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Reconciling Membrane Protein Simulations with Exper-
imental DEER Spectroscopy Data†

Shriyaa Mittal,a Soumajit Dutta,b and Diwakar Shukla∗a,b,c,d,e

Spectroscopy experiments are crucial to study membrane proteins for which traditional structure
determination methods still prove challenging. Double electron-electron resonance (DEER) spec-
troscopy experiments provide protein residue-pair distance distributions that are indicative of their
conformational heterogeneity. Atomistic molecular dynamics (MD) simulations are another tool
that have proved vital to study the structural dynamics of membrane proteins such as to identify
inward-open, occluded, and outward-open conformations of transporter membrane proteins, among
other partially open or closed states of the protein. Yet, studies have reported that there is no
direct consensus between distributional data from DEER experiments and MD simulations, which
has challenged validation of structures obtained from long-timescale simulations and using simula-
tions to design experiments. Current coping strategies for comparisons rely on heuristics, such as
mapping nearest matching peaks between two ensembles or biased simulations. Here we examine
the differences in residue-pair distance distributions arising due to choice of membrane around the
protein and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments.
Through comparing MD simulations of two proteins, PepTSo and LeuT - both of which have been
characterized using DEER experiments previously - we show that the proteins’ dynamics are similar
despite the choice of the detergent micelle as a membrane mimetic in DEER experiments. On the
other hand, covalently modified residues show slight local differences in their dynamics and a huge
divergence when the spin labels’ anointed oxygen atom pair distances are measured rather than pro-
tein backbone distances. Given the computational expense associated with pairwise MTSSL labeled
MD simulations, we examine the use of biased simulations to explore the conformational dynamics of
the spin labels only to reveal that such simulations alter the underlying protein dynamics. Our study
identifies the main cause for the mismatch between DEER experiments and MD simulations and will
accelerate developing potential mitigation strategies to improve simulation observables match with
DEER spectroscopy experiments.

Introduction
DEER spectroscopy, also known as Pulsed Electron-Electron Dou-
ble Resonance (PELDOR), has made incredible progress in the
study of biomolecules such as cytoplasmic and membrane pro-
teins and nucleic acids1–4, including experiments in vitro and in
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vivo5–11. In DEER experiments, a spin probe is covalently at-
tached to two residues on the biomolecules. Distances between
these two spin probes can be determined by measuring the dipo-
lar coupling between an electron pair, one unpaired electron on
each of the spin probes. The interaction between electrons is mea-
sured in the time domain and then mathematically transformed to
distance distributions. Methodological developments have made
it possible to obtain distance distributions up to 10 nm in cyto-
plasmic proteins and 8 nm in membrane proteins3,12–14, up to 16
nm with sparse spin-labeling that can avoid the deleterious im-
pact of multiple spin labels in close proximity15. Conformational
ensembles obtained from these distance distributions help to elu-
cidate important conformational changes and metastable states
in biomolecules. These informations can be further used as a re-
straint in integrative structural modeling of large proteins16. Re-
cently, DEER has been used to capture sequence of ligand-induced
conformational changes in the protein on angstrom lengthscale
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and sub-milisecond timescale17. This will provide not only struc-
tural details of biomolecules but also mechanistic understanding
biomolecular function. However, current status of DEER tech-
nology has a space for improvement. (1) It is still hard to attach
probes in residues deeply embedded inside protein as it might im-
pair protein functionality.18 (2) As discussed by Hett et al., time
resolved DEER is not able to follow processes that occur below
microseconds due to limitations of the Microsecond freeze Hyper-
Quench device17. (3) Limitations with respect to the distance
range, flexibility and data quality for DEER measurement are also
discussed in Schiemann et al.1. Therefore, other computational
and experimental techniques can be used to further validate or
add more information to study protein structure and dynamics.

One such computational technique to study time-resolved pro-
tein conformational changes is Molecular dynamics (MD). Given
the advance in computational resources, there are numerous ex-
tensive MD simulation studies of membrane proteins including
GPCRs, transporters, ion channels, integrins, and transmembrane
receptor kinases19–21 . The observable from DEER experiments,
residue-pair distance distributions can be directly compared to
dynamics information from MD simulations in order to character-
ize the structural consequences of the obtained distance distribu-
tions. Yet, there is often no direct consensus between distribu-
tional data from DEER experiments and MD simulations, which
has challenged the validation of structures obtained from long-
timescale simulations. Several methods have been introduced to
reconcile experimentally characterized distance distributions with
simulations such as restrained ensemble MD (reMD)22,23 and
ensemble-biased metadynamics (EBMetaD)24 simulations, both
methods employ the experimentally obtained distance distribu-
tion to bias a simulation ensemble. Another method to syncretize
unbiased MD simulations with experiments is labeling a residue
with a spin probe whose conformational orientations are sampled
using a spin probe rotamer library25,26 or molecular dynamics
dummy spin-labels (MDDS) simulations27,28 where an artificial
dummy atom is used to consider spin label motions. These meth-
ods are independent of any experiment data bias and relatively
computationally inexpensive since no additional simulations are
required, but are unable to consider the protein’s conformational
dynamics.

Typically, we observe mismatches in terms of relative peak
heights when there are multiple peaks in the distance distribu-
tions, peak positions, and lower and higher extremes of the dis-
tance values. Commonly we observe that experimental distribu-
tions exhibit larger distance values, which are not sampled in any
of the MD simulation ensembles. These differences can be vi-
sualized in Fig. S1A (ESI†) where we compare distance distri-
butions from our previous simulations on a peptide transporter
protein with experimental DEER distributional data. Most po-
tential for mismatch between experiments and simulation dis-
tance distributions stems from differences in experimental con-
ditions and standard simulation protocols. Since membrane pro-
teins are embedded in lipid bilayers in physiological conditions,
simulations are typically performed in lipid bilayers. These lipid
bilayers can be homogeneous or heterogeneous with different
types of lipid molecules29. Bilayer mimetics such as nanodisc30,

lipodisq nanoparticles31, bicelle32, liposome33, micelle34 are
more amenable to biophysical experiments and have been used
for DEER spectroscopy studies of membrane proteins. Specifi-
cally, detergent micelles are most commonly used and a widely
used detergent is n-Dodecyl-β -D-Maltoside (BDDM).

Another significant basis for a mismatch between ob-
served peaks in experiments and simulations is the use of
spin probes in DEER experiments, which is absent in wild-
type protein simulations. Using site-directed spin label-
ing (SDSL), two nitroxide spin labels are attached to two
cysteine mutated residues. These spin labels can be of
different types such as 1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-
methyl)methanethiosulfonate (MTSSL), iodoacetamide-PROXYL,
unnatural amino acids p-acetyl-l-phenylalanine and 2,2,6,6-
tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid, and a
spin-labeled lysine. DEER experimental measurements among
two spin labels are a proxy to explain the protein’s residue-pair
distances. Relying on cysteine modifications and the addition
of flexible spin probe molecules pose a possibility of modifying
the observed protein’s dynamics from DEER experiments. For ex-
ample, the MTSSL spin probe has five linker dihedrals attribut-
ing large rotational flexibility to the protein residue26. Recently
metal cations such as Gd3+, Cu2+ and Mn2+ based spin labels
that are more rigid have been used35–37 but their applications in
the study of membrane proteins are limited38.

Based on the above discussed modifications in DEER experi-
ments as compared to physiological conditions, we propose five
potential impacts on a protein, its dynamics, and hence the ob-
served DEER experimental observables. Since DEER experiments
are typically performed with proteins embedded in bilayer mimet-
ics, such as detergent micelles rather than lipid bilayers, mem-
brane diffusion, packing flexibility and interactions can (1) allow
for shifts in DEER distributions and peaks and (2) alter the sec-
ondary structure and accessibility of various helices and loops in
the protein. Previous studies that draw comparisons between mi-
celle and bilayer environments on membrane proteins have been
limited to either small peptides such as single transmembrane he-
lices or are based on ns-timescale simulations that do not provide
a realistic picture of a protein’s conformational dynamics. (3)
Since DEER measurements require a covalent modification on at
least two sites of the protein, we evaluate whether this modulates
the underlying free energy landscape of the protein by biasing
it to adopt only a subset of the available conformations. In ad-
dition to modulating the protein overall dynamics, we examine
the impact that the MTSSL probes have locally on the modified
residues, their neighboring residues, and their structural proper-
ties. (4) We also examine how accurately do the distance distri-
butions obtained from the dipolar coupling of MTSSL spin nitrox-
ide probes provide an approximation of protein dynamics where
there is no MTSSL probe. (5) Multiple flexible bonds of nitrox-
ide spin probes26 such as MTSSL spin probes may have different
timescales than those from the wild-type residue which will equi-
librate at a different timescale than the protein changing the ex-
perimentally observed dipolar couplings. We evaluate these per-
turbations and their impacts in this work to discern which among
these is the main cause for the mismatch between experiments
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and simulations.

Here, we directly compare the biophysical effect of different
experimental and simulation conditions by performing MD sim-
ulations in conditions similar to experiments. To evaluate the
effect of membrane environment on protein structure and dy-
namics, we compare long-timescale simulations of two proteins
in a BDDM micelle and a more typical lipid bilayer. Specifically,
we perform simulations of two proteins, PepTSo and LeuT, which
are biologically important representative proteins of two different
membrane protein families, Major Facilitator Superfamily (MFS)
and Neurotransmitter: Sodium Symporter (NSS), respectively.
Residue pairs in both protein have been previously character-
ized using DEER experiments14,34,39,40. LeuT has many three-
dimensional structures determined through X-ray crystallography
and has been investigated using computational simulations. Re-
cently, two crystal structures of PepTSo were resolved34,41 and
we have examined this protein using MD simulations in our pre-
vious work20. We follow our micelle and bilayer simulations by
introducing nitroxide spin labels MTSSL on a pair of residues in
PepTSo to examine the perturbations caused by the probe’s site-
specific mutations during DEER spectroscopy experiments. We
then perform restrained ensemble molecular dynamics (reMD)
simulations to evaluate the spin pair equilibration and its impact
on the protein’s conformational landscape and residue-pair dis-
tance distributions.

Results

Residue-pair distances from proteins in micelle resemble
trends in bilayer-embedded proteins

PepTSo is a proton-coupled bacterial symporter for which, re-
cently, researchers characterized eight inter-residue distance dis-
tributions using DEER34. There are two known crystal struc-
tures for this protein found in the bacteria Shewanella oneidensis,
2XUT41, and 4UVM34, both in the inward-facing conformation
of the protein. PepTSo belongs to the Proton-dependent oligopep-
tide transporter (POT) family and the Major Facilitator Superfam-
ily (MFS) whose members have a wide variety of functions and
are found in many different organisms including humans. All
MFS transporters share a common structural fold consisting of
12 transmembrane helices43, however, POT family transporters
within MFS often have two additional helices. Like most POT
family transporters, PepTSo has 14 transmembrane helices.

LeuT, a leucine transporter, has many high-resolution crystal
structures and has been extensively characterized using DEER
experiments14,39,40. LeuT belongs to the Neurotransmitter:
Sodium Symporter (NSS) family whose other members include
Dopamine, noradrenaline, GABA, glycine, and serotonin trans-
porters. LeuT was the first structure resolved using X-ray crys-
tallography from the NSS family and consists of 12 transmem-
brane helices. Although many structures have been resolved since
then, only one structure is inward-facing as a quadruple mutant
(3TT144).

PepTSo and LeuT are model proteins from two different fam-
ilies of membrane proteins. While LeuT has been studied using
computational simulations with both unbiased and biased proto-

cols, there are only a few short-timescale computational studies
focused on PepTSo. Our previous work sampled the conforma-
tional dynamics of PepTSo using long-timescale 54 µs MD simu-
lations and analyzed its equilibrium dynamics using Markov state
model based analysis20. These simulations were carried out in a
POPC bilayer using the AMBER FF14SB force field. To compare
the dynamics of PepTSo protein in detergent micelle and bilayer
and solely capture the effect of the membrane environment, we
replicated our simulations in a POPE/POPG bilayer in CHARMM
36 force field. Simulations from our previous work20 provide a
benchmark for sufficient conformational sampling since we were
able to sample IF, OC, OF, and multiple other intermediate states
(Fig. S8, ESI†). Here, we compare our atomistic molecular dy-
namics simulations of PepTSo and LeuT in BDDM micelles and
lipid bilayers. Length of individual simulation datasets vary be-
tween ∼20-32 µs simulation time (Table S1, ESI†).

In Fig. S8A and B (ESI†), we project our PepTSo simulation
datasets on gating residue pairs, Ser131-Tyr431 on the intracel-
lular side and Arg32-Asp316 on the extracellular distance. We
compare the sampled regions with our previous simulations (Fig.
S8D, ESI†) to conclude that all physical conformations of the pro-
tein have been well sampled. Similarly, in Fig. S9 (ESI†) we
project our LeuT simulation datasets on one residue pair each
on the intracellular and extracellular side of the protein, Arg5-
Asp369 and Arg30-Asp404, respectively. These residue pairs are
based on gating residues identified in hSERT45. This human sero-
tonin transporter has a typical LeuT-fold and shares 35.5% se-
quence similarity with LeuT protein. Among the gating residues,
Asp404 from LeuT is homologous to Glu493 in hSERT and the
other three residues are arginines.

Upon comparing simulated and experimental distance distribu-
tions from our micelle and bilayer simulations (Fig. S1B and C,
ESI†) we see distance distributions obtained from micelle simu-
lations are no better at matching with experiments. However, by
comparing distance distributions in Fig. 1, we examine the impact
of the choice of membrane on the protein’s dynamics. For PepTSo

protein, five out of a total of eight distance distributions show
a higher median value (middle horizontal line on violin plots in
Fig. 1A) in micelle as compared to bilayer. For instance, residue
pair 174-466 shows a single peak in the distributions for both
micelle and bilayer, but the data has a median value of 3.87 nm
mean in bilayer whereas this value is 4.00 nm in micelle. On the
other hand, two distance distributions for residue pairs 47-330
and 174-401 show lower median values in the micelle than in the
bilayer. One distance distribution for residue pair 141-438 shows
about the same value 1.6 nm in both micelle and bilayer. In Fig.
S10 (ESI†), we show that most of the mean or median values lie
along the black dotted line, indicating that they are similar for
micelle and bilayer. Mean and median values for all inter-helix
distances also fall along the dotted line indicating that the differ-
ences are minimal (Table S4 (ESI†)).

Based on visual inspection, not only the positions of the peaks
but the number of peaks in the distance distributions can differ
such as three peaks in bilayer versus two in micelle for residue
pairs 141-432 and 141-500. Interestingly, these two distance dis-
tributions show new peaks in micelle where little or no data is
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Fig. 1 (A) Violin plot shows distance distributions for five intracellular residue-pair distances and three extracellular residue-pair distances measured
by Fowler et al. as observed from MD simulations of PepTSo protein in micelle (yellow, right) and bilayer (blue, left)34. (B) Violin plot shows distance
distributions for 17 intracellular residue-pair distances and seven extracellular residue-pair distances measured by Kazmier et al. as observed from MD
simulations of LeuT protein in micelle (purple, right) and bilayer (green, left)40. Distances calculated here are between the residue pair non-hydrogen
atoms that have closest distance. These distances were calculated using "closest-heavy" distance scheme in MDTraj42. Distance distributions among
Cα atoms and sidechain atoms is shown in Fig. S21 and S22 (ESI†).

seen in those regions in bilayer. For LeuT, although the distance
distributions differ, the variation is much less (Fig. 1B and S10
and Table S5, ESI†), for example, none of the 24 experimental
distance distributions show a peak in bilayer which is not there in
micelle or vice versa.

For PepTSo, five of the experimental residue-pair distance dis-
tributions also show slightly broader distributions. For inter-helix
distributions (Fig. S10, ESI†) we see that few upper values and
lower values lie below the dotted line meaning that the distri-
butions move towards larger values in micelles. Does this mean
that micellar environments shift the distributions to larger val-
ues? This is unlikely because for LeuT we see values that are both
above and below the black dotted line in experimental distances
as well as inter-helix distances.

We conclude that the reason for the mismatch between DEER
experimental observables and MD simulations distance distribu-
tions is not due to the use of detergent micelle in MD simula-
tions, since there are no dramatic or homogeneous shifts in the
distance distributions from our simulations. However, this ob-
servation may be limited to two proteins in the current study as
the effect of the membrane on protein dynamics has been estab-
lished46.

Proteins in micelles and bilayers show structural similarity

For both proteins, we measure and show the helicity of trans-
membrane helices in Fig. S11 (ESI†). Values closer to 1 indicate
helical nature and decreasing values show loss of helicity. TMs
7 and 10 exhibit a wider range of helicity in PepTSo which indi-
cates their dynamic nature. In Selvam et al. we report that one of
the extracellular gating residues is on TM7 and one of the intra-
cellular gating residues is on TM1020. Given that the median of
TM7 helicity is 0.76 in both micelle and bilayer, lowest among all
other transmembrane helices, none of the helices lose their entire
alpha-helical nature. Moreover, broader distributions for TMs 7
and 10 are seen in both micellar and bilayer environments.

TMs 1 and 6 in LeuT show wide helicity ranges in both envi-
ronments. Readers must note that TM1 here indicates residues of
TM1a, the first half of TM1 helix. TM1a is of particular interest
in LeuT and other NSS family transporters44,47,48 because in IF
structures this region is away from the bundle as shown in Fig.
S12C (ESI†). Low values of TM1 helicity arise from IF trajectories
and other trajectories that transition to IF like states. Our simu-
lation ensemble includes two independent trajectories based on
the IF structure 3TT344. LeuT TM1a dynamics show a significant
distinction in OF and IF states in our MD simulation trajectories
(Fig. S12, ESI†), TM1a helicity drops to 20-30% in IF trajectory

4 | 1–10Journal Name, [year], [vol.],

Page 4 of 10Physical Chemistry Chemical Physics



whereas this is 50-80% in OF trajectories. Due to the dynamic
nature of this region, it follows that one of the gating residues on
both the intracellular and extracellular side of the protein are also
positioned on TM1. This distinct behavior of TM1a is also seen
in Fig. S9A and B (ESI†) where LeuT is open on both extracellu-
lar and intracellular sides. Other studies on transporter proteins
using extensive MD simulations45,49,50 have also reported observ-
ing this hourglass-like state of the transporter. Terry et al. have
reported evidence for this conformation in LeuT which is due to a
weaker coupling between the extracellular and intracellular side
of LeuT51. We suggest that this weaker coupling allows LeuT to
explore a large range of intracellular gating distance while the
extracellular side of the protein is also open.

TM regions of PepTSo and LeuT show structural similarity in
both micelle and bilayer, but could the choice of the membrane
milieu affect the intracellular and extracellular flanking regions
of our proteins? We compare the distributions for these regions
such as the helicity of two short helices in PepTSo one on each
side. For LeuT, we compare the helical content of the loop regions
which connect the TM helices. Fig. S13 and S14 (ESI†) show that
distance distributions are similar and not impacted by the choice
of membrane environment. In this work, we do not consider the
molecular-level differences in protein residue interactions with
lipids or detergents and differences in membrane curvature that
could vary stability of loop regions.

Fig. 2 strikingly shows that TM helicity median and mean val-
ues lie along the black-dotted line, and in most cases, lower and
upper values also don’t deviate much in micelle and bilayer. In
general, helicity values or distributions are not different which
means that micelles do not impact the structure of the protein.

Covalent modification due to MTSSL probes cause small local
structural perturbations on the protein

We calculated Kullback-Leibler (KL) divergence among distance
distributions from MD simulations and micelle and MD simula-
tions in bilayer discussed above. Among eight experimentally
characterized distances in PepTSo, we found that residue pair
Asn174-Ser466 has the highest KL divergence value. Hence, we
chose this residue pair for further study, specifically to perform
simulations with realistic nitroxide DEER labels. We attached an
MTSSL DEER probe on Asn174 and Ser466 after mutating them
to cystines via CHARMM-GUI these residues and simulated our
protein in a BDDM micelle for ∼19 µs. Previous studies have
compared MD simulations with DEER experimental results with
short-timescale MD simulations with explicit spin probes in a va-
riety of biological systems52–55. To our knowledge, this is the first
study of the impact of MTSSL spin labels on a membrane protein
using long-timescale unbiased simulations.

Fig. 3A shows the simulated conformational ensemble pro-
jected on the intracellular and extracellular gating residues. Com-
paring this landscape to those for the PepTSo simulations without
probes in micelle shows that both ensembles capture all confor-
mational states of the protein. This follows that probe molecules
do not seem to interfere with the conformational dynamics of
PepTSo protein in a way that could hinder its transport function.

Fig. 2 Comparing mean (blue), median (orange), upper value (green),
and lower value (red) of alpha-helical content of (A) 14 TM helices in
PepTSo, and (B) 12 TM helices in LeuT. Markers below the black dot-
ted line indicate larger values observed in micelle environment. Markers
above the black dotted line indicate larger values observed in bilayer
environment. Markers along the black dotted line indicate similar obser-
vations in micelle and bilayer simulations. The size of the dots does not
indicate any measured quantity.

To understand the local effects of the MTSSL probes on the
protein, we calculate Phi & Psi dihedral angles and generate Ra-
machandran plots for the mutated residues 174 and 466. We
see a slightly larger coverage for residue 174 with the MTSSL
probe (Fig. S15B, ESI†) as opposed to when it is an Asn residue
(Fig. S15A, ESI†), while there is no difference for residue 466.
Similarly, when we look at the regions surrounding the labeled
residues, specifically two residues both before and after the la-
beled residues, we see a larger distribution for residue 174 (Fig.
S15E and F, ESI†). Hence, we conclude that this mutant created
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Fig. 3 (A) The conformational landscapes of PepTSo protein are generated by projecting all simulation data on the chosen extracellular and intracellular
side distances measured between Arg32-Asp316 and Ser131-Tyr431, respectively. Conformational landscape for PepTSo MD simulations in BDDM
micelle with an MTSSL labeled residue pair. Distances calculated here are between the residue pair non-hydrogen atoms that have closest distance.
These distances were calculated using "Closest-heavy" distance scheme in mdtraj42. (B) Distance distribution for MTSSL labeled residue pair in
PepTSo, 174-466, from simulations in BDDM micelle without probes (yellow), and (C) with probes (red). (D) Distance distribution for MTSSL labeled
residue pair in PepTSo, 174-466, from simulations in BDDM micelle without probes (orange) where distances are measured between ON atoms on
MTSSL labels. Black lines show DEER experiment distance distributions.

for DEER spectroscopy experiments slightly impacts the local dy-
namics and secondary structure of the protein, this effect does not
alter the overall conformational dynamics of the protein.

We suggest that any alteration seen in transport activity could
be due to the kinetic rates of the transport function that would not
affect the DEER observations unless functional interactions are
mutated. Fowler et al. tested the transport activity of their PepTSo

double cysteine mutants and 174-466 mutant although decreased
activity, did not abolish AlaAla transport entirely34. Kazmier et al.
also tested binding of Leu to spin-labeled LeuT pairs and most
double mutants retained more than 50% binding affinity as the
wild type protein.

We examine the impact of a spin-probe labeled residue pair on
the resulting distance distributions (Fig. S16, ESI†) by comparing
micelle simulations with and without MTSSL probes. Since the
probe molecules are on the extracellular side of the PepTSo pro-
tein, two of the three extracellular side distance distributions do
appear slightly perturbed. We observe that the intracellular side
distances show no differences. A closer look at the distribution
for the residue pair labeled with MTSSL probes shows that the
quartile values are conserved. Overall, we don’t see any signifi-
cant changes in the distance distributions for all eight experimen-
tal distances as compared to the distance distributions obtained
from simulations in BDDM micelle. As expected, if there is no
overall difference in the underlying conformational landscape as
we discussed above, individual residue-pair distances also would
not deviate.

Distance distributions obtained from unbiased MD simulation
with MTSSL probes are different from DEER experiment
The mean of the unpaired electron density of paramagnetic
probes is concentrated close to the N-O bond55. Distance distribu-
tions from DEER are estimated from the dipolar coupling between
these unpaired electrons. In MD simulation, it is usually treated
by measuring the distance between oxygen atoms (referred to as
ON atom) of two MTSSL labeled residues56. It is established in
the literature that the ON-ON distance distributions are different

compared to the back bone and side chain carbon atoms as the
MTSSL probe introduces five flexible torsion angles and a 7 Å dis-
tance between the backbone or side chain angle57. Based on the
preferred positioning of the probes, these distances can be smaller
or larger compared to backbone and sidechain distances of the
original residue. To observe these differences in long timescale
unbiased probe simulations, we compared ON-ON atom distance
distributions with the Cα and sidechain atom distances. Fig. S17
(ESI†) shows that ON-ON atom distance distributions are upward
shifted with a median value of 5.22 nm in our system. We also
compared closest heavy carbon distances, which is majorly used
for contact prediction between protein residues, with the probe
distances58. The median value of the closest heavy atom based
distance distribution is ∼0.9 nm lower than the ON-ON atom dis-
tance median.

Comparing these distributions to the experimental DEER distri-
bution, we see single peaks from MD simulations whereas two
peaks are seen in the experimental distribution, black lines in
Fig. 3. Fig. 3D shows that the ON-ON atom distance distribu-
tion points to conformations captured corresponding to the sec-
ond peak with a larger distance value. This can be explained by
the two possibilities described by the reviewer that either the MD
does not pick up conformations in the missing peaks or that the
experimental distance distribution yields peaks that are artifacts
of the experiments. We further compared the experimental results
with MtsslWizard software package, which creates all possible ro-
tamer libraries of MTSSL probes to generate the distance distribu-
tion57. This approach makes sure that all the possible samplings
rotamers of MTSSL probes. Applying MtsslWizard software pack-
age on simulations performed on micelle and bilayer again shows
singular peaks and not able to match multiple peaks observed
in experiments Fig. S27 (ESI†). Therefore, further studies are
needed to explain these differences.
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Fig. 4 (A) Violin plot shows distance distributions for five intracellular residue-pair distances and three extracellular residue-pair distances as observed
from (A) reMD (1 dist) simulations where residue pair 174-466 is restrained, teal violin plots, (B) reMD (2 dist) where residue pairs 174-466 and
201-364 are restrained, pink violin plots, and (C) reMD (8 dist) where all eight residue pairs are restrained, brown violin plots. Yellow violin plots
correspond to unbiased simulations of PepTSo protein in the micelle. Black dotted outlined residues pairs in (A) and (B) are restrained pairs and probe
distances are shown to match with experimental DEER distance distributions.

Restrained-ensemble MD simulations sample spin probe dy-
namics, but alter protein dynamics

Our results above elucidate that MTSSL probes modulate the dis-
tance distributions obtained from DEER experiments and the ex-
perimentally characterized distance distributions are a function
of both the protein’s dynamics as well as the probe’s dynamics.
MTSSL spin labels are long and flexible molecules and their dy-
namics have not been examined previously over a long time. We
believe that our previous simulations are not sufficient to capture
the dynamics of the probes and the proteins together, making un-
biased simulations intractable to explore MTSSL probe dynam-
ics. Restrained-ensemble MD (reMD) simulations have been used

previously to restrain MTSSL probes dynamics to the experimen-
tally obtained DEER distributions and we explore this avenue to
deconvolute the effect of MTSSL probe’s dynamics from the ex-
perimental distributional data.

For our reMD simulations we first restrained residue pair 174-
466. Since this residue pair is on the extracellular side of the
PepTSo protein, we chose another pair, 201-364, which had the
highest KL divergence on the intracellular side. Hence, our next
set of reMD simulations involved two restrained pairs one on
each side of the protein. We dubbed these sets of simulations
as reMD (1 dist) and reMD (2 dist). While in Fig. 4A and B and
Fig. S18A and B (ESI†), the distance distributions between the
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ON-ON atoms of the MTSSL probes show a match with the ex-
perimental distribution, the closest-heavy atom distances don’t.
In Fig. 4A, residue pair 174-466 distribution in the teal violin
plot has a single dominant peak with a median value of 3.22 nm,
whereas the experimental distribution has two peaks. Moreover,
the same peak as seen in unbiased BDDM micelle simulations dis-
tribution shown in the yellow violin plot is 4 nm. For comparison,
this value is 3.98 nm for our unbiased simulations with a labeled
residue pair. In general all three extracellular distances in Fig.
4A and B are lower shifted in reMD simulations which can be ex-
plained by a labeled residue pair on the extracellular side. While
the distributions are lower shifted in reMD for the extracellular
distances, neither a lower shift not an upward shift is seen in the
five intracellular distances in Fig. 4A or B. Comparing the residue
pair 201-364 in Fig. 4A and B, we note that when this residue pair
is not restrained (teal violin plot) its mean value is 2.66 nm and
when it is restrained this value is 3.54 nm, very close to unbiased
simulation value of 3.51 nm.

What happens when we restrain all eight residue pairs in sys-
tem reMD (8 dist)? Three out of five distances - distance #2, 3,
and 4 - on the intracellular side show an upward shift, the median
value of the brown violin plots is higher than the median value of
the yellow violin plot distributions. Distance #1 and 2 on the ex-
tracellular side also are shifted up as compared to systems reMD
(1 dist) and reMD (2 dist), although their median values are still
lower than those in unbiased simulations.

An upward shift in distance distributions is similar to what we
observe in Fig. 3 where the ON-ON atom based distances shifted
the distribution upwards by ∼0.9 nm. However, the origins of
these shifts are different. In particular, considering the distance
distribution for residue pair 174-466 which is the third distance
on the extracellular side, a lower shift in all reMD simulations
compared to unbiased simulations without probes (yellow violin
plots in Fig. 4) and with probes (red violin plots in Fig. S18, ESI†)
indicates that reMD simulations alter the backbone dynamics in
a way MTSSL probe labeled simulations did not. Vast differences
in backbone dihedral angles of the relevant residues in reMD sim-
ulations support this observation (Fig. S19, ESI†). These dras-
tic shifts in distance distributions are mirrored in the underlying
conformational landscapes (Fig. S20, ESI†). Hence, the bias in-
troduced in reMD simulations via additional energetic terms for
force calculations affects the protein structure differently than the
modulation caused when MTSSL probes are attached to residues
but simulated with unbiased MD simulations.

Similar to our MTSSL-labeled simulations, reMD simulations
also suggest that the DEER experiment distance distributions are
a convolution of both the spin probe distances as well as the in-
herent protein dynamics based distances. The impact of spin la-
bels is not straightforward and unbiased simulations are ill-posed
to capture their effect completely. Simulations would need to ex-
plore the conformational space of each spin label corresponding
to every conformational state of the protein. This increases the
computational time necessary to capture spin-label dynamics on a
protein. With limited computational resources, it is not feasible to
perform long-timescale residue pairwise simulations with MTSSL
probes. At the same time, reMD simulations are computation-

ally tractable, but do not solve the problem of an unbiased match
with MD simulations from long-timescale MD simulations. reMD
simulations with multiple restrained residue pairs also raise the
unexplored concern that what number of restraints in reMD sim-
ulations would be adequate to capture an MD ensemble where all
residue-pair distance distributions can correspond to their DEER
experiments observables without perturbing the protein’s confor-
mational dynamics.

Conclusion
This work highlights the necessity for careful interpretation of
DEER spectroscopy and MD simulations in membrane protein bio-
physics. The scarcity of membrane protein biophysical characteri-
zation necessitates that we salvage all information available from
laboratory experiments and computational simulations. Hence
DEER spectroscopy and MD simulations will continue to be im-
portant techniques in progressing our understanding of protein
dynamics. It is, therefore, imperative to understand how to best
compare data obtained from both techniques, not only to show
validation of MD simulations with experiments but also to avoid
misleading conclusions and to draw predictive conclusions. Previ-
ous work has proposed optimization protocols to choose the ideal
choice of residue pairs for DEER experiments from already per-
formed MD simulations59,60. These protocols can also be used
iteratively, performing simulations followed by experiments and
then more simulations to update our understanding of a protein’s
conformational changes61. Such methods can be used to their
full potential once we can decipher the structural characteriza-
tion of different protein modes identified via multiple peaks in
DEER distance distributions. Hence, in this work, we performed
a comprehensive study of potential reasons for the discrepancy
between DEER experiment distributional data and residue pair
distributions from atomistic MD simulations.

We show that the major reason for the difference between ex-
periments and simulation distributions is due to the long length
of the MTSSL label and its slow dynamics. The slow dynamics
of the flexible MTSSL probes could not be captured in unbiased
MD simulations and we examined this using biased simulation
methods. While reMD simulations can reconcile experiments and
simulations for the restrained residue pairs, reMD yielded sig-
nificant changes in the protein’s conformational dynamics at the
residue-level and globally. It is also not feasible for researchers
to perform DEER experiments on all residue pairs of a protein
which can be followed by multiple residue pair biased reMD sim-
ulations. On the other hand, unbiased MD simulations do not
cause any unphysical perturbations in the protein. However, it is
computationally expensive to perform long-timescale MD simula-
tions with MTSSL probes. We surmise that when using methods
such as OptimalProbes59,61 it would be sufficient to perform MD
simulations with MTSSL probes for the top predicted choices for
DEER experiments.

Our computational study of a single pair of spin labels is lim-
ited and a thorough examination of the effect of multiple spin la-
bels and different species of spin labels on cytoplasmic and mem-
brane protein is necessary. Our work is also limited in examin-
ing the effect of lateral pressure in a bilayer vs micelle environ-
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ment which deserves examination with different micellar sizes.
We have also assumed a POPE/POPG membrane composition and
symmetry among upper and lower leaflets of the phospholipid
bilayer. Our MD simulations are performed at room tempera-
ture, Spicher et al. propose performing MD simulations at solvent
(mixtures of glycerol and water) freezing temperatures to accu-
rately compare with conformational ensemble explored in DEER
experiments55. This is a potential cause for disagreement and is
yet to be examined with long-timescale simulations. The simula-
tion temperature will also impact the packing and phase behavior
of membranes. Alternatively, using more rigid probe molecules
such as metal cation-based probes36 or a cross-linked side chain
of the nitroxide label with pairs of cysteine residues62 and em-
ploying biophysical experimental methods that do not require any
changes to the covalent structure of the target protein that affect
the protein’s dynamics and sometimes function could be explored.
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