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Relativistic Nonorthogonal Configuration Interaction:
Application to L2,3-Edge X-ray Spectroscopy

Adam Grofe,a Xiaosong Lia∗

In this article, we develop a relativistic exact-two-component nonorthogonal configuration interaction
(X2C-NOCI) for computing L-edge X-ray spectra. This article to our knowledge is the first time NOCI
has been used for relativistic wave functions. A set of molecular complexes, including SF6, SiCl4
and [FeCl6]-3, are used to demonstrate the accuracy and computational scaling of the X2C-NOCI
method. Our results suggest that X2C-NOCI is able to satisfactorily capture the main features of
the L2,3-edge X-ray absorption spectra. Excitations from the core require a large amount of orbital
relaxation to yield reasonable energies and X2C-NOCI allows us to treat orbital optimization explicitly.
However, the cost of computing the nonorthogonal coupling is higher than in conventional CI. Here,
we propose an improved integral screening using overlap-scaled density combined with a continuous
measure of the generalized Slater-Condon rules that allows us to estimate if an element is zero before
attempting a two-electron integral contraction.

1 Introduction
In electronic structure theory, the power of a method is deter-
mined by the ability to simultaneously treat static correlation, dy-
namic correlation, orbital optimization, and relativistic effects in
an efficient manner. Hartree-Fock (HF) theory efficiently treats
orbital optimization but neglects both forms of correlation (un-
der the definition of correlation by Löwdin).1 Then multiconfig-
urational self-consistent field (MCSCF) combines both static cor-
relation and orbital optimization. Finally, multireference config-
uration interaction (MRCI) and full CI incorporates orbital opti-
mization and both forms of electron correlation, but are signifi-
cantly more expensive than the other two methods. All of these
methods use orthogonal orbitals and orthogonal configurations
which through meticulous book keeping is able to represent all
of the degrees of freedom exactly once (i.e., no double counting).
In orthogonal CI, the excitation operators are able to treat static
correlation, dynamic correlation, and orbital optimization simul-
taneously (given a sufficient level of excitation). While these ex-
pansions are complete, they are inefficient in representing the
wave function. The CI Hamiltonians are often sparse with many
unimportant degrees of freedom. Thus, selected CI techniques
seek to compress the CI wave function by only including the most
important degrees of freedom.2–5

Nonorthogonal configuration interaction (NOCI) takes a differ-
ent approach where the constraint on orthogonality of configura-
tions is lifted.6–14 This allows the orbitals of each configuration to
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be optimized individually so that the configurations are at their
lowest energy before mixing. This results in the NOCI Hamil-
tonian to become more dense compared to the conventional or-
thogonal CI but with the advantage of being able to recover static
correlations with a smaller set of nonorthogonal determinants.11

This makes NOCI particularly useful for studies of photochemical
processes,15–23 where there exists a dense manifold of excited
states. Additionally, several groups have developed post-NOCI
methods to account of additional dynamic correlations.24–31

In relativistic multi-configurational electronic structure meth-
ods, the scalar-relativistic effects are usually included variation-
ally at the molecular orbital level. The spin-orbit coupling can be
treated perturbatively32–35 or variationally,36–47 with the latter
becoming more accurate for elements further down the periodic
table. The inclusion of relativistic effects (scalar relativity and
spin-orbit coupling) in NOCI is nontrivial, which, to the best of
our knowledge, has never been developed. Relativistic orbital
space is generally more dense due to their underlying spinor or
bi-spinor electronic structure. As a result, obtaining optimized
excited nonorthogonal determinants becomes more challenging.
Recently, we proposed an effective algorithm to optimize excited
determinants with desired electronic structure characteristics us-
ing the generalized block localized wave function (gBLW) method
within the exact-two-component47–66 framework.67,68 With a
carefully designed optimization space, the X2C-gBLW method is
able to produce excited determinants including relativistic effects
variationally. In this work, we extend the X2C-gBLW optimized
nonorthogonal determinants to the NOCI regime. We introduce a
set of integral screening approaches to reduce the computational
cost of NOCI.
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X-ray absorption spectroscopy is a good application of X2C-
NOCI where excitations from the core introduce large perturba-
tions to the electronic structure. Thus, explicit optimization of
orbitals significantly lowers the energy of the determinant. Ad-
ditionally, since both scalar relativity and spin-orbit couplings are
significant in X-ray L-edge spectroscopy (excitations from the 2p
core orbitals), variational treatment of relativistic effects are es-
sential in accurate prediction of electronic excited states. There
have been many advancements in modelling X-ray spectroscopy
with orthogonal configuration interaction techniques that we will
not review here, but will point the reader toward comprehensive
reviews on the subject.69,70 In this article, we compute the L2,3-
edge spectra, which requires relatively large NOCI expansions in
order to represent the whole spectrum.

2 Theoretical Methods
Throughout this article we use the following notations to keep
track of the nature of the index with respect to the basis.

• The Greek letters (µ,ν ,λ ,σ) index atomic spinor orbitals
(AO’s)

• Lowercase Latin letters (i, j,k) index occupied molecular or-
bitals (MO’s)

• Uppercase Latin letters (I,J,K,L) index determinants

• Matrices in the sans Serif font (S and C) are in the atomic
spinor basis

• Matrices in the bold font (S and C) are in the nonorthogonal
molecular orbital basis

• Matrices in the blackboard font (S and C) are in the
nonorthogonal determinant basis

• Quantities in the calligraphic font (E and M ) are in the
NOCI state basis

The X2C-NOCI wave function is expressed as a linear combina-
tion of nonorthogonal spinor configurations, which need to be ob-
tained based on the chemical problem of interest. In this work, we
use the X2C-gBLW67,68 approach to generate a set of nonorthog-
onal spinor configurations for X2C-NOCI. Because both the X2C
transformation and gBLW approach are well established in the au-
thors’ previous work, brief reviews of the methods are presented
in the Appendix.

2.1 Nonorthogonal Configuration Interaction

The X2C-gBLW procedure produces a series of determinants,68

|ψI〉, each with a unique set of molecular orbitals that can be
nonorthogonal between different configurations. A wave func-
tion expanded in nonorthogonal X2C configurations gives rise
to the X2C-NOCI framework. The elements of CI Hamiltonian
can be computed using density matrices71 or corresponding or-
bitals,16,17,72–74 with the latter being more computational effi-
cient.

To compute the corresponding orbitals, we begin by computing
the overlap matrix of occupied molecular orbitals between any
two determinants,

SIJ = C†
I S CJ (1)

where S is the spinor atomic orbital (AO) overlap matrix. CI and
CJ are the occupied orbital coefficient matrices for determinant
I and J. It should be noted that the molecular orbitals within
each determinant are orthonormal, but the orbitals between de-
terminants may not be orthogonal to each other. Then perform-
ing a singular value decomposition of the overlap matrix in the
nonorthogonal molecular orbital basis

SIJ = UIJ sIJ V†
IJ (2)

yields the transformation matrices, UIJ and VIJ , and the diagonal
matrix of singular values, sIJ . The k-th singular value is the over-
lap between the k-th left and right corresponding orbitals. The
corresponding orbitals are the set of orbitals that maximize the
overlap between both sets of molecular orbitals. The correspond-
ing orbitals can be computed using:

C̃I = CI UIJ (3)

C̃J = CJ VIJ (4)

The overlap between two determinants in the NOCI determinant
basis can be computed from the singular values and the left and
right unitary matrices using

SIJ ≡ det(SIJ) = det(UIJ)det(VIJ)det(sIJ) (5)

where det(UIJ) and det(VIJ) are the determinants of the left and
right unitary transformations, and yield the phase change induced
within each determinant by the transformation to corresponding
orbitals.75 If the orbitals are real, det(UIJ) and det(VIJ) are either
1 or −1, but for X2C these phases are complex valued where the
modulus is 1.

The nonorthongonal one-electron transition density matrix71

in the AO basis can be defined as

DIJ = C̃I s−1
IJ C̃†

J (6)

which is used to compute the energy and properties. For NOCI,
Eq. (6) can be numerically unstable and zeroes in sIJ must be
detected to maintain numerical stability.16

The NOCI Hamiltonian in determinant basis, formulated in the
AO-direct algorithm, can then be constructed using17,74

HIJ = SIJ

(
∑
µν

DIJ,µνhµν +
1
2 ∑

µν ,λκ

DIJ,µνDIJ,κλ (µν ||λκ)

)
(7)

where hµν is the one-electron Hamiltonian matrix, and (µν ||λσ)

are the antisymmetrized two-electron integrals in Mulliken
(chemical) notation. The one-electron Hamiltonian is the X2C
Hamiltonian (see Appendix 1) that includes the scalar relativistic
correction and one-electron spin-orbit coupling. The two-electron
spin-orbit terms have been approximated using the empirical scal-
ing terms due to Boetteger.76
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The NOCI coefficients can then be determined by solving the
generalized eigenvalue problem

HCn = SCnEn (8)

where En and Cn are the NOCI energy eigenvalues and eigen-
vectors. In the limit that the orbitals become orthogonal, the
s−1
IJ scaling of the transition density matrix elements in Eq. (6)

cancels with the determinant overlap SIJ in Eq. (7) to yield the
Slater-Condon rules.

2.2 Improved Integral Screening

The computational cost of Eq. (7) formally scales as M2N4, where
M is the number of determinants and N is the number of basis
functions. Usually M is much smaller than N in NOCI calcula-
tions, making the computation of the AO two-electron integrals
and contraction the dominant cost. Kathir et al. reduced this cost
through a reduced orbital basis set which decreased the number
of integrals that need to be contracted.77,78 In an AO direct NOCI
implementation, we choose to do the first contraction of the two-
electron integrals with AO transition densities (i.e., over indices
λ ,κ) by taking advantage of the integral and contraction screen-
ing developed for the AO Fock build,79,80

GIJ,µν [DIJ,κλ ] = ∑
λκ

DJI,λκ (µν ||λκ) (9)

Then DIJ,µν can be contracted with GIJ,µν [DJI,λκ ] and multiplied
by the overlap to yield the two-electron NOCI energy. This con-
traction scheme will be referred to as the unscaled algorithm.

The elements of the transition density matrix can be quite large
due to the dependence on the inverse of the corresponding or-
bital overlap in Eq. (6), which may prevent the direct algorithms
from effectively screening unnecessary integrals. We propose to
reformulate the two-electron part of the NOCI Hamiltonian by
distributing the the square-root of the determinantal overlap S1/2

IJ
to the transition density matrix,

∑
µν

SIJDIJ,µνGIJ,µν [DJI,λκ ] = ∑
µν

S1/2
IJ DIJ,µνGIJ,µν [S

1/2
IJ DJI,λκ ]

(10)
This simple modification can increase the effectiveness of the in-
tegrals screening. In this paper, we will refer to this as the density
scaled algorithm and we will investigate the effect of this screen-
ing in Section 3.2 and Section 3.3.

Equation (10) includes the generalized Slater-Condon rules,
which suggest that an element is zero if there are more than two
orbital differences between the two determinants. These differ-
ences are readily seen in the singular values of the corresponding
orbitals. If there are two or less singular values that are zero then
the two electron operator is nonzero (assuming the element is not
zero by some other mechanism such as symmetry). Likewise, if
there are three or more zeroes, then we know that the element
will be zero. Here, we define a continuous measure based on the
generalized Slater-Condon rules to predict whether a determinant
coupling is likely to be zero.

For cases with small but not nonzero singular values we can

compute

ΘIJ =
∏i sIJ,ii

sIJ,00sIJ,11
(11)

where sIJ,00 and sIJ,11 are the two smallest singular values as-
suming they are ordered from the smallest to the largest. Θ de-
scribes the largest residual overlap in the two-electron integral
contraction. Θ ranges from one to zero with one when the gen-
eralized Slater-Condon rules suggest the element is nonzero, and
approaching zero when they suggest the element is zero. There-
fore, when Θ goes to zero so does the NOCI two-electron cou-
pling, and we can use Eq. (11) to screen for the need to compute
the two-electron integrals. Here, we found that screening ele-
ments with a Θ less than 10−5 provided good performance and
accuracy compared to the unscaled method.

2.3 NOCI Oscillator Strength

The NOCI oscillator strength can be computed by treating the
dipole moment integrals as a one-electron operator using the gen-
eralized Slater-Condon rules. Thus, the dipole vector in the NOCI
determinant basis is

MIJ = SIJ ∑
µν

DIJ,µν 〈µ|r|ν〉 (12)

where the last term is the electric dipole integral in the atomic
orbital basis. To compute the oscillator strength we transform the
dipole vector into the NOCI state basis,

Mmn = C†
m M Cn (13)

Then the oscillator strengths (ΩI) can be computed using

Ωmn =
2(Em−En)

3
|Mmn|2. (14)

3 Results and Discussion
The X2C-NOCI method introduced here is implemented in the
development version of Chronus Quantum.81,82 All benchmark
timings were performed on an Intel® Xeon® W 2.5 GHz CPU
using the Clang compiler version 12.0.5. The calculations were
performed in parallel using 28 threads using Chronus Quantum.
Additionally, screening of the two-electron terms was performed
using the Schwarz inequality.80

L2,3-edge X-ray absorption spectroscopy features excitations
from 2p core electrons into the frontier orbitals. Due to spin-orbit
coupling, the 2p orbitals are split into p3/2 and p1/2 manifolds.
The L-edge spectra of three molecular systems were computed:
(1) SF6, (2) [FeCl6]-3, (3) SiCl4. The geometries for SiCl4 and
[FeCl6]-3 were taken from reference 83. For SF6, the geome-
try was optimized using M06-2X84 with the aug-cc-pVDZ basis
set.85 Throughout this article, we compute vertical excitations
from these geometries.

To determine the optimal number of states to include in our
NOCI, we performed an iterative search by steadily increasing
the number of optimized determinants until the energy range of
each spectra was satisified. During this search, we include refer-
ence virtual orbitals in the set of target orbitals (see appendix)
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manifold by manifold to ensure that all spin microstates are well
represented. We observed little benefit in including further deter-
minants once the energy range was satisfied (see Section 3.3)

The spectra were computed by first convoluting the eigenvalues
and oscillator strengths with a Lorentzian broadening function
followed by a convolution with a Gaussian function. For SiCl4,
the full width at half max (FWHM) for the Lorentzian function
was 0.15 eV and the standard deviation of the Gaussian was also
0.15 eV. For [FeCl6]-3, the FWHM was 0.40 eV and the standard
deviation was 0.20 eV. For SF6, the FWHM was 0.30 eV and the
standard deviation was 0.30 eV.

While the scalar relativistic effects of SF6 and SiCl4 are not
large, the spin-orbit coupling is significant enough to lead to split-
ting of the peaks (see Supporting Information). While this effect
can be well captured using perturbative techniques, this presents
a unique challenge for excited state determinant optimizations.
In two-component methods, such as X2C, spin symmetry is no
longer maintained, which makes the excited state manifold more
dense. Additionally, in X2C-NOCI it necessary to perform an ad-
equate scan over all of the states in a manifold to ensure that
X2C-NOCI space is spin-complete. Previously, we demonstrated
that the gBLW optimization scheme can be used to scan over ex-
cited state manifolds in an efficient manner while maintaining
all of the microstates for a given spin manifold. Here, we apply
this same scheme to the computation of hundreds of individually
optimized determinants.

3.1 SF6 L2,3-edge

In this section, we test the effect that optimization of the orbitals
has on the overall spectrum, specifically looking at SF6. For SF6,
we excited the 2p electrons into the first 88 reference virtual or-
bitals and then optimized the determinants, resulting in a total of
529 nonorthogonal determinants in the X2C-NOCI calculations.
The set of reference orbitals are the ground state molecular or-
bitals (see Appendix 2). All of the determinants were optimized
with X2C-gBLW and the Sapporo double zeta basis set with dif-
fuse functions.86–89

Here, we tested four levels of constraint in X2C-gBLW optimiza-
tions of excited determinants for X2C-NOCI calculations. Using
2p→ t2g,eg excitations as an example, these constraints can be
described as:

• Completely Frozen – The core (the unexcited electrons e.g.,
1s, 2s, etc) and excited orbitals (e.g., t2g, eg) are frozen. This
scheme does not need any gBLW optimizations and is equiv-
alent to the conventional orthogonal CI method within an
active space.

• Frozen Excited – The excited electron is kept frozen to the
target orbital (e.g., one of the t2g orbitals). In this scheme,
only the core subspace is subject to the gBLW optimization
by mixing with virtual orbitals.

• Inactive Mixing – The excited electron is only allowed to mix
with virtuals outside the ligand-field orbitals, i.e., virtual or-
bitals higher in energy than t2g and eg manifolds are included

Completely 
Frozen

Frozen
Excited

Inactive
Mixing

Energy
Cutoff

Fig. 1 A general scheme showing the approximations used in the op-
timization strategies employed on SF6. The diagrams do not exactly
represent SF6 because many more electrons and orbitals are required.
Each section represents a determinant diagram where the colors are used
to show in which subspace the basis function and electron reside. Here,
blue represents the core electrons subspace, orange represents the excited
electron subspace, purple represents being in both the core electron and
excited electron subspaces, and gray represents being excluded entirely.
Each line represents a reference orbital (i.e. the ground state molecular
orbitals), and the arrows represent electron occupation at the start of the
calculations.
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in the excited subspace. In this scheme, both the core and
excited subspaces are subject to the gBLW optimization.

• Energy Cutoff – Including all higher energy orbitals outside
an energy cut-off of 0.1 Hartree in the excited subspace. The
purpose of this scheme is to allow the excited electron to mix
with all virtual orbitals that are not degenerate with the tar-
get orbital. For instance, if an eg orbital is selected as the
target orbital, all higher energy virtuals except those in the
eg manifold are included in the excited subspace. Note that
including nearby virtuals could lead to a large orbital rota-
tion away from the target orbital, undesired population in-
version, and potential redundancy in the NOCI determinant
basis. For SF6, we only observed significant rotations away
from the target orbital for a small number of determinants.

Figure 1 presents the approximations schemes based on orbital
diagrams. Colors are used to represent the subspaces that each
reference molecular orbital is a member of. The reference molec-
ular orbitals are the ground state molecular orbitals, but it is pos-
sible to use any reasonable set of reference molecular orbitals.68

The electron configuration in Fig. 1 resemble those of a core ex-
cited state where a low energy orbital is removed from the space
that acts as the hole. Then this electron is occupied in a higher en-
ergy target orbital (orange). This target orbital is allowed to mix
with the higher energy orbitals (purple) to optimize the energy.
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Fig. 2 L2,3 edge X-ray absorption spectroscopy for SF6. The spectra
were shifted and normalized to coincide with the peak at 173 eV. X2C-
NOCI was performed using the Sapporo double zeta basis. The bottom
plot also has the experimental spectrum,90 and one computed using
response theory with CAM-B3LYP.91

The computed spectra for SF6 are presented in Fig. 2. All peaks
are uniformly shifted by −8.55 eV, −2.75 eV, −2.45 eV and −2.40

eV for the completely frozen, frozen excited, inactive mixing, and
energy cutoff constraints, respectively. This series suggests that
as the optimization space is increased, the shift to experiment
decreases, indicating the variational nature of this method. Addi-
tionally, relaxation of the core electrons has the largest effect on
the absolute position of the spectra. The difference in shift be-
tween completely frozen and energy cutoff constraints suggests
that the orbital optimization accounts for at least 6.15 eV of the
correlation energy in this system. The singular values, which rep-
resent the orbital overlaps with the ground state, suggest that
nearly all core orbitals are rotated to optimize the energy.

For the computed spectra, we observe the largest changes of
the features going from the completely frozen to the frozen ex-
cited constraint. For instance, the shoulder on the low frequency
side of the peak at 185 eV becomes more apparent. Addition-
ally, the set of peaks between 193-202 eV decrease in energy by
roughly 4 eV and the oscillator strengths increase. The spectral
features at 195-196 eV display a significant increase in intensity
going from the frozen excited to the inactive mixing and energy
cutoff constraints, due to the optimization of the excited elec-
tron. Furthermore, there are a set of weakly absorbing Rydberg
peaks between 176 eV and 180 eV that are observed using con-
straints that feature orbital optimization but are not observed in
the completely frozen scheme. Overall, these results suggest that
the inactive mixing scheme is the most efficient for two reasons.
First, the SCF is generally easier to converge using this constraint
compared to the energy cutoff scheme. Second, the spectrum is
largely indistinguishable from the energy cutoff scheme, which
indicates that accuracy is largely unaffected.

In Fig. 2, we also compare the L2,3-edge spectrum computed
using X2C-NOCI to both experiment90 and the computed spec-
trum in reference 91 that used response theory (complex po-
larization propagator92,93) with density functional theory (CAM-
B3LYP). This system features a small spin-orbit splitting of 1.2 eV
according to experiment. NOCI agrees well with a value of 1.3 eV.
Overall, the X2C-NOCI computed spectrum agrees fairly well with
both experiment and response theory. Notable differences include
the peak at 185 features a shoulder on the high energy side that
is not observed in the other two. Additionally, X2C-NOCI un-
derestimates the intensity of the shoulder on the low frequency
side of the 185 eV peak. However, the absolute NOCI frequen-
cies are more accurate than the response theory results, which
needed to be shifted by 7.01 eV. Both X2C-NOCI and response
theory observe a set of peaks between 186 and 194 eV that are not
specifically observed in experiment. Mulliken population analysis
combined with the singular values of the corresponding orbitals
suggest these are single-electron transitions into high energy sul-
fur d-orbitals (≈ 70 orbitals above the occupied set). This spectral
feature is present in all schemes for orbital optimization that we
tested, which suggests it is not an artifact of orbital optimization.
These same features are seen in the completely frozen approxi-
mation, but they are at higher energy due to the neglect of orbital
optimization. The significance of these peaks is not clear.
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3.2 SiCl4 L2,3-edge
For SiCl4, the calculations were performed with a series of basis
sets to test the scaling of the X2C-NOCI algorithm and the ef-
fect that the screening algorithm presented in Section 2.1. The
Sapporo basis set family86–89 was used. For the algorithmic scal-
ing tests, all six 2p electrons were excited into first 40 reference
virtual orbitals, resulting in a total of 241 determinants. Subse-
quently, all excited determinants were optimized using the inac-
tive mixing scheme. For calculations using the Sapporo-dzp basis
with diffuse functions, we computed the additional excitations
into the next 28 virtual orbitals (a total of 409 nonorthogonal
determinants in X2C-NOCI).
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Fig. 3 (A): L2,3 edge X-ray absorption spectroscopy for SiCl4 using only
241 determinants for all basis sets. The X2C-NOCI results were shifted
and normalized to coincide with the tallest peak of the experimental
spectrum. (B): X2C-HF Orbital energies of the reference target orbitals
used in the gBLW optimization using the Sapporo triple zeta basis with
and without diffuse functions. (C): L2,3-edge experimental spectrum and
NOCI computed with the Sapporo-DZP basis with diffuse functions with
a larger X2C-NOCI space (409 determinants).

The computed and experimental spectra are displayed in Fig. 3.
The spectra were shifted by −3.85 eV, −3.40 eV, −2.00 eV, and
−2.00 eV for the DZP, DZP-all, TZP and TZP-all bases, respectively.
Overall, we see similar results between the basis sets for the low
energy peaks around 104-107 eV. However for the higher energy

peaks, the effects of basis set quickly become apparent. The basis
sets that include diffuse functions feature small peaks in the range
of 108-110 eV. These peaks represent Rydberg excitations.91 In
Fig. 3A, the spectra using basis sets that include diffuse func-
tions go to zero at roughly 109 eV due to not including enough
excitations to represent the higher energy features. Meanwhile
for the basis sets without diffuse functions, none of the Rydberg
peaks appear and the peaks around 110 eV are at higher energy
by about 2 eV. Overall, the basis sets without diffuse functions
are able to qualitatively describe the main features in the L2,3-
edge spectra of SiCl4 but are missing the Rydberg states. The
splitting of the two peaks between 104 and 105 eV is 0.59 eV,
0.60 eV, 0.63 eV and 0.63 eV for DZP, DZP-Diffuse, TZP and TZP-
Diffuse, respectively. This compares well with the experimentally
determined value of 0.61 eV. Additionally, for the full DZP-Diffuse
spectrum (Fig. 3C) the strongly absorbing peak around 111 eV is
higher than experiment by 1 eV.

To understand the origin of the large difference due to diffuse
functions, the energies for the target excited orbitals are given in
Fig. 3B. It is clear that including diffuse functions leads to a much
slower increase in the orbital energy, which means that the num-
ber of states needed to optimize for higher energies are greatly
increased. Additionally, the excited state manifolds become more
dense with many states providing little contribution to the final
spectrum. For Sapporo-dzp with diffuse functions, we computed
an additional 168 determinants (see Fig. 3C). This yields a better
representation of the experimental peak at 109-110 eV, but it is
higher in energy by about 1 eV. Overall, as one increases the size
of the one-particle basis set, the NOCI becomes more accurate.
However, the number of states required to represent the same
energy range may increase also.

We tested the effective scaling of X2C-NOCI when using the AO
direct algorithm (Eq. (7)) with the improved integral screening
using overlap-scaled density. Since the dominant computational
cost in X2C-NOCI is the AO direct Fock build, the effective scaling
can be computed using80

ln(t) ∝ α ln(NB) (15)

where t is the CPU time and NB the number of basis functions.
α is the effective scaling. In Fig. 4, we have plotted the natural
logarithms of the CPU time versus the number of basis functions.
A determination of the slope can then be used to estimate the
overall scaling of X2C-NOCI with respect to the number of basis
functions. We yield a scaling of N2.4

B , suggesting that the screen-
ing techniques in AO-direct algorithm can significantly lower the
scaling of the X2C-NOCI approach. However, we did not observe
a significant difference between the overlap scaled and unscaled
algorithms for this system. Because we are only performing sin-
gle excitations and there are not large rotations away from the
reference orbitals, there is not a significant performance increase
using the overlap scaled screening. We have included the tim-
ing information and number of basis functions in the supporting
information.
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3.3 [FeCl6]-3 L2,3-edge

For [FeCl6]-3, we excited the 2p electrons into first 43 reference
virtual orbitals, resulting in a total of 259 nonorthogonal determi-
nants. The X2C-HF determinants were optimized using the Sap-
poro double zeta basis set with diffuse functions.86–89 The X2C-
NOCI L2,3-edge spectrum has been shifted and renormalized to
have the largest peak coincide with the experiment.

Overall, we observe good agreement between the X2C-NOCI
computed spectrum and the experimental spectrum. The exper-
imental peaks at ∼713 eV involve both single and double exci-
tations in the form of shake-up peaks. There are several papers
already in the literature that perform peak assignment for this
system.94,95 Thus, our goal here is to evaluate the performance
and accuracy of X2C-NOCI for computing L-edge spectra. Even
though the X2C-NOCI method is capable of computing double
excitations,67 we will leave the optimization of doubly excited
determinants to a future study. The X2C-NOCI spectrum displays
shoulders on the higher energy side of L2 edge. Orbital analysis
suggests that these are transitions from the p3/2 to orbitals dom-
inated by the iron d-orbitals with some mixing with the chlorine
s and d orbitals. The agreement on the higher energy L3 peaks
between 720 and 725 eV for both the relative energy and rel-
ative oscillator strength is excellent. However, for the L2 edge,
we observe a shoulder on the high frequency side of the largest
peak which is not observed in experiment. Examining the largest
contributions to these states suggest that these are single excita-
tion states (i.e., only one orbital difference in the singular values
of the corresponding orbitals to the ground state). Furthermore,
we computed an additional 156 optimized determinants and did
not observe a significant change in the spectrum. The energies
of the most significant peaks featured small changes on the or-
der of 10−5 eV, and no additional features arise in the extended
calculation. It is possible that the intensity and positions of these
peaks require higher order correlations and vibronic couplings.
This effect warrants further development and investigation. The
X2C-NOCI computed spectrum was shift down by 9.9 eV. We sus-

pect this large shift is due to lack of dynamic correlation. There
are published methods for including dynamic correlation in NOCI
through perturbation theory,96–99 configuration interaction,11,31

and density functional theory.17,21,23
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Fig. 5 [FeCl6]-3 L-Edge spectrum computed using NOCI compared to
experiment.100 The computed NOCI spectrum has been shifted down by
9.9 eV to align with the first peak in the experiment.

The [FeCl6]-3 molecule provides an interesting test for the
screening of the two electron terms in the NOCI Hamiltonian.
Here, there are a number of low lying reference orbitals that
readily mix during the optimization of the excited states. Thus,
there are many states where the corresponding orbitals between
the excited and ground state determinants have multiple (more
than two) singular values that are less than 0.1. Therefore, the
screening techniques presented in Section 2.1 are more likely to
be effective.

In Table 1, we display the speed-ups (ratios of CPU times) in
forming the X2C-NOCI Hamiltonian using overlap-scaled density
(S1/2

IJ DIJ in Eq. (10)), and overlap-scaled density with Slater-
Condon estimation (Eq. (11)), respectively, compared to using
the unscaled density (DIJ in Eq. (9)). The density-contracted
Cauchy-Schwarz integral screening scheme with a threshold of
10−12 is used. Overall, we observed significantly faster computa-
tion of the Hamiltonian using both the overlap-scaled density and
also with Slater-Condon screening. With the latter we observe
a speed-up of roughly 1.6 times compared to the conventional
algorithm using unscaled density. To make sure we are not intro-
ducing too large of an approximation, we computed the error in
the energy eigenvalues compared to the conventional algorithm.
We observe a very small error with the maximum error being less
than 10−4 eV and the mean unsigned error being less than 10−6

eV. Overall, the improved screening techniques show significant
reduction in computational cost compared to the conventional al-
gorithm when computing systems where there are large rotations
among the core electrons.

To further examine the effects of the screening, we plotted
the amount of time it takes to compute the two electron terms
as a heat map with respect to the determinant index (Fig. 6).
For the algorithm using unscaled density (Fig. 6A), we see that
the amount of time it takes to compute the two-electron terms
is roughly constant regardless of the nature of the two determi-
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Table 1 Timing and error information for [FeCl6]-3 NOCI using the improved integral screening and the improved integral screening plus the Slater-
Condon screening algorithms in comparison to the traditional algorithm.

Algorithm Speed up MUE (eV)a ME (eV)b

Unscaled Density 1.0 - -
Overlap-Scaled Density 1.4 2.0×10−7 1.5×10−5

Overlap-Scaled Density + Slater-Condon Screening 1.6 2.0×10−7 1.5×10−5

aMean unsigned error of the energy eigenvalues
bMaximum error of the energy eigenvalues
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Fig. 6 Heat maps of the time to compute each of the two electron terms
(CPU Time) with respect to the determinant index using the unscaled
density (A) vs the overlap-scaled density algorithm (B) and the overlap-
scaled density with the Slater-Condon screening (C). A histogram of each
set of timings (summed over all respective elements) are included in the
inset.

nants. A histogram of the number of Hamiltonian elements with
respect to time is given in the inset, and shows that the two elec-
tron coupling takes roughly 1.8 seconds to compute with little
variance.

In contrast, with the overlap-scaled density (Fig. 6B) we ob-
serve a large variance in the timing ranging from less than half a
second to roughly 1.8 seconds. Furthermore, in the heat map we
see that most of the time-saved is in computing the off-diagonal
elements. Here, the determinants are ordered by the origin of the
excitation. Thus, the first group are all of the excitations from
the lowest energy electron. Then all of the excitations from the
next lowest electron. Since we are interested in the L2,3-edge
X-ray spectrum, we are exciting the 2p electrons, which means
there are six groups of excitations. This is observed in the heat
map where the two electron terms that take the longest time to
compute are associated with determinants from the same group.
Meanwhile, the blocks between excitation groups are the ones
that exhibit the most screening. This is to be expected because the
determinants have a difference of roughly two or more electrons
depending on how much mixing the core electrons have with the
frontier orbitals. Meanwhile, since the Slater-Condon screening
is able to estimate that Hamiltonian terms are close to zero and
can skip the computation entirely, addition speed-up is observed
(Fig. 6C).

4 Conclusions
In this work, we introduced a variational relativistic non-
orthogonal configuration interaction method using the exact-two-
component transformation (X2C-NOCI). The generalized block
localized wave function (gBLW) technique was used to optimize
determinants of interest where relativistic effects (scalar relativ-
ity and spin-orbit) are variationally included for describing the
X2C-NOCI wave function.

We used nonorthogonal configuration interaction to compute
the L2,3-edge spectra for several molecular systems including SF6,
SiCl4 and [FeCl6]-3. Overall, X2C-NOCI is able to recover the
main features of the L2,3-edge spectra.

We tested the effects that orbital relaxation has on the final
spectrum using SF6. Overall, relaxation of the core electrons
leads to the largest change in both the absolute energy and rel-
ative changes in the spectral features. Furthermore, we suggest
that the inactive mixing approximation is the most efficient both
in terms of SCF convergence and scanning the excited state man-
ifold.

We proposed a screening technique using the overlap-scaled
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density matrix and a measure defined based on the generalized
Slater-Condon rules for estimating which NOCI elements are zero
before computing the two-electron term. This improved screen-
ing significantly increases the efficiency of the NOCI especially
for a system where large rotations away from the reference or-
bitals are common such as in [FeCl6]-3. This lead to 1.6 times
faster evaluation of the X2C-NOCI Hamiltonian compared to the
conventional method. Meanwhile, these screening techniques in-
troduced almost no error into the X2C-NOCI energy eigenvalues
showing a mean unsigned error of 2.0×10−7 eV.

The X2C-NOCI method developed in this work has several
unique advantages for the computation of X-ray spectroscopy.
First, in the X2C-NOCI scheme, we are optimizing all of the deter-
minants in the two-component framework so that each spin-orbit
micro-state is at a variational minimum and all micro-states are
treated on an equal-footing. Second, since spin-orbit couplings
are included variationally at the orbital level, there is no need to
use perturbative techniques.101 Although the tests carried out in
this work can be readily done with perturbative techniques, it re-
mains to be seen when variational X2C-NOCI is necessary when
the subject matter contains heavier elements. A systematic bench-
mark is needed and will be a future work. Third, the resulting CI
reference wave function is more compact than the conventional
orthogonal CI method for a given chemical problem (see Ref. 102
for the size of CI space needed for [FeCl6]−3), making it an at-
tractive method for multireference CI (MRCI) or second-order
perturbation (MRPT) treatment of dynamic correlation. How-
ever, challenges abound. Constrained optimizations to generate
nonorthogonal determinants may not converge when orbitals in
different subspaces have significant overlap. The nonorthogonal
MRCI and MRPT treatments are nontrivial because the external
space in MRCI/MRPT can be redundant with respect to the NOCI
orbital rotation. The authors envision that variational relativistic
NOCI will become a unique tool for resolving certain challeng-
ing chemical problems (e.g., L- and M-edge spectra). Of course,
further developments and extensive benchmarks are needed to
characterize this new variational relativistic NOCI framework.
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Appendix

A.1 Exact-Two-Component Transformation

In this appendix, we briefly outline the exact-two-component
transformation.

The restricted kinetically-balanced (RKB) Dirac equation in ma-
trix representation is:103,104(
V T

T 1
4c2 W−T

)(
C+

L C−L
C+

S C−S

)
=

(
S 02

02
1

2c2 T

)(
C+

L C−L
C+

S C−S

)(
ε+ 02

02 ε−

)

W = (~σ ·~p)V(~σ ·~p) (16)

where the W term gives rise to relativistic corrections and spin
couplings in an atomic/molecular system. c is the speed of light.
V, T, and S are the two-component non-relativistic potential en-
ergy, kinetic energy, and overlap matrices, respectively. ~p is the
linear momentum operator and ~σ is the vector of Pauli matri-
ces. The solutions of Eq. (16) include sets of positive/negative
eigenvalues ({ε+}, {ε−}) with corresponding molecular orbital
coefficients (C+

L C+
S )

T and (C−L C−S )
T .105 Usually, only the posi-

tive energy solutions, {ε+}, are important for chemical systems.
The exact-two-component (X2C)47–66 method seeks to “fold”

the small component coefficients into the large component by a
one-step unitary transformation U,

U

[
ψL

ψS

]
=

[
ψ̃L

0

]
(17)

resulting in an electron-only Hamiltonian. In X2C, the transfor-
mation matrix takes the form (see Ref. 56 for numerical imple-
mentations)

U=

(
12 −Y†

Y 12

)(
(12 +Y†Y)−1/2 02

02 (12 +YY†)−1/2

)
, (18)

Y = C+
S (C

+
L )
−1. (19)

In this work, we employ the one-electron X2C approach which
is a one-step procedure to construct the transformation matrix
through the diagonalization of the one-electron four-component
core Hamiltonian. However, since the two-electron spin-orbit
terms contribute with an opposite sign to the spin-orbit terms, we
used the Boetteger factors to scale the one-electron spin-orbit ef-
fect to semi-empirically treat the two-electron spin-orbit terms.76

A.2 Generalized Block Localized Wave Function

Here, we only present a brief review on the X2C-gBLW method
and how it can be used to compute nonorthogonal excited deter-
minants.67,68

We use the following notations to keep track of the nature of
the index with respect to the basis.

• The Greek letters (µ,ν ,λ ,σ) index atomic spin orbitals
(AO’s)

• The primed Greek letters (µ ′,ν ′,λ ′,σ ′) index transformed
bases that span wave functions in a subspace
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• The lowercase Latin letters (i, j,k) index occupied molecular
orbitals (MO’s)

• (A) indexes subspaces in generalized block-localized wave
function (gBLW)

The gBLW method optimizes a set of molecular orbitals for a
given determinant subject to constraints which are often based
on chemical intuitions (e.g., π → π∗ transition). The constraints
are encoded in a transformation from the original space of N ba-
sis functions to a set of subspaces. Molecular orbitals of each
subspace (ψA,i) are linear combinations of transformed bases that
are defined by the gBLW transformation matrix (TA,νν ′)

ψA,i = ∑
jν
CA,iν ′TA,νν ′χν , ν

′ ∈ A (20)

CA is the subspace coefficient matrix that is variationally opti-
mized during the self-consistent field (SCF). TA is a rectangular
transformation matrix of dimension N×NA where N is the total
number of atomic basis functions and NA is the number of selected
transformed bases that span subspace A.

The SCF is performed by solving independent Roothaan-Hall
equations for each subspace.

FACA = SACAεεεA (21)

FA = T†
AP†

AFPATA (22)

SA = T†
ASPATA (23)

Here, FA, SA, εεεA are the subspace Fock, overlap, and energy
eigenvalue matrices, respectively. F and S are the full AO space
Fock and overlap matrices, respectively. PA is the subspace pro-
jection matrix, which is defined as

PA = 1−DS+DAS (24)

where D and DA are the density matrices for the full system and
the subspace, respectively. 1 is the unit matrix. The density ma-
trices can be computed using

Dµν = ∑
i j
CµiS−1

i j C∗ν j (25)

DA,µ ′ν ′ = ∑
i j

CA,µ ′iS
−1
A,i jC

∗
A,ν ′ j (26)

where Si j and SA,i j are the occupied molecular orbital overlap
for the full space and the subspace, respectively. In general,
the molecular orbitals are orthogonal within a subspace, but
nonorthogonal between subspaces.

To compute an excited state determinant,68 we first define a
reference state from which to get a set of molecular orbitals that
well represent the problem. Subsets of the reference molecular
orbitals comprise the gBLW transformation matrix. Orbitals that
are excluded from a subspace are absent in the transformation
matrix, which eliminates their contribution to the subspace.

For a given gBLW determinant, we separate the electrons into
two subspaces: (1) A subspace to represent the core electrons that
remain in roughly the ground state configuration, (2) A subspace

to represent the excited electron. Different constraints are em-
ployed on the two spaces to yield the best representation of the
excited state. For the core electrons, the occupied orbitals of the
reference state are usually allowed to mix with all orbitals except
hole orbital from which the excited electron is excited, which pre-
vents variational collapse. Additionally, we exclude the orbital we
wish to occupy by the excited electron (the target orbital) to avoid
redundancies that prevent convergence of the SCF procedure.

Meanwhile, the excited electron subspace includes the target
orbital along with all virtual orbitals of the reference that are
higher in energy. These higher energy orbitals mix with the target
orbital to lower the energy of the determinant. Additional ref-
erence orbitals can be excluded from the excited electron space
to aid in convergence of the self-consistent field, to guarantee
that target states are represented in the determinant expansion,
or to provide further understanding of the determinant optimiza-
tion.68 For nonorthogonal configuration interaction (NOCI), a set
of determinants that span the excited manifold of interest are op-
timized. Thus, excluding orbitals from the excited electron space
could be used to prevent large rotations away from the target or-
bital. While these rotations away from the target orbital are useful
for obtaining a variational minimum, it makes it more difficult to
ensure the proper scanning of an excited state manifold. Thus, it
may prevent the optimization of a spin-complete set of determi-
nants. The effect of these constraints is tested in Section 3.1.

After all subspace MOs are fully optimized, all occupied orbitals
from all subspaces are orthogonalized using Löwdin orthongonal-
ization to yield a set of orthonormal molecular orbitals.

The procedure illustrated above is carried out for each desired
gBLW determinant to be used in the NOCI calculation. Note that
occupied MOs in each gBLW determinant are orthogonal but can
be nonrothogonal to MOs that belong to a different gBLW config-
uration.
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