S. Neumann, V. Sourjik and Y. Tu, The 

energy-speed-accuracy trade-off in sensory adaptation, Nat. 

Phys., , DOI:10.1038/nphys2276. 

9 J. Prost, J.-F. F. Joanny and J. M. R. R. Parrondo, 

Generalized fluctuation-dissipation theorem for steady-state 

systems, Phys. Rev. Lett., 2009, 103, 1–4. 

10 F. Ritort, Nonequilibrium fluctuations in small systems: 

From physics to biology, Adv. Chem. Phys., 2008, 137, 31–

123. 

11 D. Mizuno, C. Tardin, C. F. Schmidt and F. C. MacKintosh, 

Nonequilibrium mechanics of active cytoskeletal networks, 

Science (80-. )., 2007, 315, 370–373. 

12 M. Manosas and F. Ritort, Thermodynamic and kinetic 

aspects of RNA pulling experiments, Biophys. J., 2005, 88, 

3224–3242. 

13 C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. 

Howard, C. F. Schmidt, F. C. MacKintosh, B. Christopher, 

B. C. P., F. Nikta, G. V. F., H. Jonathon, S. C. F., M. F. C., 

C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. 

Howard, C. F. Schmidt and F. C. MacKintosh, Broken 

detailed balance at mesoscopic scales in active biological 

systems, Science (80-. )., 2016, 352, 604–607. 

14 S. Muy, A. Kundu and D. Lacoste, Non-invasive estimation 

of dissipation from non-equilibrium fluctuations in 

chemical reactions, J. Chem. Phys., , 

DOI:10.1063/1.4821760. 

15 B. Lander, J. Mehl, V. Blickle, C. Bechinger and U. Seifert, 

Noninvasive measurement of dissipation in colloidal 

systems, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 

2012, 86, 1–4. 

16 R. K. P. Zia and B. Schmittmann, Probability currents as 

principal characteristics in the statistical mechanics of non-

equilibrium steady states, J. Stat. Mech. Theory Exp., , 

DOI:10.1088/1742-5468/2007/07/P07012. 

17 Fodor, W. W. Ahmed, M. Almonacid, M. Bussonnier, N. S. 

Gov, M. H. Verlhac, T. Betz, P. Visco and F. Van Wijland, 

Nonequilibrium dissipation in living oocytes, Epl, , 

DOI:10.1209/0295-5075/116/30008. 

18 É. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco and 

F. Van Wijland, How Far from Equilibrium Is Active 

Matter?, Phys. Rev. Lett., 2016, 117, 1–6. 

19 D. Loi, S. Mossa and L. F. Cugliandolo, Effective 

temperature of active complex matter, Soft Matter, 2011, 7, 

3726–3729. 

20 P. Martin, A. J. Hudspeth and F. Jülicher, Comparison of a 

hair bundle’s spontaneous oscillations with its response to 

mechanical stimulation reveals the underlying active 

process, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 14380–

14385. 

21 L. F. Cugliandolo, J. Kurchan and L. Peliti, Energy flow, 

partial equilibration, and effective temperatures in systems 

with slow dynamics, Phys. Rev. E - Stat. Physics, Plasmas, 

Fluids, Relat. Interdiscip. Top., 1997, 55, 3898–3914. 

22 N. Shiraishi, Time-symmetric current and its fluctuation 

response relation around nonequilibrium stalling stationary 

state, 2021, 1–5. 

23 D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. 

Joubaud and A. Petrosyan, Entropy production and time 

asymmetry in nonequilibrium fluctuations, Phys. Rev. Lett., 

2007, 98, 98–101. 

24 C. Maes and K. Netočný, Time-Reversal and Entropy, J. 

Stat. Phys., 2003, 110, 269–310. 

25 Q. Liu and J. Wang, Quantifying the flux as the driving 

force for nonequilibrium dynamics and thermodynamics in 

non-Michaelis-Menten enzyme kinetics, Proc. Natl. Acad. 

Sci. U. S. A., 2020, 117, 923–930. 

26 J. Li, J. M. Horowitz, T. R. Gingrich and N. Fakhri, 

Quantifying dissipation using fluctuating currents, Nat. 

Commun., , DOI:10.1038/s41467-019-09631-x. 

27 T. R. Gingrich, G. M. Rotskoff and J. M. Horowitz, 

Inferring dissipation from current fluctuations, J. Phys. A 

Math. Theor., 2017, 50, aa672f. 

28 A. Ghanta, J. C. Neu and S. Teitsworth, Fluctuation loops 

in noise-driven linear dynamical systems, Phys. Rev. E, 

2017, 95, 1–9. 

29 H. Qian, Vector field formalism and analysis for a class of 

thermal ratchets, Phys. Rev. Lett., 1998, 81, 3063–3066. 

30 F. Mori, S. N. Majumdar and G. G. Schehr, Distribution of 

the time of the maximum for stationary processes, EPL 

(Europhysics Lett., 2021, 135, 30003. 

31 L. Cocconi, R. Garcia-Millan, Z. Zhen, B. Buturca and G. 

Pruessner, Entropy production in exactly solvable systems, 

Entropy, 2020, 22, 1–33. 

32 T. Tomé and M. J. De Oliveira, Entropy production in 

irreversible systems described by a Fokker-Planck equation, 

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2010, 82, 

1–10. 

33 T. Tomé, Entropy production in nonequilibrium systems 

described by a Fokker-Planck equation, Brazilian J. Phys., 

2006, 36, 1285–1289. 

34 U. Seifert, Entropy production along a stochastic trajectory 

and an integral fluctuation theorem, Phys. Rev. Lett., 2005, 

Page 8 of 11Physical Chemistry Chemical Physics



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx PCCP, 2022, 00, 1-10 | 9 

Please do not adjust margins 

Please do not adjust margins 

95, 1–4. 

35 M. Barrio, A. Leier and T. T. Marquez-Lago, Reduction of 

chemical reaction networks through delay distributions, J. 

Chem. Phys., , DOI:10.1063/1.4793982. 

36 T. Jia and R. V. Kulkarni, Intrinsic noise in stochastic 

models of gene expression with molecular memory and 

bursting, Phys. Rev. Lett., 2011, 106, 1–4. 

37 J. M. Pedraza and J. Paulsson, Effects of molecular memory 

and bursting on fluctuations in gene expression, Science 

(80-. )., 2008, 319, 339–343. 

38 A. Basu and D. Chowdhury, Traffic of interacting 

ribosomes: Effects of single-machine mechanochemistry on 

protein synthesis, Phys. Rev. E - Stat. Nonlinear, Soft 

Matter Phys., 2007, 75, 1–11. 

39 K. Nishinari, Y. Okada, A. Schadschneider and D. 

Chowdhury, Intracellular transport of single-headed 

molecular motors KIF1A, Phys. Rev. Lett., 2005, 95, 1–4. 

40 J. Ehrich, Tightest bound on hidden entropy production 

from partially observed dynamics, J. Stat. Mech. Theory 

Exp., , DOI:10.1088/1742-5468/ac150e. 

41 S. K. Manikandan, D. Gupta and S. Krishnamurthy, 

Inferring Entropy Production from Short Experiments, 

Phys. Rev. Lett., 2020, 124, 120603. 

42 D. K. Kim, Y. Bae, S. Lee and H. Jeong, Learning Entropy 

Production via Neural Networks, Phys. Rev. Lett., 2020, 

125, 140604. 

43 M. Uhl, P. Pietzonka and U. Seifert, Fluctuations of 

apparent entropy production in networks with hidden slow 

degrees of freedom, J. Stat. Mech. Theory Exp., , 

DOI:10.1088/1742-5468/aaa78b. 

44 M. Kahlen and J. Ehrich, Hidden slow degrees of freedom 

and fluctuation theorems: An analytically solvable model, J. 

Stat. Mech. Theory Exp., , DOI:10.1088/1742-5468/aac2fd. 

45 R. Rao and M. Esposito, Detailed fluctuation theorems: A 

unifying perspective, Entropy, 2018, 20, 8–11. 

46 M. Polettini and M. Esposito, Effective Thermodynamics 

for a Marginal Observer, Phys. Rev. Lett., 2017, 119, 1–5. 

47 N. Shiraishi and T. Sagawa, Fluctuation theorem for 

partially masked nonequilibrium dynamics, Phys. Rev. E - 

Stat. Nonlinear, Soft Matter Phys., 2015, 91, 3–8. 

48 S. Rahav and C. Jarzynski, Fluctuation relations and coarse-

graining, J. Stat. Mech. Theory Exp., 2007, 2007, P09012–

P09012. 

49 N. Shiraishi, Optimal thermodynamic uncertainty relation 

in Markov jump processes, 2021, 1–5. 

50 J. M. Horowitz and T. R. Gingrich, Thermodynamic 

uncertainty relations constrain non-equilibrium fluctuations, 

Nat. Phys., 2020, 16, 15–20. 

51 G. Falasco, M. Esposito and J. C. Delvenne, Unifying 

thermodynamic uncertainty relations, New J. Phys., , 

DOI:10.1088/1367-2630/ab8679. 

52 T. R. Gingrich, J. M. Horowitz, N. Perunov and J. L. 

England, Dissipation Bounds All Steady-State Current 

Fluctuations, Phys. Rev. Lett., 2016, 116, 1–5. 

53 A. C. Barato and U. Seifert, Thermodynamic Uncertainty 

Relation for Biomolecular Processes, Phys. Rev. Lett., , 

DOI:10.1103/PhysRevLett.114.158101. 

54 T. Koyuk and U. Seifert, Thermodynamic Uncertainty 

Relation for Time-Dependent Driving, Phys. Rev. Lett., 

2020, 125, 260604. 

55 I. Di Terlizzi, M. Baiesi, I. Di Terlizzi and M. Baiesi, 

Kinetic uncertainty relation, J. Phys. A Math. Theor., 2018, 

52, 02LT03. 

56 B. Ertel, J. van der Meer and U. Seifert, Operationally 

Accessible Uncertainty Relations for Thermodynamically 

Consistent Semi-Markov Processes, 2021, 1–19. 

57 T. Van Vu and Y. Hasegawa, Generalized uncertainty 

relations for semi-Markov processes, J. Phys. Conf. Ser., , 

DOI:10.1088/1742-6596/1593/1/012006. 

58 V. T. Vo, T. Van Vu and Y. Hasegawa, Unified 

thermodynamic kinetic uncertainty relation, 2022, 1–18. 

59 A. Pal, S. Reuveni and S. Rahav, Thermodynamic 

uncertainty relation for first-passage times on Markov 

chains, Phys. Rev. Res., 2021, 3, 1–6. 

60 A. Pal, S. Reuveni and S. Rahav, Thermodynamic 

uncertainty relation for systems with unidirectional 

transitions, Phys. Rev. Res., 2021, 3, 13273. 

61 G. Bisker, M. Polettini, T. R. Gingrich and J. M. Horowitz, 

Hierarchical bounds on entropy production inferred from 

partial information, J. Stat. Mech. Theory Exp., 2017, 2017, 

aa8c0d. 

62 D. Hartich, A. C. Barato and U. Seifert, Stochastic 

thermodynamics of bipartite systems: Transfer entropy 

inequalities and a Maxwell’s demon interpretation, J. Stat. 

Mech. Theory Exp., , DOI:10.1088/1742-

5468/2014/02/P02016. 

63 M. Polettini and M. Esposito, Effective Fluctuation and 

Response Theory, J. Stat. Phys., 2019, 176, 94–168. 

64 I. A. Martínez, G. Bisker, J. M. Horowitz and J. M. R. R. 

Parrondo, Inferring broken detailed balance in the absence 

of observable currents, Nat. Commun., 2019, 10, 1–10. 

65 B. Y. G. R. Terrell and D. W. Scott, Variable Kernel 

Density Estimation Author ( s ): George R . Terrell and 

David W . Scott Published by : Institute of Mathematical 

Statistics Stable URL : http://www.jstor.org/stable/2242011 

. Annals of Statistics . VARIABLE KERNEL DENSITY 

ESTIMATION Instit, 1992, 20, 1236–1265. 

66 Z. I. Botev, J. F. Grotowski and D. P. Kroese, Kernel 

density estimation via diffusion, Ann. Stat., 2010, 38, 2916–

2957. 

Page 9 of 11 Physical Chemistry Chemical Physics



ARTICLE PCCP 

10 | PCCP, 2022, 00, 1-10 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

67 T. M. Cover and J. A. Thomas, Elements of Information 

Theory, 2005. 

68 É. Roldán and J. M. R. Parrondo, Entropy production and 

Kullback-Leibler divergence between stationary trajectories 

of discrete systems, Phys. Rev. E - Stat. Nonlinear, Soft 

Matter Phys., 2012, 85, 1–12. 

69 R. Kawai, J. M. R. Parrondo and C. Van Den Broeck, 

Dissipation: The phase-space perspective, Phys. Rev. Lett., 

2007, 98, 1–4. 

70 I. Roldán and J. M. R. Parrondo, Estimating dissipation 

from single stationary trajectories, Phys. Rev. Lett., 2010, 

105, 1–4. 

71 É. Roldán, J. Barral, P. Martin, J. M. R. Parrondo and F. 

Jülicher, Quantifying entropy production in active 

fluctuations of the hair-cell bundle from time irreversibility 

and uncertainty relations, New J. Phys., 2021, 23, 1–16. 

72 D. Hartich and A. Godec, Emergent memory and kinetic 

hysteresis in strongly driven networks, 2020, 1–42. 

73 D. Hartich and A. Godec, Comment on ‘Inferring broken 

detailed balance in the absence of observable currents’, , 

DOI:10.48550/arxiv.2112.08978. 

74 G. Bisker, I. A. Martinez, J. M. Horowitz and J. M. 

Parrondo, Comment on ‘Inferring broken detailed balance 

in the absence of observable currents’, , 

DOI:10.48550/arxiv.2202.02064. 

75 J. van der Meer, B. Ertel and U. Seifert, Thermodynamic 

inference in partially accessible Markov networks: A 

unifying perspective from transition-based waiting time 

distributions. 

76 D. Hartich and A. Godec, Violation of Local Detailed 

Balance Despite a Clear Time-Scale Separation, 2021, 1–6. 

77 P. E. Harunari, A. Garilli and M. Polettini, The beat of a 

current, 2022, 1–8. 

78 P. E. Harunari, A. Dutta, M. Polettini and É. Roldán, What 

to learn from few visible transitions’ statistics?, 2022, 1–22. 

79 D. J. Skinner and J. Dunkel, Improved bounds on entropy 

production in living systems, Proc. Natl. Acad. Sci. U. S. A., 

, DOI:10.1073/pnas.2024300118. 

80 D. J. Skinner and J. Dunkel, Estimating entropy production 

from waiting time distributions, Phys. Rev. Lett., 2021, 127, 

198101. 

81 D. M. Busiello, D. Gupta and A. Maritan, Coarse-grained 

entropy production with multiple reservoirs: Unraveling the 

role of time scales and detailed balance in biology-inspired 

systems, Phys. Rev. Res., 2020, 2, 43257. 

82 D. M. Busiello, J. Hidalgo and A. Maritan, Entropy 

production for coarse-grained dynamics, New J. Phys., , 

DOI:10.1088/1367-2630/ab29c0. 

83 S. Bo and A. Celani, Entropy Production in Stochastic 

Systems with Fast and Slow Time-Scales, J. Stat. Phys., 

2014, 154, 1325–1351. 

84 S. Bo and A. Celani, Multiple-scale stochastic processes: 

Decimation, averaging and beyond, Phys. Rep., 2017, 670, 

1–59. 

85 M. Esposito, Stochastic thermodynamics under coarse 

graining, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 

2012, 85, 1–11. 

86 K. Kawaguchi and Y. Nakayama, Fluctuation theorem for 

hidden entropy production, Phys. Rev. E - Stat. Nonlinear, 

Soft Matter Phys., 2013, 88, 1–5. 

87 G. Teza and A. L. Stella, Exact Coarse Graining Preserves 

Entropy Production out of Equilibrium, Phys. Rev. Lett., 

2020, 125, 110601. 

88 A. Gomez-Marin, J. M. R. Parrondo and C. Van Den 

Broeck, Lower bounds on dissipation upon coarse graining, 

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2008, 78, 

1–11. 

89 P. Bilotto, L. Caprini and A. Vulpiani, Excess and loss of 

entropy production for different levels of coarse graining, 

Phys. Rev. E, 2021, 104, 1–8. 

90 J. il Sohn, An example of temporal coarse-graining of 

entropy production, Eur. Phys. J. B, 2015, 88, 1–5. 

91 X. Yang, Y. Chen, T. Zhou and J. Zhang, Exploring 

dissipative sources of non-Markovian biochemical reaction 

systems, Phys. Rev. E, , 

DOI:10.1103/PhysRevE.103.052411. 

92 S. Pigolotti and A. Vulpiani, Coarse graining of master 

equations with fast and slow states, J. Chem. Phys., , 

DOI:10.1063/1.2907242. 

93 D. Seiferth, P. Sollich and S. Klumpp, Coarse graining of 

biochemical systems described by discrete stochastic 

dynamics, Phys. Rev. E, 2020, 102, 1–17. 

94 A. Celani, S. Bo, R. Eichhorn and E. Aurell, Anomalous 

thermodynamics at the microscale, Phys. Rev. Lett., 2012, 

109, 1–4. 

95 T. H. Tan, G. A. Watson, Y.-C. Chao, J. Li, T. R. Gingrich, 

J. M. Horowitz and N. Fakhri, Scale-dependent 

irreversibility in living matter. 

96 J. Barral, F. Jülicher and P. Martin, Friction from 

Transduction Channels’ Gating Affects Spontaneous Hair-

Bundle Oscillations, Biophys. J., 2018, 114, 425–436. 

97 V. Bormuth, J. Barral, J. F. Joanny, F. Jülicher and P. 

Martin, Transduction channels’ gating can control friction 

on vibrating hair-cell bundles in the ear, Proc. Natl. Acad. 

Sci. U. S. A., 2014, 111, 7185–7190. 

98 J. Y. Tinevez, F. Jülicher and P. Martin, Unifying the 

various incarnations of active hair-bundle motility by the 

vertebrate hair cell, Biophys. J., 2007, 93, 4053–4067. 

99 P. Martin, D. Bozovic, Y. Choe and A. J. Hudspeth, 

Spontaneous oscillation by hair bundles of the bullfrog’s 

Page 10 of 11Physical Chemistry Chemical Physics



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx PCCP, 2022, 00, 1-10 | 11 

Please do not adjust margins 

Please do not adjust margins 

sacculus, J. Neurosci., 2003, 23, 4533–4548. 

100 B. Nadrowski, P. Martin and F. Jülicher, Active hair-bundle 

motility harnesses noise to operate near an optimum of  

mechanosensitivity., Proc. Natl. Acad. Sci. U. S. A., 2004, 

101, 12195–12200. 

101 L. Dabelow, S. Bo and R. Eichhorn, Irreversibility in 

Active Matter Systems: Fluctuation Theorem and Mutual 

Information, Phys. Rev. X, 2019, 9, 21009. 

102 B. Gaveau, L. Granger, M. Moreau and L. S. Schulman, 

Relative entropy, interaction energy and the nature of 

dissipation, Entropy, 2014, 16, 3173–3206. 

103 Y. Tu, The nonequilibrium mechanism for ultrasensitivity 

in a biological switch: Sensing by Maxwell’s demons, Proc. 

Natl. Acad. Sci. U. S. A., 2008, 105, 11737–11741. 

104 C. Xiaodong, Exact stochastic simulation of coupled 

chemical reactions with delays, J. Chem. Phys., 2007, 126, 

2340–2361. 

105 J. Shin, J. Shin, A. M. Berezhkovskii, A. B. Kolomeisky, A. 

B. Kolomeisky, A. B. Kolomeisky and A. B. Kolomeisky, 

Biased Random Walk in Crowded Environment: Breaking 

Uphill/Downhill Symmetry of Transition Times, J. Phys. 

Chem. Lett., 2020, 11, 4530–4535. 

106 A. M. Berezhkovskii and D. E. Makarov, On the 

forward/backward symmetry of transition path time 

distributions in nonequilibrium systems, J. Chem. Phys., , 

DOI:10.1063/1.5109293. 

107 J. Shin, A. M. Berezhkovskii and A. B. Kolomeisky, 

Crowding breaks the forward/backward symmetry of 

transition times in biased random walks, J. Chem. Phys., , 

DOI:10.1063/5.0053634. 

108 A. M. Berezhkovskii, G. Hummer and S. M. Bezrukov, 

Identity of distributions of direct uphill and downhill 

translocation times for particles traversing membrane 

channels, Phys. Rev. Lett., 2006, 97, 1–4. 

 

Page 11 of 11 Physical Chemistry Chemical Physics


