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Abstract: An analytical model using three-directional anisotropic (TDA) dispersion and a novel 

anisotropic relaxation time (RT) relation for modeling the thermal conductivity (k) of intercalated 

layered materials is developed. The TDA dispersion eliminates the restriction of in-plane isotropy and 

is suitable for TDA materials such as black phosphorous. We compare calculations of k of bulk 

intercalated layered materials using the isotropic Debye dispersion and BvK dispersion with our TDA 

dispersion model, paired with both isotropic and anisotropic RTs. We find that calculated k by the 

TDA dispersion model agree best with the experimental data. Furthermore, anisotropic RTs largely 

improve the performance of the Debye and BvK dispersion models whose average relative deviations 

for the in-plane k are reduced from 17.3% and 23.0% to 4.4% and 8.5%, respectively. Finally, thermal 

conductivity accumulation functions of intercalated MoS2 and graphite are numerically calculated 

based on the TDA dispersion with anisotropic RTs. These models predict that intercalants cause 

increased contributions from phonons with shorter mean free paths, especially for in-plane thermal 

conductivity. 
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Introduction

Layered materials such as graphite, black phosphorus and transition-metal dichalcogenides (TMDs) 

comprise atomic layers with strong intra-layer covalent bonds stacked together by weak van der Waals 

(vdW) bonds.1-4 The layered structure of these materials generates unique electronic, optical and 

thermal properties that are of great significance to energy storage, thermoelectric (TE) and 

optoelectronic devices.5-8 Thermal conductivity is an important consideration in the design of these 

devices. For heat dissipation it should be maximized, but in TE devices its reduction enhances the 

thermoelectric figure of merit (ZT).9-11 

Intercalation introduces guest ions or atoms into the vdW gaps of layered materials.12 As a 

consequence, structural and compositional disorder between layers are induced, which can effectively 

tune the thermal conductivity of host materials and optimize the TE efficiency.3 For example, the 

thermal conductivities of black phosphorus (black P) along the cross-plane, zigzag (ZZ) and armchair 

(AC) directions have been reduced by intercalating low-concentration Li+ ions into the vdW gaps.13 

Liu et al. simultaneously reduced the thermal conductivity and enhanced the electrical transport 

properties of polycrystalline SnSe2 through intercalation of Ag+ ions, and achieved a peak ZT at 789K 

along the cross-plane direction, which is 1.6 times larger than that of the original material.14 

The tunability of thermal conductivity of intercalated layered materials has been previously studied by 

experiments and simulations.1, 3 An analytical model that offers insight into phonon transport and 

guides the tunability of thermal conductivity with intercalants is needed. Only Kang et al. analytically 

calculated the thermal conductivity of intercalated black P by the Callaway model15 in which the 

Debye dispersion and relaxation time (RT) approximation to the Boltzmann Transport Equation16 are 

used.13 Although their calculated thermal conductivity agrees well with the experimental data at low 

intercalant concentrations, the Callaway model is based on the isotropic assumption despite the 

anisotropic thermal conductivity of layered materials. Despite Kang et al.’s meaningful work on black 

P, our extension of their model to evaluate the thermal conductivity of other intercalated layered 

materials such as MoS2 and graphite, does not compare favorably with experiments.

In this work, we aim to improve upon two aspects of the Callaway model for intercalated layered 
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materials. Firstly, the original Callaway model assumes isotropic dispersion which we herein replace 

with an anisotropic dispersion. Chen et al. proposed an anisotropic Debye dispersion by considering 

the first Brillouin zone (FBZ) boundary and the isoenergy surface as ellipsoids, by which the 

interfacial thermal conductance between graphite and metals, and minimum thermal conductivity of 

WSe2 were successfully studied.17, 18 However, this dispersion model assumes that the in-plane 

phonon dispersion is isotropic which is incompatible for materials such as black P that exhibit 

three-directional anisotropy. Here we generalize the anisotropic Debye dispersion to accommodate 

three-direction anisotropy (i.e., the TDA dispersion model). Second, the original RT does not consider 

the effect of intercalants on the atomic volume of the host materials, and we herein develop an 

anisotropic RT based on a virtual unit cell.19 By combining our anisotropic RT and TDA dispersion 

model, we calculate the anisotropic thermal conductivity of intercalated layered materials such as 

MoS2, graphite, black P, TiS2 and SnSe2. For comparison, the original and anisotropic RT are also 

combined with the Debye and BvK dispersion models.20, 21 Finally, we numerically calculate the 

anisotropic thermal conductivity accumulation function based on our TDA dispersion model for two 

typical intercalated layered materials (i.e. MoS2 and graphite).

Analytical models

Callaway and BvKS models for thermal conductivity

There have been quite a few analytical models22-26 for thermal conductivity, among which the 

Callaway13 and BvKS models20, 21 are particularly classic. The Callaway model13 is based on the 

Debye dispersion ω=vsq where vs is the sound speed and q is the wave vector. It calculates thermal 

conductivity as

(1)
 
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where T, kB, θD, and ℏ are the temperature, Boltzmann constant, Debye temperature, and reduced 

Planck constant, respectively. The combined phonon relaxation time (RT), τ, will be explained later. 

The dimensionless parameter X is defined as ℏω/(kBT) where ω is the phonon frequency. 
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The BvKS model uses the Born–von Karman (BvK) dispersion20, 21
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where qm is the cutoff wave vector based on the number density of primitive unit cells (Np) 

and ωm is the maximum frequency 20, 21. It calculates thermal  
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where subscript p indexes the polarization of phonons and θm is defined as ℏωm/kB. 

The three-directional anisotropic dispersion model

The original anisotropic Debye model17 expresses thermal conductivity as an integral over frequency

(4)  BE
s s
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where subscript s means different directions in reciprocal space, Gs is the density of states weighted by 

the square of the s-direction projected velocity (referred to as the v2DOS), which is defined in Ref 17 

as
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where vg is the group velocity (vector),  is the unit vector in s direction, dS is an elemental area on ŝ

an isoenergy surface within the FBZ (see Figure 1). In what follows we have assumed a truncated 

linear dispersion relationship to evaluate Gs, but more accurate and complex representations of the 

dispersion (e.g. polynomial or trigonometric) could be used with this formalism by evaluating Gs from 

Eq. 5, which is discussed in Section B of the supplementary information (SI).

The original anisotropic Debye model assumes isoenergy surface  and FBZ 2 2 2 2 2
ab ab c cv q v q  
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 are ellipsoidal, where vab and vc are the sound speeds, qab and qc are the wave 
2 2

2 2
,m ,m

1ab c

ab c

q q
q q

 

vectors, and qab,m and qc,m are the cutoff wave vectors along the ab and c directions. In Ref 17 the 

in-plane a and b directions are equivalent, but we instead use a more general expression to produce a 

three-directional anisotropic model. Furthermore, Li et al. pointed out that the phonon dispersion in 

Ref 17 was linear and failed to capture the real group velocities of the phonons near the FBZ 

boundary.9 We apply a truncated dispersion for longitudinal acoustic (LA) and transverse acoustic 

(TA) branches just as Li et al.9 did, which sets the phonon group velocity to the sound speed except 

near the FBZ boundaries where it is zero. For the flexural (ZA) branch we do not use a piecewise 

group velocity for simplicity.9

With the above assumptions, equations describing the isoenergy surface and FBZ in our model are

(6)2 2 2 2 2 2 2
a a b b c cv q v q v q   

(7)
2 2 2

2 2 2
,eff ,eff ,eff

1a b c

a b c

q q q
q q q

  

where qa,eff, qb,eff and qc,eff are the effective cutoff wave vectors along the a, b and c directions, 

satisfying ωa=vaqa,eff, ωb=vbqb,eff and ωc=vcqc,eff where ωa, ωb and ωc are cutoff frequency. We define 

an effective FBZ within which phonons have nonzero group velocity,9 so qa,eff, qb,eff and qc,eff represent 

the boundary of the effective FBZ. If we assume ωa > ωb > ωc, the area of the isoenergy surface S 

within effective FBZ is defined by three cases that correspond to the conditions case 1: ω < ωc, case 2: 

ωc < ω < ωb and case 3: ωb < ω < ωa as shown in Figure 1. The shading area indicates the allowed 

phonon states in the effective FBZ.
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Figure 1. The relationship between the isoenergy surface and effective FBZ for three frequency regimes. Case 1, ω < 

ωc, all of the states on the isoenergy surface are allowed; Case 2, ωc < ω < ωb, orange shading on the isoenergy surface 

is the allowed states; Case 3, ωb < ω < ωa, orange shading on the isoenergy surface is the allowed states.

Integrating Gs(ω) in Eq. 5 over the shaded isoenergy surface for three cases, we get expressions for 

Gs(ω) in the a, b and c directions
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Ga(ω), Gb(ω) and Gc(ω) in the case 1 is the same as that in the Ref 17, but they are different for the 

other two cases. Eqs. 8-10 are derived under the premise that ωa > ωb > ωc, Ga(ω), Gb(ω) and Gc(ω) 

for the other situation (ωa > ωc > ωb) are similar. Substituting Eqs. 8-10 into Eq. 4, the thermal 

conductivity along the three directions can be calculated. The detailed derivation of this TDA 

dispersion model is detailed in Section A of the SI. Notably, our TDA dispersion model reduces to the 

anisotropic Debye model17 when the in-plane dispersion is isotropic and linear.
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In the calculation by this model, we follow Chen et al.17 and Li et al.9 to decompose the longitudinal 

acoustic (LA) and transverse acoustic (TA) branches into TL1 and TL2 branches for black P based on 

the continuum elasticity theory27. Then we evaluate the anisotropic thermal conductivity of pure 

graphite and black P and compare the result to the experimental data by Sun et al.2 and Nihira et al.28, 

and first-principle (1stP) calculation by Zhu et al.29 and Jain et al.30. Figure 2 shows that the result of 

our model matches well with the experimental thermal conductivity for graphite and black P, 

indicating the validity our TDA model. 

Figure 2. Calculated thermal conductivity using our TDA dispersion model for black P and graphite, compared to the 

experimental data of black P by Sun et al.2 and that of graphite by Nihira et al.28, in which the 1stP calculations for 

black P by Zhu et al.29, and phosphorene by Jain et al.30 are also shown.

Relaxation time relations

The effective relaxation time τ is contributed by impurity scattering τi, anharmonic (Umklapp) phonon 

scattering τU, and boundary scattering τb, following the Matthiessen rule15
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(11)1 1 1 1 4 2 exp U
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where L is the distance between boundaries and A, P and CU are numerical coefficients. As the 

calculation is only performed at T=300K, we use one parameter B to represent PTexp(-CU/T). For bulk 

materials at room temperature where L is large, τb
-1 is much smaller than τi

-1 and τU
-1 and can be 

neglected. We have compared the relaxation times of pure MoS2 and graphite in the in-plane direction 

using Eq. 11 with published results from first-principles calculations31, 32 in Section E of the SI. 

Modifications to Eq. 11 allow us to model intercalated materials. The impurity scattering coefficient A 

(A=0 for pure materials) can be further expressed as two terms to describe mass disorder and lattice 

disorder contributing to impurity scattering19, 33, 34

(12)

2 2

3
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where V is the atomic volume, fi, Mi and ri are the mole fraction, atomic mass and atomic radius of 

component i in the lattice, Mavg is the average atomic mass of all the components and ravg is the 

average atomic radius. To describe lattice disorder, the phenomenological adjustable parameter, ε, is 

introduced and can be determined by experimental fitting. There is no lattice disorder when ε=0, and ε 

is constrained to be larger than 0. Klemens built a formalism that can be used to relate ε to the 

Gruneisen parameter for cubic crystal structures, but its calculations with our model of layered 

materials deviated significantly from the experimental results.16

The atomic volume V in the mass disorder term in Eq. 12 was originally defined as the Vu/n (where Vu 

is the volume of the unit cell and n is the number of atoms in the unit cell)16 for elemental crystals. In 

order to get V of a semiconductor alloy, Abeles used the virtual crystal approach and computed V by 

V=δ3=(Σfiδi)3
 (where fi and δi are the concentration and cube root of the atomic volume of component i 

of the alloy respectively).19 In order to consider the effect of the intercalants on the structure of the 

host lattice, we attempt to apply Abeles’s approach to the intercalated layered materials and regard the 

host atoms and intercalants as two components in the lattice, just like two phases in the alloy. We 
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define the cube root of the atomic volume of the intercalated materials as the atomic distance d, so that 

V = d3 and d is expressed as

 (13)g g h hd f d f d 

where the subscripts g and h signify guest (intercalants) and host atoms. For the anisotropic materials 

in this paper, the atomic distance dh along different directions varies, and is related to the lattice 

constants (a0, b0, and c0). By assuming the atoms distribute randomly in the unit cell, dh along the a, b 

and c directions are ,  and . If the material is in-plane isotropic such as 3
0 /a n 3

0 /b n 3
0 /c n

graphite, dh should be  (  is the in-plane area of the unit cell) along the in-plane 3/abS n abS

direction and  along the cross-plane direction. Substituting dh into the Eq. 13, the effective 3
0 /c n

atomic volume Veff along the in-plane and cross-plane directions can be obtained. We further refer to 

the relaxation time defined by Eqs 11-13 with this Veff as the directionally dependent relaxation time 

(anisotropic RT).

Results and discussion

Calculation of the thermal conductivities of intercalated layered materials

Intercalants have been experimentally added to several layered materials1, 3, 5, 13, 14, 35-45, most of which 

exhibit reduced thermal conductivity with some important exceptions. Pawula et al. reported that 

intercalated Fe atoms enhance the cross-plane thermal conductivity of TiS2 slightly because Fe may 

create phonon conduction paths instead of phonon scattering sources in the lattice.44 Zhu et al. showed 

that the thermal conductivity of LixMoS2 decreases at small concentrations but increases with greater 

concentrations of intercalated Li atoms.3 This increased thermal conductivity is attributed to a phase 

transition that occurs with high Li concentration. Since our model describes the intercalated thermal 

conductivity reductions through increased phonon scattering, we will not choose these exceptions as 

test cases. The following data were considered here: anisotropic thermal conductivity data of LixMoS2 

(synthetized by electrochemical intercalation, measured by time-domain thermoreflectance (TDTR))3, 

LixP (black phosphorus, synthetized by electrochemical intercalation, measured by TDTR)13, LixC 
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(graphite, molecular dynamics simulation)5, WSe2(1-x)Te2x (layered-material alloy with disorder which 

is similar to the intercalated material, synthesized by chemical vapor transport, measured by TDTR)46, 

CuxTiS2 (synthetized by melting combined with spark plasma sintering, measured by laser flash 

system)35 and SnSe2Clx (synthetized by melting-quenching combined with spark plasma sintering, 

measured by laser flash)36. For CuxTiS2 and SnSe2Clx, only the cross-plane thermal conductivity data 

are available.

We compare the thermal conductivities of the selected materials at T=300K using the Debye, BvK and 

TDA dispersion models in Figure 3 (in-plane) and Figure 4 (cross-plane), in which both the original 

and anisotropic RT are considered. The optimized fitting parameters and input parameters in the 

calculation are listed in Table 1 and Table S1 in Section D of the SI, respectively. Figure 3 shows that 

the TDA dispersion model agrees best with the experimental data whether the original or anisotropic 

RT is used. With the original RT, Debye and BvK dispersion models underestimate the in-plane 

thermal conductivities of MoS2, black P and graphite, attributed to the large impurity scattering 

coefficient A in the calculation, which is reflected by the fact that the fitting parameter εab is zero as 

shown in Table 1. However, this underestimation is improved by our anisotropic RT which decrease A 

along the in-plane direction because Veff along this direction is smaller than the original V. The 

calculated cross-plane thermal conductivities by three thermal conductivity models are all in a good 

agreement with the experimental data as shown in Figure 4. 

A parity plot of the experimental and calculated thermal conductivities using original and anisotropic 

RT are displayed in Figure 5. It shows that our anisotropic RT enhances the accuracy of the Debye 

and BvK dispersion models when modeling the in-plane thermal conductivities of MoS2, BP and 

graphite. In order to quantify the improvement comprehensively with the anisotropic RT, the average 

relative deviations (ARDs) and root mean square errors (RMSEs) between the experimental and 

calculated thermal conductivity are obtained in Table 2, whose equations are

(14) ,cal ,exp ,exp
1

1ARD /
N

i i i
i

k k k
N 

 
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(15) 2

,cal ,exp
1

1RMSE
N

i i
i

k k
N 

 

where N is the number of thermal conductivity data, kexp and kcal are the experimental and calculated 

thermal conductivity. ARD is a relative parameter and RMSE is an absolute one. With the anisotropic 

RT, the ARDs for the in-plane thermal conductivity by Debye and BvK dispersion models decrease 

from 17.3% and 23.0% to 4.4% and 8.5%, respectively and the RMSEs using these two models 

decrease from 103.8W∙m-1∙K-1 and 108.9W∙m-1∙K-1 to 16.7W∙m-1∙K-1 and 17.4W∙m-1∙K-1. The high 

accuracy of the TDA dispersion model is not improved. For the cross-plane thermal conductivity, 

ARDs and RMSEs for three dispersion models using anisotropic RT (7.3% and 0.2W∙m-1∙K-1) are 

almost the same as that using original RT (7.2% and 0.2W∙m-1∙K-1).

Figure 3. Calculated in-plane thermal conductivity of (a) MoS2, (b) graphite, (c) BP and (d) WSe2(1-x)Te2x by Debye, 

BvK and TDA dispersion models combined with the original and anisotropic RT at different intercalant concentrations 

x, compared to the experimental data (square) of MoS2 by Zhu et al.3, graphite by Wei et al.5, black P by Kang et al.13 

and WSe2(1-x)S2x by Qian et al.46, in which ART represents anisotropic RT. For black P, square and triangle represent 
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the thermal conductivity along armchair (AC) and zigzag (ZZ) directions, respectively.

Figure 4. Calculated cross-plane thermal conductivity of intercalated (a) MoS2, (b) graphite, (c) black P, (d) 

WSe2(1-x)Te2x, (e) TiS2 and (f) SnSe2 by Debye, BvK and TDA dispersion models combined with the original and 

anisotropic RT at different intercalant concentrations x, compared to the experimental data (diamond) of MoS2 by Zhu 

et al.3, graphite by Wei et al.5, black P by Kang et al.13, WSe2(1-x)S2x by Qian et al.46, TiS2 by Guilmeau et al.35 and 

SnSe2 by Shu et al.36, in which ART represents anisotropic RT.
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Table 1. Fitting parameters for LixMoS2, LixP (black phosphorus), LixC (graphite), WSe2(1-x)Te2x, CuxTiS2 and 

SnSe2-xClx in the calculation by Debye, BvK and TDA dispersion models combined with the original and anisotropic 

RT, respectively.

Material
Dispersion 

model
RT Bab/10-16s Bc/10-15s εab εc

original 0.48 1.43 0 347
Debye

anisotropic 0.48 1.43 0 20

original 0.50 0.61 0 857
BvK

anisotropic 0.50 0.61 0 61

original 0.67 0.96 4 106

LixMoS2

TDA
anisotropic 0.67 0.96 11 6

original 0.028 0.45 0 19
Debye

anisotropic 0.028 0.45 0 2

original 0.025 0.32 0 24
BvK

anisotropic 0.025 0.32 0 3

original 0.070 0.143 0.8 2.9

LixC

TDA
anisotropic 0.070 0.143 1.3 0.3

original 0.42(ZZ), 1.59(AC) 0.51 0 8
Debye

anisotropic 0.42(ZZ), 1.59(AC) 0.51 0 0

original 0.61(ZZ), 1.92(AC) 0.81 0 3
BvK

anisotropic 0.61(ZZ), 1.92(AC) 0.81 0 0

original 1.36(ZZ), 1.05(AC) 1.39 0 28

LixP

TDA
anisotropic 1.36(ZZ), 1.05(AC) 1.39

3(ZZ) 
0(AC)

3

original 2.20 0.81 32 556
Debye

anisotropic 2.20 0.81 156 22

original 1.26 0.46 82 1020
BvK

anisotropic 1.26 0.46 327 45

original 1.13 0.4 306 388

WSe2(1-x)Te2x

TDA
anisotropic 1.13 0.4 1224 10

original 0.73 214
Debye

anisotropic 0.73 61CuxTiS2

BvK original 0.87 159
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anisotropic 0.87 45

original 0.94 70
TDA

anisotropic 0.94 25

original 1.46 71
Debye

anisotropic 1.46 20

original 1.59 114
BvK

anisotropic 1.59 20

original 1.60 28

SnSe2-xClx

TDA
anisotropic 1.60 6

Figure 5. Parity plot of the experimental and calculated thermal conductivity of intercalated MoS2, black P, graphite, 

WSe2(1-x)Te2x, TiS2 and SnSe2 by Debye, BvK and TDA dispersion models, in which ART represents anisotropic RT. (a) 

in-plane thermal conductivity; (b) cross-plane thermal conductivity. 

Table 2. ARDs and RMSEs of three dispersion models (Debye, BvK and TDA models) in the calculation combined 

with original and anisotropic RT, respectively.

ARD/% RMSE/ W∙m-1∙K-1

In-plane Cross-plane In-plane Cross-planeDispersion 
model Original 

RT
Anisotropic 

RT
Original 

RT
Anisotropic 

RT
Original 

RT
Anisotropic 

RT
Original 

RT
Anisotropic 

RT

Debye 17.3 4.4 7.2 7.1 103.8 16.7 0.2 0.2

BvK 23.0 8.5 7.1 7.5 108.9 17.4 0.2 0.2

TDA 5.0 4.6 7.4 7.4 22.4 22.5 0.2 0.2

It is worth noting that the thermal conductivity of black P along the ZZ and AC directions calculated 

by Callaway model (Debye dispersion + original RT) in our paper differs from that in Ref 13 as the 

Page 14 of 21Journal of Materials Chemistry C



15

black line shows in Figure 3. Kang et al.13 used Vu to calculate A in Eq. 12, but we used V like 

Klemens16, Abeles19, Zhou et al.33 and Yang et al.34. Kang et al. does not provide the input parameters 

used in their calculations,13 so we are unable to further confirm the source of this discrepancy. Here 

we present our input parameters in Table S1 in Section D of the SI, which are extracted from Ref 9 

(MoS2 and graphite), Ref 47 (black P), Ref 48 (WSe2(1-x)Te2x), Ref 49 (TiS2) and Ref 50 (SnSe2).

Table 1 shows that ε fitted using the Debye and BvK dispersion models are zero for the in-plane 

direction but large along the cross-plane direciton (except for WSe2(1-x)Te2x), suggesting that lattice 

distortion only influences phonon transport in the cross-plane direction. This result is different from 

that of our TDA dispersion model, which shows that lattice distortion influences phonon transport in 

both directions. It also shows that anisotropic RT has the potential to mediate the degree of lattice 

disorder for both direcitons which increases εab and decreases εc. ε for black P, MoS2 and graphite are 

genearlly less than that of WSe2(1-x)Te2x alloy, indicating that large atomic mass difference between Li+ 

ion and host atoms (P, Mo and C) provides the major contribution to the impurity scattering.13

Thermal conductivity accumulation function

To study the contributions of the mean free path (MFP) of phonons to the bulk thermal conductivity 

(kbulk), the cumulative MFP-dependent thermal conductivity accumulation function for layered 

material is derived. For isotropic materials, kbulk can be expressed as a function of MFP Λ, where 

Λ=vgτ51, 52 and

(16)bulk 0
k k d



 
where kΛ is the thermal conductivity per unit MFP. By restricting the upper limit of integration and 

normalizing by kbulk, the normalized accumulation function21 is defined as 

(17) 
*

*

0
bulk

1 k d
k




  

which represents the fractional contribution of phonons with MFPs less than Λ* to the total thermal 

conductivity. It is possible to derive an explicit expression as a function of MFP for the Debye and 

BvK dispersion models, however, an analytical expression as a function of MFP cannot be derived for 
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the TDA dispersion model. Herein we numerically calculate the thermal conductivity accumulation 

function using TDA dispersion model, which is detailed in Section C of the SI. 

Since MoS2 and graphite are the most widely studied layered materials, we calculate their normalized 

accumulation function at T=300K with Debye, BvK and TDA dispersion models. Comparison 

between the calculated result and first-principle (1stP) calculations53-56 is presented in Figure 6 for 

MoS2 and Figure 7 for graphite. The distribution of α by three dispersion models spans a broader 

range of phonon MFPs than that by 1stP53 for MoS2, in which phonons with MFP less than 103nm 

contribute 96% to kab for 1stP but 70-80% for the three models considered here. Predictions of α the 

by TDA dispersion model matches best with the 1stP result, especially at the short MFP. For graphite, 

the normalized accumulation function for the in-plane thermal conductivity αab by the TDA dispersion 

model agrees well with the 1stP calculation by Lindsay55 at short MFP, but become closer to the 1stP 

result of Kuang56 at long MFP, see from Figure 7a. There are no 1stP calculation for the cross-plane 

thermal conductivity of graphite. Result by MD (molecular dynamics)57 is presented in Figure 7b, 

which differ a lot from our result at short MFP, but agree well with ours at long MFP. 

Figure 6. Normalized accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of pure MoS2 

by Debye, BvK and TDA dispersion models, compared to the result of Gandi et al.53 and Sood et al.54 by 1stP. 

To exemplify how the normalized thermal conductivity accumulation function change as a function of 

intercalant concentration, we show that of LixMoS2 and LixC (graphite) at T=300K with TDA 

dispersion model in Figures 8 and 9. This calculation suggests that intercalants cause αab of MoS2 and 

graphite to span a broader range of phonon MFPs. Shorter MFP begin to contribute to the thermal 
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conductivity, and long MFP contributions gradually decrease. The intercalants do not affect αc as 

drastically as αab and only slowly reduce the contribution of phonons with long MFP to the 

cross-plane thermal conductivity of graphite and have negligible effect on αc of MoS2 when x is less 

than 0.15. Overall, the intercalants have a larger impact on α of graphite compared to MoS2, because 

the volume and atomic mass of the graphite lattice is much smaller than that of MoS2 and the 

intercalants cause greater disorder to the graphite lattice. 

Figure 7. Normalized thermal conductivity accumulation function for the (a) in-plane and (b) cross-plane thermal 

conductivity of pure graphite by Debye, BvK and TDA dispersion models, compared to result of Lindsay et al.55 and 

Kuang et al.56 by 1stP, and Wei et al.57 by MD. 

Figure 8. Normalized accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of LixMoS2 

by the TDA dispersion model. 
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Figure 9. Normalized accumulation function for the (a) in-plane and (b) cross-plane thermal conductivity of LixC 

(graphite) by the TDA dispersion model. 

Conclusion

Here we derive a three-directional anisotropic dispersion model based on the work of Chen et al.17 and 

pair it with anisotropic relaxation time to understand the thermal conductivity of intercalated layered 

materials. Debye, BvK and our TDA dispersion models are compared using both original and 

anisotropic RT. The TDA dispersion model performs best and the anisotropic RT improves the 

accuracy of calculations using Debye and BvK dispersion models whose average relative deviations 

decrease from 17.3% and 23.0% to 4.4% and 8.5%, and root mean square errors decrease from 

103.8W∙m-1∙K-1 and 108.9W∙m-1∙K-1 to 16.7W∙m-1∙K-1 and 17.4W∙m-1∙K-1, as compared to the original 

RT. The normalized thermal conductivity accumulation functions based on the TDA dispersion model 

for pure and intercalated MoS2 and graphite are numerically calculated. The intercalants cause larger 

in-plane than cross-plane changes to thermal conductivity accumulation where phonons with shorter 

MFPs contribute more significantly, while phonons with long MFPs contribute less. 
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