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Abstract

The applications of semiconductor nanocrystals in optoelectronics are based on the unique 

characteristic of quantum confinement. There is great interest to tailor the performance of 

optoelectronic nanodevices and systems through the control of the sizes of nanocrystals. In this 

work, we develop a general mathematical formulation for the growth of a crystal/particle in a 

liquid solution, which takes account of the combinational effect of diffusion-limited growth and 

reaction-limited growth, and formulate the growth equations for the size of a cubic crystal grown 

under three different scenarios - isothermal and isochoric condition, isothermal growth with 

evaporation and/or extraction of solvent and isochoric growth with the change in temperature. 

For the growth of a cubic crystal under isothermal and isochoric conditions, there are three 

growth stages – linear growth, nonlinear growth and plateau, and the growth rate in the stage of 

linear growth and the final size of the cubic crystal are dependent on the degree of 

supersaturation. For the growth of multi-crystals with a Gaussian distribution of crystal sizes, the 

change of the monomer concentration in a liquid solution is dependent on the change rates of 

average size and the standard deviation of the crystal sizes.

Keywords: Crystal growth; Diffusion-limited growth; Reaction-limited growth; Finite space.
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Introduction

Inorganic and hybrid halide perovskites have exhibited great potential for the applications in 

optoelectronics and energy conversion due to the unique properties, including size-dependent 

bandgap, large optical absorption and facile synthesis processes 1-11. For example, a power 

conversion efficiency of ~29% for perovskite-based solar cells, which is better than the 

efficiency of polysilicon-based solar cells, was recently reported by Al-Ashouri et al. 12, and an 

external quantum efficiency of more than 20%, which is comparable to commercial organic 

LEDs, was also reported 4, 5, 13. 

The performance of perovskite-based optoelectronic devices and solar cells is dependent on 

the quality of perovskite crystals, and the optoelectronic devices and solar cells made from 

perovskite single crystals exhibit much better performance than those made from perovskite 

polycrystals. There is a great need to produce perovskite single crystals of large sizes. Currently, 

there are few solution-based techniques available to produce halide perovskites of large sizes, 

including inverse-temperature method 14, 15, temperature-cooling method 16, antisolvent 

evaporation 17 and extraction of solvent 18. In the heart of these techniques is either the increase 

of the monomer concentration or the decrease of the solubility to increase the degree of 

supersaturation. Note that the inverse-temperature method is based on the the decrease of the 

solubility with increasing temperature, i.e., increasing temperature can immediately make the 

liquid solution supersaturated and the antisolvent method is based on the immediate formation of 

nuclei when the precursor solution is mixed with antisolvent, as reported by Zhang et al. 19 and 

used extensively in the synthesis of halide perovskite nanocrystals. 

There are two processes likely controlling the growth of crystals in a solution – one is 

diffusion, and the other is surface reaction 20-23. Currently, most studies have been based on an 

infinite system without considering the change in the solubility and the effect of crystal size  20-22. 

Recently, Yang 23 analysed the growth of a spherical crystal controlled by diffusion in a finite 

space without the contribution of surface reaction. The numerical results revealed that there are 

two growth stages – the crystal size is a linearly increasing function of the growth time in the 

first growth stage and a power function of the growth time in the second growth stage. Following 

the method given by Sung et al. 20 in the discussion of the effect of crystal size/mass on the 

growth behavior, Liu et al. 24 obtained a relationship between the time derivative of the crystal 
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mass and the ramp rate of temperature, and Yao et al. 18 obtained a relationship between the time 

derivative of the crystal mass and the change rate of the liquid solution. However, both 

relationships are questionable, and the authors did not provide any explicit formulation for the 

temporal evolution of the monomer concentration during the crystal growth.

Realizing the important applications of halide perovskites in optoelectronics and the need to 

grow halide perovskites of large sizes, we follow the approach given by Sung et al. 20 to analyze 

the growth of a single crystal in a solution without solving the diffusion problem. In contrast to 

the work by Sung et al. 20, we develop a general formulation, which takes into account the effects 

of the loss of solvent and the change of solubility.

Mathematic Formulation

Considering the growth of a crystal in a liquid solution, as shown in Fig. 1. At the outset of 

growth (t = 0) at temperature T0, the concentration of monomers (solute atoms/molecules) is C0 

in the unit of mole per unit volume, the volume of the space consisting of the liquid solution and 

the crystal is V0, and the mass of the crystal is M0. At time t and temperature T, the concentration 

of monomers is C in the unit of mole per unit volume, the volume of the space consisting of the 

liquid solution and the crystal is V, and the mass of the crystal is M.  

a

δ

Figure 1. Growth of a cubic crystal of a in width in a liquid solution. The thickness of diffusion 

layer is δ.

The mass conservation gives

 (1)0 0
0 0 V

M M MC V CdV  
     



where ρ and Ω are the density and molar volume of the crystal, respectively, M0/ρ is the volume 

of the crystal at the outset of growth,   represents the space occupied by the liquid solution. In V

general, one needs to have the spatial distribution of the monomer concentration in the 

calculation of the integral in Eq. (1). 
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For simplification, we use the assumption by Sung et al. 20 in the study of the growth of 

yttrium oxalate in a supersaturated solution that the monomer concentration is uniformly 

distributed and is only dependent on time and temperature. Therefore, Eq. (1) is simplified to as

 (2)0 0
0 0

M M MMC V C V    
           

Taking derivative of Eq. (2) with respect to the growth time, we obtain

(3)1 0M dC dV C dMV C
dt dt dt

   
      

It is evident that the growth of the crystal is dependent on the temporal evolution of the monomer 

concentration and the volume of the system.

As discussed above, there are two processes controlling the growth of the crystal – one is 

diffusion, and the other is surface reaction. For the monomer diffusion in the liquid solution, we 

have the molar flux of monomers in the liquid solution onto the crystal as

 (4)i
surface

C CD 
  


j n

where j is the molar flux of the monomers in the liquid solution, n is the outward unit normal of 

the crystal surface, D is the diffusivity of the monomers in the liquid solution, Ci is the monomer 

concentration on the surface of the crystal, and δ is the thickness of the diffusion layer near the 

crystal surface. Assuming the first-order surface reaction and using the mass conservation for the 

monomers, we have

 (5)( )i ssurface
k C C   j n

with k as the reaction rate for the surface reaction and Cs as the solubility of the crystal at 

temperature T. Note that Sung et al. 20 assumed a power-law dependence of the surface reaction 

on the concentration difference (Ci - Cs). Such a situation can occur only for a significant 

difference between Ci and Cs and/or under external influence. Here, we are focused only on the 

first-order surface reaction. 

Substituting Eq. (5) in Eq. (4) yields
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(6)s
i

DC k CC
D k

 


 

which gives

(7)( )s
surface

kD C C
D k


  

 
j n

Thus, the increase rate of the crystal volume can be calculated as

 (8)( )(- )c s
surfaceS

dV kD C C SdS
dt D k

 
   

  j n

with Vc and S as the crystal volume and the surface area of the crystal at the growth time t. From 

Eq. (8), we obtain the increase rate of the crystal mass and the monomer concentration as

 and (9)( )c sdV kD C C SdM
dt dt D k

 
  

 
1

s
D k dMC C
kD S dt

 
 



Substituting the second equation in Eq. (9) in Eq. (3), we obtain the differential equation for the 

growth rate of the crystal mass as

(10)1 1s
s

dCM D k d dM D k dM dVV C
kD dt S dt dt kD S dt dt

                         

 1 11 0s
D k dM dMC
kD S dt dt

  
       

Assuming that the geometrical shape of the crystal during the growth remains unchanged, i.e. 

there is a similarity of the geometry of the crystal at any two different growth times. Such an 

assumption has been implicitly used in most studies of crystal growth. Thus, the change of M is 

proportional to the surface area of the crystal with the proportionality being the density and the 

change in the characteristic dimension of the crystal. Therefore, Eq. (10) provides the base to 

analyze the temporal evolution of the crystal, which takes into account the change in the 

solubility and the system volume for the growth of crystals including halide perovskites via the 

inverse-temperature method 14, 15, temperature-cooling method 16, antisolvent evaporation 17 and 

extraction of solvent 18, when the change rates of the system volume and the solubility are known.
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For the cubic structure of crystals such as halide perovskites, we consider the growth of a 

cubic crystal in the following analysis.

Temporal evolution of a cubic crystal

For a cubic crystal of a in width, the volume and surface area of the crystal are a3 and 6a2, 

respectively. This gives Vc/S = a/6. Equation (2) is simplified as

(11)   
3 3

3 3 0
0 0 0

a aC V a C V a 
   



Three different cases are discussed below. Analytical formulation of the temporal evolution of 

the crystal width is derived only for Case 1 - the crystal growth in a liquid system of constant 

volume at a constant temperature. The other two cases need the information of the evaporation 

rate or the extraction rate of solvent for Case 2 and the change rate of temperature and the 

temperature dependence of the solubility for Case 3. Numerical calculation is needed to find the 

temporal evolution of the crystal width.

Case 1: Isothermal growth in a liquid system of constant volume 

For isothermal growth of a cubic crystal in a liquid system of constant volume, there are no 

evaporation and extraction of solvent during the crystal growth. We have dCs/dt = 0 and dV/dt = 

0 (V = V0). The second equation in Eq. (9) gives

(12)
2 s
D k daC C

kD dt
 

 


Substituting Eq. (12) in Eq. (11) with V = V0 yields

(13)   
3 3

3 3 0
0 0 0 02 s

a aD k daC V a C V a
kD dt

         

which can be re-written as

(14)
3

0 0
0 3

0

1 1
2 s

V aD k da C C
kD dt V a

                 

Note that Eq. (14) can be obtained from Eq. (10). Using the initial condition of a|t = 0 = a0, we 

obtain the solution of Eq. (14) as
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 (15) 
3

2/30 0 0
0

(1 )( )2 1
3(1 )s

s

C V akD C t a a
D k

V
C

  
      

   
%

 
1/3 1/3 31/3 3

1 1 0 0
3 1/3 3
0

1 2 ( )1 2 3 ( )tan tan ln
6 ( ) ( )3 3

a V V aaV V a
V a V a


    

      

% %% %
% %

Here, the parameter  is calculated asV%

 (16)
3

0 0 0
0

(1 )( )
1 s

C V aVV
C

  
 

 
%

It needs to be pointed out that the volume of the liquid solution at the outset of growth is 

likely different from the combination of the volume of the liquid solution and the volumetric 

change of the cubic crystal at time t, because the space occupied by a monomer in the liquid 

solution is not simply equal to that in the crystal due to the difference in the interaction with 

adjacent materials 25. Therefore, the system is generally unable to maintain a constant volume. 

The contribution of the volumetric change of the cubic crystal to the change of the system 

volume can be approximated to be a linear function of the volumetric change of the cubic crystal 

to a first order of approximation, which can be incorporated in Eq. (10). However, the 

contribution of the volumetric change of the cubic crystal to the change of the system volume is 

generally negligible in most cases and it is reasonable to assume that the system volume 

maintains unchanged under isolated condition.

Consider the growth of a CsPbBr3 crystal of cubic phase in water. The molar mass and 

density of CsPbBr3 crystal of cubic phase are 579.8175 g/mol 26 and 4.42 g/cm3 27. The lattice 

constant of CsPbBr3 crystal of cubic phase is 0.6017 nm 27, and the solubility of CsPbBr3 crystal 

of cubic phase in water is 0.047 g/mL at 23 °C 28. Using the molar mass and density of CsPbBr3 

crystal of cubic phase, we obtain the molar volume of CsPbBr3 crystal of cubic phase as 131.18 

mL/mol and the solubility of CsPbBr3 of cubic phase in water as 8.1110-5 mol/mL. 
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Figure 2. Temporal evolution of the sizes of cubic crystals of cubic phase for different degrees of 

supersaturation ( ). The embedded figure shows the experimental results for the 1/3
0 0/ 20V a 

growth of Pt nanocrystals from the work of Varghese and Rao 29.

Define  = (D + kδ)a0/2kD(1-ΩCs). Figure 2 depicts temporal evolution of the sizes of 

CsPbBr3 crystals of cubic phase for = 20 and different degrees of supersaturation. It is 1/3
0 0/V a

interesting to note that there are three stages for the growth of the cubic crystals – the sizes of the 

cubic crystals increase linearly with the growth time in the first stage, nonlinearly with the 

growth time in the second stage and reach plateau in the third stage. The linear stage is consistent 

with the observations by Varghese and Rao 29 for the growth of Pt nanocrystals and Jung et al. 30 

for the growth of gold spiky nanoparticles in a liquid cell and the analysis by Yang 23 for 

diffusion-limited growth of a nanoparticle in a finite space. The second stage is associated with 

the competition between the diffusion-limited growth and the reaction-limited growth due to the 

decrease in the degree of supersaturation. The third stage corresponds to the depletion of the 

monomers in the solution, which hinders the further growth of the cubic crystals.

For the purpose of qualitative comparison, the experimental results for the growth of Pt 

nanocrystals in a liquid solution with chloroplatinic acid and sodium citrate from the work of 

Varghese and Rao 29 is included in Fig. 2. It is evident that there are two stages for the growth of 

Pt nanocrystals with an initially linear stage followed by a nonlinear stage, qualitatively in 

accord with the trend revealed by the numerical results in Fig. 2. The similar trend suggests that 
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one can use the model to determine the diffusivity and the reaction rate for the growth under 

isothermal and isochoric conditions.

10
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a/
a 0

t/

C
0
/C

s
 = 25 V

0

1/3/a
0
 = 80

60

40

20

Figure 3. Temporal evolution of the sizes of cubic crystals for C0/Cs = 25 and different ratios of 

.1/3
0 0/V a

Figure 3 shows the temporal evolution of the sizes of cubic crystals for C0/Cs = 25 and 

different ratios of . It is interesting to note that there exists an overlap region for the 1/3
0 0/V a

linear growth stage for the growth of the cubic crystals in the systems with C0/Cs = 25 for 

different ratios of . Such a result suggests that the growth rate of d(a/a0)/d(t/) in the 1/3
0 0/V a

linear growth stage is only dependent of the degree of supersaturation and independent of the 

system size. Note that both the period for the linear growth stage and the crystal size in the third 

stage increase with the increase of the ratio of , revealing the effects of the amount of 1/3
0 0/V a

monomers on the growth and size of cubic crystals.

Figure 4 shows the variation of the growth rate of cubic crystals in the linear growth stage 

with the initial concentration of monomers (C0 = nCs with n being unitless) for . 1/3
0 0/ 20V a 

The growth rate increases linearly with the increase of the initial concentration of monomers 

(nCs), indicating the importance of the degree of supersaturation in controlling the initial growth 

of the cubic crystals.
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Figure 4. Dependence of the growth rate of cubic crystals in the linear growth stage on the initial 

concentration of monomers (C0 = nCs with n being unitless) for .1/3
0 0/ 20V a 

Case 2: Isothermal growth in a liquid system with evaporation and/or extraction of solvent

For isothermal growth of a cubic crystal in a liquid system with evaporation and/or extraction 

of solvent 17, 18, we have dCs/dt = 0. Let α(t) be the decreasing rate of the volume of the liquid 

system, which is associated with the rate of the evaporation and/or extraction of solvent. The 

volume of the system at the growth time t becomes

 (17)0 0
( )

t
V V t dt  

Substituting Eq. (17) in Eq. (11), we have

(18)    3 3
3 3 0

0 0 0 0 0
( )

2
t

s
a aD k daC V a C V t dt a

kD dt
            

It is evident that the rate of the evaporation and/or extraction of solvent plays an important role 

in the temporal evolution of the crystal in a liquid solution in a finite space. Equation (18) is a 

nonlinear differential equation, which can be only solved numerically if α(t) is known. 

From Eq. (18), the growth rate of the size of the cubic crystal can be expressed as

(19)   3 3 1
3 30

0 0 0 0 0

2 ( )
t

s
a ada kD C V a V t dt a C

dt D k

                 

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It is evident that the larger the rate of the evaporation and/or extraction of solvent, the larger is 

the growth rate of the size of the cubic crystal for the same size of the cubic crystal. That is to 

say, increasing the rate of the evaporation and/or extraction of solvent leads to fast growth of the 

cubic crystal, which is due to the increase of the supersaturation degree. It should be noted that 

the increase of the supersaturation degree also can increase the probability to form more nuclei 

during the growth, which can reduce the concentration of monomers and lead to the formation 

and growth of multiple crystals. An optimized rate of the evaporation and/or extraction of 

solvent needs to be determined to limit the formation of more nuclei during the growth in order 

to grow crystals of large sizes.

Under a constant rate of the evaporation and/or extraction of solvent, one can numerically 

integrate Eq. (19). The numerical results can then be compared with experimental results, and the 

diffusivity and the reaction rate can be numerically determined for the growth of the cubic 

crystals. 

Case 3: Isochoric growth in a liquid system with the change in temperature

For isochoric growth of a cubic crystal in a liquid system with the change in temperature 14-16, 

there is dV/dt = 0. According to the theory of thermodynamics, the solubility of monomers in a 

liquid solution is dependent on temperature. Assume that temperature is uniformly distributed in 

the liquid solution during the temperature change and the thermal-induced convection is 

negligible.

Using Eq. (10), we have

(20) 
2 2

3
0 2

3 1 0
2 2

s
s

dCD k d a a D k da daV a C
kD dt dt kD dt dt

                  

For Cs being a sole function of temperature T, we have 

 (21)s sdC dC dT
dt dT dt

 

Substituting Eq. (21) in Eq. (20) yields

(22) 
2 2

3
0 2

3 1 0
2 2

s
s

dCD k d a dT a D k da daV a C
kD dt dT dt kD dt dt

                   
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which is the differential equation for the analysis of the temporal evolution of the cubic crystal 

during the isochoric growth via the inverse-temperature method 14, 15 or the temperature-cooling 

method 16. Note that dCs/dT in Eq. (22) is a function of time, which depends on the change rate 

of temperature. 

It should be noted that both the diffusivity, D, and reaction rate, k, are dependent on 

temperature as

 and  (23)/
0

d gQ R TD D e /
0

r gQ R Tk k e

which suggest that the influx to the cubic crystal is dependent on temperature. Here, D0 and k0 

are two pre-factors, Qd and Qr represent the activation energies for the diffusion and surface 

reaction, respectively, and Rg is the gas constant. Substituting Eq. (23) in Eq. (22) yields

(24) 
/ / 2

3
0 2

0 0

1
2

r g d gQ R T Q R T
sdCe e d a dTV a

k D dt dT dt
  

         

 
/ /2

0 0

3 11 0
2

r g d gQ R T Q R T

s
a e e da daC

k D dt dt
  

            

The nonlinearity of Eq. (24) indicates that numerical method is needed to find the temporal 

evolution of the crystal size if the temporal variation of temperature is known.  

Comparing Eq. (24) with Eqs. (18) and (14), we note that the growth behavior for the 

isochoric growth of a cubic crystal with the change in temperature follows a second-order 

nonlinear differential equation instead of a first order nonlinear differential equation for 

isothermal growth. Such a difference suggests that the isochoric growth of a cubic crystal with 

the change in temperature is much more complex than the isothermal growth of the cubic crystal 

and it is much more difficult to control the growth of crystals. It is suggested that a combination 

of isothermal growth with multi-step changes of the growth temperature is used in the growth of 

crystals instead of the continuous change in the growth temperature used in the inverse-

temperature method for the growth of crystals.

Discussion
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The above analysis has been limited to the growth of a single crystal in a liquid system. 

Generally, there are significant numbers of crystals present in a liquid system during the crystal 

growth, i.e. the growth is a multi-crystal problem. For simultaneous growth of multiple crystals 

present in a liquid system of constant volume, Eq. (2) is modified as

(25)0 0 0 0 0
1 1 1

1 1 1 ( )
n n n

i i i i
i i i

C V M C V M M M
  

                     
  

with Mi0 as the initial mass of the i-th crystal and Mi as the mass of the i-th crystal at the growth 

time t. Taking derivative with respect to the growth time t for both sides of Eq. (25), we have

(26)0
1 1

1 1( ) 0
n n

i
i

i i

dMdC CV M
dt dt 

 
  

  

According to the photoluminescence (PL) spectrum of semiconductor nanocrystals 31, the PL 

intensity as a function of the emission wavelength approximately follows a Gaussian distribution 

function. It is known that the PL intensity is proportional to the concentration of nanocrystals and 

the reciprocal of the emission wavelength is a linear function of the reciprocal of the square of 

nanocrystal size. Therefore, we can assume that the size distribution of cubic crystals can be 

approximately described by a Gaussian distribution as

 (27) 
2

0
2

( )
2

2

1( )
2

x x

f x e







with x0 as the mean size of the cubic crystals and σ as the standard deviation. Therefore, there are

(28)
2

0
2

( )
3 3 2

2 0
1 1 1 2

x xn n n

i i i
i i i

M V x x e dx





  


    


   

 
2

0
2

( )
3 3 22

0 02 2
( 3 )

2 2

x x

x e dx x x







 
   

 


Substituting Eq. (28) in Eq. (26)  yields

(29)3 2 2 2 0
0 0 0 0 02 2

1 3 1[ ( 3 )] ( ) 2 0
2 2

dxdC C dV x x x x
dt dt dt

               
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from which we note that the monomer concentration in a liquid solution during the growth of 

multiple crystals is dependent on the change rates of the average size and the standard deviation 

of the crystal sizes. The change rate of the average size of the multiple crystals, which is likely 

associated with the Ostwald ripening process, is dependent on the change rates of the standard 

deviation and the monomer concentration.

Generally, it is very difficult to measure the diffusivity and the reaction rate involving in the 

growth of crystals in liquid solution. The model presented in this work establish the correlation 

between the growth rate of the size of cubic crystals in a liquid solution in a finite space and the 

growth conditions, which can be used to evaluate the temporal evolution of the crystal size. 

Comparing the numerical results from the modeling analysis with the experimental results for the 

crystal growth under given conditions, one can determine the dominant rate process controlling 

the growth of crystals and the important rate parameters of diffusivity and reaction rate.

Conclusion

 Understanding the growth behavior of nanoparticles and nanocrystals in liquid solutions is 

of practical importance in controlling the sizes of nanoparticles and nanocrystals for engineering 

applications. Following the approach given by Sung et al. 20, we have developed a general 

formulation for the growth of a crystal/particle in a liquid solution. This formulation takes 

account of the combinational effect of the diffusion-limited growth and the reaction-limited 

growth and incorporates the effects of the volumetric change of the liquid system and the change 

of the solubility of the crystal/particle in the liquid solution.

We have considered three special growth scenarios for the growth of a cubic crystal – Case 1 

without the change in the volume of the liquid system under isothermal condition, Case 2 with 

the change in the volume of the liquid system under isothermal condition, and Case 3 without the 

change in the volume of the liquid system and with temperature change. Closed-form solution 

for the temporal evolution of the size of a cubic crystal is obtained for Case I. The numerical 

results reveal that there are three growth stages – linear growth, nonlinear growth and plateau for 

the growth under the Case 1 conditions. The degree of supersaturation controlling the initial 

growth and the final size of the cubic crystal.
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The growth behavior for the isochoric growth of a cubic crystal with the change in 

temperature is much more complex than the isothermal growth of the cubic crystal, and it is 

much more difficult to control the growth of crystals. A combination of isothermal growth with 

multi-step changes of the growth temperature is preferred in the growth of crystals instead of the 

continuous change in the growth temperature used in the inverse-temperature method for the 

growth of crystals.

For the growth of multiple crystals of different sizes in a liquid system without the changes in 

the volume of the liquid system and the solubility of the crystals/particles in the liquid solution, 

we have developed a mathematical formulation of the change of the monomer concentration 

under the assumption that the size distribution of the multiple crystals follows a Gaussian 

distribution function. The formulation reveals that the change rate of the average size of the 

multiple crystals, which is likely associated with the Ostwald ripening process, is dependent on 

the change rates of the standard deviation and the monomer concentration..
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