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Abstract 
 

Discovering new materials with desired properties have been a dominant and crucial topic of interest in 

the field of materials science in the past few decades. In this work, novel carbon allotropes and ternary B-

C-N structures were generated using the state-of-art RG2 code. All structures were fully optimized using 

density function theory with first-principles calculations. Several hundred carbon allotropes and ternary 

B-C-N structures were identified to be superhard materials. The thermodynamic stability of some 

randomly selected superhard materials was confirmed by evaluating the full phonon dispersions in the 

Brillouin zone. The new carbon allotropes and ternary B-C-N structures possess a wide range of 

mechanical properties generally and Vickers hardness specifically. Through 2D Pearson’s correlation 

map, we first reproduced the well-accepted explanation and relationship of Vickers hardness of the 

generated structures with other mechanical properties such as shear modulus, bulk modulus, Pugh’s ratio, 

universal anisotropy, and Poisson’s ratio. We then propose two fundamentally new descriptors from 

electronic level, namely local potential and electron localization function averaged over a unit cell, both 

of which exhibit strong correlation with Vickers hardness. More importantly, these descriptors are easy to 

access from first-principles calculations (at least two orders of magnitude faster than traditional 

calculation of elastic constants), and thus can serve as a fast and accurate approach for screening 

superhard materials. We also combined these new descriptors with known composition and structure 

descriptors in the machine learning training process. The new descriptors significantly enhance the 

performance of the trained machine learning model in predicting Vickers hardness of unknown materials, 

which provides strong evidence for local potential and electron localization function to be considered in 

future high-throughput computation. This work unravels more fundamental but previously unexplored 

knowledge about superhard materials and the newly proposed electronic level descriptors are expected to 

accelerate the discovery of new superhard materials. 
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I. Introduction 

 

Materials with various mechanical properties are desired in multiple applications, which range from soft 

materials being used as biological tissues and hard electronic materials such as thermoelectric materials or 

solar cells to superhard materials like concrete and steel materials. Superhard materials are needed and 

desired in a wide variety of real-world applications such as cutting tools, drilling, abrasives for lapping, 

grinding, polishing, automated and aerospace applications, medical plants, and armor plating [1-5]. 

Traditionally, the hardness of materials is measured by a machine named Vickers hardness test developed 

in 1921 by Robert Smith and George Sandland [6]. The machine has a tip that indents through the 

materials and evaluates the how much the materials is capable to resisting the indentation through 

assessing the plastic deformation of those materials [7-8]. The load applied by the tip has some effect of 

the values of Vickers hardness which might make the value of Vickers hardness different with different 

loads, and this phenomenon is named the indentation size effect [8]. In the indentation size effect, the 

hardness decreases as the load keeps increasing which can be attributed to change in the microstructure or 

the sizable elastic recovery [9-10]. Materials with hardness of 40 GPa or higher are considered to be 

superhard materials [1, 11-13]. However, the experiments are too expensive to perform. High-throughput 

computation has been widely performed to accelerate new materials discovery. This process can further 

speed up by combining with the state-of-the-art machine learning approach. Therefore, machine learning 

is highly expected to predict Vickers hardness in a faster and cheaper way [1, 14]. In fact, a machine 

learning model named support vector machine has already been used to screen thousands of materials to 

predict superhard materials [14]. The machine learning model was able to identify promising ternary 

superhard materials: 𝑅𝑒𝑊𝐶0.8 and 𝑅𝑒0.5𝑊0.5𝐶 which were later synthesized and proved to be superhard 

materials experimentally at low indentation loads [14]. Extreme Gradient Boosting (XGBoost) has been 

developed and improved in 2016 [15] from gradient boosting by Friedman in 2001 [16]. Gradient 

Boosting can also be named Gradient Boosting Machine (GBM) or Gradient Boosted Regression Tree 

(GBRT) [15]. Extreme Gradient Boosting is considered to be an ensemble learning algorithm in the 

machine learning world. Extreme Gradient Boosting algorithm builds a tree ensemble model in which 

each tree makes predictions with regularized terms to avoid overfitting. Then, the sum of each prediction 

from each tree is the final prediction of the algorithm from the provided data. Gradient Tree Boosting has 

demonstrated to yield the state-of-the-art results in classification problems [17] and was used in Netflix 

prize [18]. Extreme Gradient Boosting algorithm is available as an open source package and free for 

everyone to use [15]. The algorithm was used in winning competitions in Kaggle, a website for data 

scientists to participate and show their coding skills in real-world data science competitions [15]. Among 

the 29 challenges at Kaggle, Extreme Gradient Boosting was used in 17 codes of the winning and best 

performing machine learning models. The highly efficient performance of Extreme Gradient Boosting 

algorithm in capturing hidden trends that prevail in datasets is the reason why we utilize the algorithm in 

our work. 

 

Several Carbon allotropes are known for being superhard materials as reported in previous studies [19-

22]. Carbon can exhibit a wide range of allotropic forms due to its ability to form various hybridizations 

with different bond angles [23-24]. Carbon can have different form of hybridization states such as sp3, 

sp2, and sp-hybridized states because it has four valence electrons, so it can make single, double, triple, 

and aromatic Carbon-Carbon bonds. It is known scientifically that three carbon allotropes exist naturally. 

Those natural carbon allotropes are amorphous carbon, diamond, and graphite with hybrid sp2/sp3, sp3, 

and sp2 hybridized carbon atoms, respectively [25]. A substantial amount of research has been conducted 

to discover and explore new carbon allotropes in which some were synthesized and fabricated 

experimentally. The newly discovered carbon allotropes can have different dimensionalities and 

hybridizations. Some examples of the newly discovered carbon allotropes with different dimensionalities 

are fullerenes (zero-dimensional carbon allotrope (0-D)), carbon nanotubes (one-dimensional material (1-

D)), and finally graphene (two-dimensional material (2-D)) [26-33]. Carbon allotropes with their 

hybridizations and dimensionalities that were synthesized experimentally or predicted theoretically are 
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one-dimensional (1-D) sp-carbyne, two-dimensional (2-D) sp − sp2-graphyne, and three-dimensional (3-

D) sp − sp3-yne-diamond [34-35]. Several methods were utilized to synthesize those carbon allotropes. 

One of the methods that was recently used in 2011 is cold-compressing graphite with pressure equivalent 

to 17 GPa which also transformed the hybridization state of graphite from sp2 to sp2/sp3 [34]. After this 

discovery, more carbon allotropes are synthesized experimentally through high-pressure techniques, 

examples on those carbon allotropes are bct-C4 carbon [30], M-carbon [36], O-carbon [26], W-carbon 

[37], and Z-carbon [38]. In all these previous studies, carbon was the sole element that was used in the 

process of superhard materials discovery. However, light elements such as B, C, N, and O are known for 

having higher Vickers hardness because they make strong covalent bonds which makes them difficult to 

break [39]. Carbon allotropes [40-41] and ternary compositions were formed from these elements such as 

𝐵𝐶4𝑁 [42], 𝐵𝐶2𝑁 [43], C-N-O [44], B-N-O [45-46], and B-C-O [41, 47]. However, in the previous 

studies, experiments were utilized to implement their ideas and synthesize the previously mentioned 

structures which makes it extremely expensive to synthesize those materials in terms of time, resources, 

and cost. Recently, computational tools were developed to help the materials discovery process become 

easier and more accessible. These methods hold great promise to promote the new material discovery. 

Some of those crystal structure prediction (CSP) tools are CALYPSO [48] and USPEX [49]. In this work, 

𝑅𝐺2 package [50-54] was used to generate the new and novel carbon allotropes with new ternary B-C-N 

structures. 

 

 

II. Procedure of Materials Generation, Screening, and Computational Methods 

 

A) Structures Generation  

 

The 𝑅𝐺2 package [20, 50-54] was used to generate the novel carbon and B-C-N structures. The main 

input parameters of the 𝑅𝐺2 package are the target constitute elements, a range for the number of bonded 

atoms for all species, number of inequivalent atoms in unit or primitive cell, target space group/groups, 

and bond feature information such as bond length, bond angle and the tolerance allowed for both 

derivations. With these input parameters, 𝑅𝐺2 package builds the correct labeled quotient graph. In this 

work regarding the generated carbon allotropes, various carbon allotrope structures with different number 

of carbon atoms were arbitrarily distributed in a stochastic unit cell with a random lattice constant and 

arbitrarily selected space group, and the same applies for B-C-N system structures. This will allow for 

global search of all possible space groups. The number of symmetrically independent atoms usually 

ranges between 2 and 10, having the majority between 3 and 7. Then, an initial structure with the same 

number of atoms is generated which is also predicated on symmetry. The package computed the matrix 

that consists of the distances of the carbon (or B-C-N) atoms in a specific generated carbon allotrope (or 

B-C-N) structure and build the labeled quotient graph (LQG). The code can also relax the structure if the 

structures have physically reasonable bond lengths and angles. The new structures generated by 𝑅𝐺2 

package were named according to the rules which are essentially the input parameters used to generate the 

structure. Those parameters are separated by a hyphen to distinguish the parameters and add another 

parameter after each hyphen. The naming procedure applied to the generated structures start from left to 

right. The naming rules are implemented in the following order (from left to right): number of space 

group, number of nonequivalent atoms in the structures, the names of elements (C in carbon allotropes 

and 𝐵#𝐶#𝑁# in B-C-N structures), loop or ring (predominantly ring), structure local ID, and possible 

additional hyphen to differentiate two IDs.   

 

B) Structure Optimization using Density Functional Theory (DFT) 

 

First-principles calculations by density functional theory (DFT) were carried out with the computational 

chemistry software: Vienna ab initio simulation package (VASP) [55-57]. The structures were optimized 
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at first before performing any following calculations. The structure optimization convergence criteria of 

force and energy are 10−4 eV/A and 10−7 eV, respectively. VASP performed structure relaxation with 

full degree of freedom in terms of allowing the atomic coordinates, lattice size, lattice constant, and lattice 

shape to change to reach the convergence criteria of force and energy in the structure optimization 

process. Perdew-Burke Ernzerhof (PBE) of the generalized gradient approximation (GGA) was used for 

exchange-correlation functional [58]. The kinetic energy cutoff was set to be 520 eV for the electronic 

wavefunction having a plane wave basis set which was obtained using the Projector Augmented-Wave 

method [57, 59]. The chosen kinetic energy cutoff (520 eV) was selected as recommended by VASP 

manual which should be at least 1.3 times the largest ENMAX of an atomic specie in a composition. In 

both B-C-N structures and carbon allotropes, the largest ENMAX was 400 eV which means that the 

kinetic energy cutoff should be at least 520 eV which was implemented in the calculations. The 

Monkhorst-pack k-mesh grids [60] selected to sample the Brillouin zone in the calculations were 

determined depending on the lattice constants. The product of number of k-mesh in one direction and the 

lattice constant in the same direction is roughly set as 60, which is dense enough and equivalent to a 

regular diamond lattice (primitive cell containing 2 carbon atoms) at k-mesh size of 16×16×16. The local 

potential is a measure of repulsive and attractive interactions in the unit cell. Local potential was 

calculated throughout the unit cell using VASP which is outputted in a file named “LOCPOT”. Electron 

localization function is a measure of the probability of finding an electron at a certain point in the unit cell 

which is calculated by VASP and outputted in a file named “ELFCAR” 

 

 

C) Mechanical Properties Calculations 

 

The finite difference method implemented in VASP was used to calculate the elastic stiffness tensor 

matrix of the optimized conventional cell. The results can be read from the OUTCAR file outputted from 

VASP calculations. The elastic stiffness matrix is computed through performing six different distortions 

on the lattice or unit cell and calculating the elastic constants using the relationship between stress and 

strain [61]. The elastic stiffness matrix is different for each crystal system in terms of the number of 

independent elastic constants and zero elastic constant in some of the terms in the matrix depending on 

the type of crystal system [62]. The general form of the elastic stiffness matrix in which all the elastic 

constants are independent (21 independent elastic constants) is applied to the least symmetrical crystal 

system which is the triclinic crystal system. The elastic stiffness tensor for the triclinic crystal system is 

shown below: 

 

𝐶 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15 𝑐16

𝑐21 𝑐22 𝑐23 𝑐24 𝑐25 𝑐26

𝑐31 𝑐32 𝑐33 𝑐34 𝑐35 𝑐36

𝑐41 𝑐42 𝑐43 𝑐44 𝑐45 𝑐46

𝑐51 𝑐52 𝑐53 𝑐54 𝑐55 𝑐56

𝑐61 𝑐62 𝑐63 𝑐64 𝑐65 𝑐66]
 
 
 
 
 

    (1) 

 

where 𝑐𝑖𝑗 is the elastic constant element in direction ij in the elastic stiffness matrix given that 𝑐𝑖𝑗 = 𝑐𝑗𝑖 in 

all the elements in the elastic stiffness matrix. The number of independent elastic constants in the 

previous matrix shown in Eq. (1) is 21 which is the maximum number of independent elastic constants for 

a crystal system. The number of independent elastic constants decreases if the crystal system becomes 

more symmetrical. In fact, some elements in the elastic stiffness matrix become zeros when the crystal 

system is more symmetrical. The previous statements about the elastic constants in the elastic stiffness 

matrix is demonstrated in the equation (2) which shows the elastic stiffness matrix of a cubic crystal 

system which is the most symmetrical crystal system.   
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𝑐𝑐𝑢𝑏𝑖𝑐 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐12 0 0 0
𝑐12 𝑐11 𝑐12 0 0 0
𝑐12 𝑐12 𝑐11 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0
0 0 0 0 0 𝑐44]

 
 
 
 
 

   (2) 

 

In the cubic crystal system, the following elastic constants are equal: 𝑐21 = 𝑐31, 𝑐33 = 𝑐22 = 𝑐11, and 

𝑐66 = 𝑐55 = 𝑐44. The number of independent elastic constants for the cubic crystal system is therefore 3 

which is the minimum number of independent elastic constants. That confirms the statement mentioned 

earlier that the number of independent elastic constant decreases as the crystal system becomes more 

symmetrical. It is also shown that several elastic constants in the elastic stiffness tensor have the value of 

zero. The elastic stiffness matrices for all other crystal systems can be found in Ref. [62].  

 

The compliance matrix is the inverse of the elastic matrix. The compliance matrix shown below will be 

useful in the coming equations which will be used in calculating the mechanical properties. 

 

[𝑐𝑖𝑗] = [𝑠𝑖𝑗]
−1     (3) 

 

Two common definitions can be used to calculate bulk (𝐵) and shear (𝐺) moduli using the elastic 

constants in elastic stiffness matrix or the compliance matrix. The two definitions are Voigt’s [62] and 

Reuss’ [64] approximations. Reuss’ approximation assumes uniform stress throughout the lattice. On the 

other hand, Voigt’s approximation assumes uniform strain throughout the lattice. Voigt’s approximation 

equations of bulk (𝐵𝑉) and shear (𝐺𝑉) moduli are as follows:  

 

9𝐵𝑉 = (𝑐11 + 𝑐22 + 𝑐33) + 2(𝑐12 + 𝑐23 + 𝑐31)   (4) 

15𝐺𝑉 = (𝑐11 + 𝑐22 + 𝑐33) − (𝑐12 + 𝑐23 + 𝑐31) + 4(𝑐44 + 𝑐55 + 𝑐66) 

 

Reuss approximation equations for bulk (𝐵𝑅) and shear (𝐺𝑅) moduli are as follows: 

 
1

𝐵𝑅
= (𝑠11 + 𝑠22 + 𝑠33) + 2(𝑠12 + 𝑠23 + 𝑠31)   (5) 

15/𝐺𝑅 = 4(𝑠11 + 𝑠22 + 𝑠33) − 4(𝑠12 + 𝑠23 + 𝑠31) + 3(𝑠44 + 𝑠55 + 𝑠66) 

 

In Hill’s [65] approximation, Voigt’s and Reuss’ approximations are lower and upper bounds, 

respectively. Hill found that the average of these two approximations yields better results that are close to 

the experimental results, i.e.   

 

𝐵𝑉𝑅𝐻 =
(𝐵𝑉+𝐵𝑅)

2
      (6) 

 𝐺𝑉𝑅𝐻 =
(𝐺𝑉+𝐺𝑅)

2
 

 

In this work, the results from Hill’s approximations will be considered for the calculations of bulk and 

shear moduli.  

 

Young’s modulus and Poisson’s ratio are calculated using the following formulae: 

 

𝐸 =
9𝐵𝐺

3𝐵+𝐺
      (7) 
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𝜈 =
3𝐵−2𝐺

2(3𝐵+𝐺)
      (8) 

 

Researchers have carried out a great deal of effort to quantify and calculate anisotropy of a material. In 

1948, a definition to quantify anisotropy was introduced by Zener. He used some of elastic constants in 

his definition. The formula that he came up with was 𝐴 =
2𝑐44

𝑐11−𝑐12
 [66]. Chung in 1967 presented another 

formula to calculate anisotropy which includes both Voigt’s and Reuss’ approximations in the formula 

[67]. Chung’s formula is 𝐴𝑐 =
𝐺𝑉−𝐺𝑅

𝐺𝑉+𝐺𝑅
. The definitions of anisotropy developed by Zener and Chung 

yielded sufficiently accurate results for the cubic crystal systems since cubic crystal systems possess an 

isotropic bulk resistance. The previous two definitions did not give acceptable results regarding the other 

crystal systems besides the cubic crystal systems because the other crystal systems -not cubic- manifest 

anisotropic bulk resistance [62]. Therefore, quantifying anisotropy accurately required that all the 

contributions of anisotropy must be represented in an equation for all the crystal systems. To this date, 

Ranganathan [68] was able to mathematically formulate anisotropy which was able to overcome and 

solve the obstacles in the previous two definitions of anisotropy. Ranganatha’s definition is written below 

in equation (9): 

 

𝐴𝑈 = 5
𝐺𝑉

𝐺𝑅
+

𝐵𝑉

𝐵𝑅
− 6     (9) 

 

In this work, Ranganatha’s definition of anisotropy will be implemented in the calculations. 

 

A significant amount of effort and research was achieved to understand and build a model for Vickers 

hardness. In fact, it was explained with various approaches and theories. The following is a brief 

summary of some of the theories that explained Vickers hardness: (1) strength of the chemical bond 

between the atoms [69]; (2) a thermodynamic concept that explains how the chemical bonding pertains to 

the density of energy [70]; (3) bond length, charge density, and ionicity [71]; (4) how the electron holding 

energy of a bond and electronegativity contribute to hardness [72]. Progress also occurred to 

mathematically calculate Vickers hardness. In 1998, Teter observed the correlation between shear 

modulus and Vickers hardness [73] which was successful to a certain extent. The formula that Teter 

developed is shown below:  

 

HV,Teter = 0.151 × G     (10) 

 

Chen observed that the existence of a discrepancy between the calculations performed by Teter’s model 

and the experiment results [74]. Chen hypothesized that plastic deformation was not considered in Teter’s 

model. Chen suggested that the new mathematical model should include Pugh’s ratio to add the plastic 

deformation contribution to hardness. Pugh’s ratio (𝑘) is calculated by the ratio of shear modulus and bulk 

modulus as shown below in equation 11. 

 

𝑘 =
𝐺

𝐵
      (11) 

 

Pugh’s ratio is a measure of how brittle a material is. As the value of Pugh’s ratio increases, the more 

brittle the material becomes [74]. Chen and his coworkers proposed another mathematical formula which 

was more accurate than Teter’s model: 

 

HV,Chen = 2(k2G)0.585 − 3    (12) 

 

Chen’s model demonstrated high accuracy in calculating Vickers hardness when compared with the 

experimental results. However, Chen’s mathematical model did not yield physically accurate results when 
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calculating Vickers hardness of ductile materials. The reason for that is the presence of an intercept term 

which does not hold any physical meaning. Tian observed this phenomenon in 2012 when calculating 

Vickers hardness of some ductile materials which turned out to have negative Vickers hardness according 

to Chen’s model [19]. Tian then proposed another model for Vickers hardness with superior performance 

in calculating Vickers hardness for both ductile and brittle materials, as shown below: 

 

HV,Tian = 0.92k1.137G0.708    (13) 

 

Tian’s model considered the plastic deformation represented in Pugh’s ratio in his mathematical model 

which was not considered in Teter’s model [19, 73]. Moreover, results from Tian’s model on ductile 

materials were in good agreement with the experimental results unlike Chen’s model which gave 

unrealistic and negative Vickers hardness when calculating hardness of ductile materials [19, 74]. Tian’s 

model surpassed the other models in a wide range of ductile and brittle materials with various values of 

Vickers hardness and had extraordinarily accurate results when compared with the experimental results 

[19]. Therefore, in this work Tian’s model is used in calculating Vickers hardness of all carbon allotropes 

and ternary B-C-N structures. 

 

D) Phonon Dispersion Calculations 

 

The phonon dispersion of selected carbon allotropes and B-C-N structures were calculated. The supercell 

used to calculate the phonon dispersion of those structures is 2 × 2 × 2 for all the structures. PHONOPY 

[75] package was utilized in calculating the second order harmonic constant. The phonon dispersion for 

all the selected structures were calculated by PHONOPY through the finite displacement method except 

for 217-5-64-B15C5N12-r6-np-id0-20210507-093520. The phonon dispersion of 217-5-64-B15C5N12-

r6-np-id0-20210507-093520 was calculated by PHONOPY using ALM method [76] since ALM method 

gave no negative frequency by considering the finite temperature effect. The dynamical matrix in the 

reciprocal space was then derived from the derivative of energy to plot the phonon dispersion for the 

selected structures.   

 

 

III. Results and Discussion 

 

A) Superhard structures screening and thermodynamical stability   

 

682 carbon allotropes were initially generated from the 𝑅𝐺2 package [20, 50-54]. 578 carbon allotropes 

were not found in the SACADA database [77] (pure carbon) after cross-checking. However, 669 carbon 

allotropes were selected and screened from the 682 original carbon allotropes because anisotropy (AU 

Ranganathan’s definition) [68] set in this work is between 0 and 3. Out of the screened 669 carbon 

allotropes, 635 structures fulfill the condition of being superhard materials with Vickers hardness higher 

than 40 GPa [1, 11-13, 20]. Regarding B-C-N structures, the 𝑅𝐺2 package initially generated 977 B-C-N 

structures, and 833 structures remained after screening the materials with AU outside of 0-3 range. 404 B-

C-N structures are found to be superhard out of the remaining 833 B-C-N structures after the elastic 

constants are calculated. Figure 1 shows some selected structures from B-C-N systems and carbon 

allotropes. All structures were obtained from VESTA software [78].  4×4×1 and 3×3×3 supercells are 

plotted in Figs. 1(a) and 1(b), respectively, while 2×2×2 supercells are plotted in both Figs. 1(c) and 1(d). 
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Figure 1. Supercell structures of carbon allotropes (a) 56-4-32-C-r567-np-id0-20210426-175823, (b) 122-

2-20-C-r567-np-id0-20210426-180030, and ternary B-C-N structures (c) 217-5-64-B15CN16-r6-np-id0-

20210507-094012, (d) 217-5-64-B15C5N12-r6-np-id0-20210507-093520. Color code: dark brown, 

carbon; green, boron; light silver, nitrogen. Naming procedure of the structures can be found in section II. 

Procedure of Materials Generation, Screening, and Computational Methods in subsection A) 

Structures Generation.  

 

Figure 2 shows the phonon dispersion plots of all the previously mentioned selected structures in the 

same previous order as well. No negative or imaginary frequency was found in any of the phonon 

dispersions of the selected structures. The absence of the negative frequencies in the phonon dispersion 

plots indicates the thermodynamical stability of those structures [20, 79-81], which means that these 

structures could be synthesized experimentally [82] provided that the formation energy is also negative 

for all the reported materials. Table 1 shows information about the material IDs of some selected 

materials and information about their composition, Vickers hardness, and their classification in terms of 

whether they are superhard materials or not. We show the structures of some reported materials (two 

carbon allotropes and two ternary B-C-N structures) in Figure 1 and the corresponding phonon 

dispersions of those materials in Figure 2.  
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Figure 2. Phonon dispersion of carbon allotropes (a) 56-4-32-C-r567-np-id0-20210426-175823, (b) 122-

2-20-C-r567-np-id0-20210426-180030, and B-C-N ternaries (c) 217-5-64-B15CN16-r6-np-id0-

20210507-094012, (d) 217-5-64-B15C5N12-r6-np-id0-20210507-093520. Naming procedure of the 

structures can be found in section II. Procedure of Materials Generation, Screening, and 

Computational Methods in subsection A) Structures Generation  

 

 

Table 1: Vickers hardness of the selected carbon allotropes and ternary B-C-N compounds with crystal 

system information. 

Materials Composition 

Crystal System 

(Space Group 

Number) 

Vickers 

Hardness (GPa) 

Superhard 

Materials 

Classification 

122-2-20-C-r567-np-id0-

20210426-180030 
C20 I4̅2d (122) 93.5658 Superhard 

57-4-24-C-r56-np-id0-

20210426-175825 
C24 Pbcm (57) 89.2500 Superhard 

63-4-40-C-r567-np-id0-

20210426-175904 
C40 Cmcm (63) 89.1263 Superhard 

56-4-32-C-r567-np-id0-

20210426-175823 
C32 Pccn (56) 88.3379 Superhard 

217-5-64-B15CN16-r6-np-

id0-20210507-094012 
B30C2N32 I4̅3m (217) 43.2490 Superhard 

217-5-64-B15C5N12-r6-np-

id0-20210507-093520 
B30C10N24 I4̅3m (217) 41.5995 Superhard  
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217-5-64-B4CN3-r6-np-id0-

20210507-093640 
B32C8N24 I4̅3m (217) 32.7131 Not Superhard 

215-3-8-B4CN3-r6-np-id0-

20210506-082304 
B4C1N3 P4̅3m (215) 24.0686 Not Superhard  

 

 

B) Correlation between Vickers hardness and other mechanical properties 

 

Descriptors from composition of the materials were used to predict mechanical properties in previous 

studies [1, 14, 83]. Composition along with structural descriptors were also used to predict mechanical 

properties [84-85]. Combining the structural descriptors to the composition descriptors for machine 

learning training to predict mechanical properties proved to enhance the results of the model, yielding 

lower mean absolute error when compared to using the composition descriptors alone which yielded 

higher mean absolute error [84]. Here, we investigate the electron localization function (ELF) and local 

potentials (LOCPOT) as potential promising descriptors to predict Vickers hardness.  

 

Local potential reflects the interatomic interactions between positive (protons in the nucleus) and negative 

(electrons surrounding the nucleus) charges in the unit cell [86-87]. The local potential varies in different 

areas of the unit cell depending on the strength of the surrounding charges and the distance from those 

charges. Positive local potentials convey the repulsive interactions taking place at a particular spatial 

point. Negative local potential values signify the attraction interactions at a specific point of space. The 

local potentials used in the unit cells [88] can be expressed as  

 

𝑉𝐿𝑂𝐶𝑃𝑂𝑇(𝑟) = 𝑉(𝑟) + ∫
𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′ + 𝑉𝑋𝐶(𝑟)   (14) 

 

where 𝑉(𝑟) is the ionic potential, 𝑉𝑋𝐶(𝑟) is the exchange-correlation potential, and the middle (second) 

term is the Hartree potential. Local potentials for each material can be obtained from the file named 

“LOCPOT” outputted by VASP. ELF measures the probability of an electron localized at a specific point 

in a lattice or unit cell [89] and can be expressed as  

 

𝐸𝐿𝐹 =
1

1+(
𝐷

𝐷ℎ
)
2      (15) 

 

The ratio (
𝐷

𝐷ℎ
) is a dimensionless localization index which indicates the electron localization for the 

uniform electron gas. ELF value has a range between 0 and 1. The value 0 in ELF means it is unlikely 

that there will be an electron at that spatial point in space (lattice or unit cell in our work) [90-91]. The 

value 1 in ELF denotes that the electrons are localized at that point of space. When ELF is equal to 0.5, 

that suggests that the electron cloud density is delocalized like in metallic bonds. The ELF information for 

each material can be obtained from the file “ELFCAR” which is generated by VASP. 

 

Pearson correlation matrix was created by open-source Python to give insights of how much each 

property correlates with the other properties [92]. The Pearson correlation matrix is shown in Figure 3. 

Figure 3 shows how much each property correlates with the other properties starting with Vickers 

hardness from Tian’s model and ending with average ELF. Atomic properties shown in Figure 3 such as 

packing fraction (PF), volume per atom (vpa), and density were produced by Matminer [93]. Although the 

Pearson correlation matrix shows the full information about the correlation for each property with the 

other properties, Vickers hardness will be the dominant topic of the discussion to expound compared to 

other properties.    
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Figure 3. Pearson correlation matrix for various properties. The properties with their symbols are: 

Vickers hardness from Tian’s model (𝑉𝐻𝑇𝑖𝑎𝑛), Shear Modulus (𝐺), Pugh’s ratio (𝑘), Bulk modulus (𝐵), 

Young’s modulus (𝐸), Universal Anisotropy (AU), Poisson’s ratio (𝜈), density (𝜌), volume per atom 

(vpa), packing fraction (PF), maximum local potential (max_LOCPOT), minimum local potential 

(min_LOCPOT), average local potential (Avg_LOCPOT), maximum local ELF (max_ELF), minimum 

local ELF (min_ELF), and average ELF (Avg_ELF). 

 

A Pearson correlation matrix correlates two parameters with each other having the values of the 

correlation between −1 to 1 as seen in the color bar of Figure 3. The order of the parameters in columns is 

the same order of the parameters in the rows, so the diagonal elements in the correlation matrix represent 

the correlation results of the same identical parameters, that is why the value +1 always appears in the 

diagonal. −1 value denotes the complete opposite correlation between two parameters. The value +1 

indicates that there is absolute commensurate correlation between two parameters. In the correlation 

matrix shown in Figure 3, no perfect inverse correlation (value of −1) exists, but perfect direct correlation 

exists between the same parameters in columns and rows (diagonal parameters). For example, shear 

modulus (𝐺) in the second row is in perfect direct correlation with shear modulus in the second column 

(𝐺) which is represented by the value 1, and the same applies to all the diagonal elements (correlation 

results between two identical parameters) in the correlation matrix shown in Figure 3. The value 0 

denotes a non-existent correlation between two parameters. Although, no correlation has the value of 

zero, some correlation results are extremely close to 0 which conveys insignificant inverse or direct 

correlation between those two parameters. Also as seen in Figure 3, most values are not −1, 0, or +1, but 

somewhere between two of those values. The values between 0 to +1 connotes the direct correlation, but 
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the degree of the direct correlation depends on whether that value is closer to 0 or +1. If the value is 

closer to 0, then the direct correlation is weak. However, if the value is closer to +1, then the direct 

correlation is strong. The same applies to the values between 0 to −1 which represent the reverse 

correlation results between two parameters. If the value is close to −1, the inverse relation is strong. On 

the other hand, the inverse correlation is weak if the value is close to 0. 

 

The mechanical and atomic features (descriptors) that are strongly and directly commensurate to Vickers 

hardness are shear modulus, Pugh’s ratio, bulk modulus, Young’s modulus, density, minimum local 

potential, minimum ELF, average ELF. The mechanical and atomic features (descriptors) that conversely 

affect Vickers hardness are universal anisotropy, volume per atom, maximum local potential, and average 

local potential. Packing fraction and maximum ELF descriptors were not included in either inverse or 

direct correlations since their correlations to Vickers hardness are extremely low which is -0.087 for 

packing fraction and -0.202 for maximum ELF. Pearson correlation matrix confirmed some obvious and 

well-known correlations between Vickers hardness with some other material properties. Shear modulus 

and Pugh’s ratio are vastly proportional to Vickers hardness with correlation coefficients of 0.987 and 

0.960, respectively. Shear modulus and Pugh’s ratio are part of the equation of Vickers hardness shown in 

Eq. (13) which is why the correlation coefficients are tremendously high. Although elastic modulus is not 

part of the definition of Vickers hardness, the correlation between elastic modulus with Vickers hardness 

was extraordinarily high with a correlation coefficient of 0.978 which is higher than the correlation 

coefficient of Pugh’s ratio (part of the definition of Vickers hardness). Having higher elastic modulus was 

reported to be an indicator of having higher Vickers hardness as seen from Refs. [19, 74, 94-96]. 

Furthermore, machine learning model for elastic modulus prediction was used to predict new superhard 

materials [14]. Besides, bulk modulus correlation coefficient of 0.838 is also noticeably high from Figure 

3. One of the definitions of Vickers hardness was a linear correlation with bulk modulus which 

manifested its success in accurately calculating Vickers hardness in materials such as diamond, Si, Ge, 

GaSb, and InSb [97-98]. However, the linear model of bulk modulus failed to calculate Vickers hardness 

in a diverse range of other materials [97-98]. It was also reported that a non-linear correlation between 

Vickers hardness and bulk modulus failed to calculate Vickers hardness in a wide range of materials [99]. 

The linear and non-linear correlations of bulk modulus to calculate Vickers hardness failed, because the 

variation of shear modulus with bulk modulus must also be considered in calculating Vickers hardness 

which was shown in Refs. [19, 74].  
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Figure 4. A 2D map of bulk modulus vs. shear modulus with (a) Poisson’s ratio, (b) Pugh’s ratio, and (c) 

Vickers hardness as color bar to show the wide range of Vickers hardness in terms of new brittle and 

ductile carbon allotropes, how both bulk and shear moduli affect Vickers hardness, and where superhard 

carbon allotropes are located with respect to both shear and bulk moduli. 
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Figure 4 shows the 2D map of bulk modulus vs. shear modulus with (a) Poisson’s ratio, (b) Pugh’s ratio, 

and (c) Vickers hardness as color bars. Figure 4 (c) directly shows how to alter the results of Vickers 

hardness even with the same values of bulk modulus. As can be seen from Figure 4(c), bulk modulus, 

shear modulus, and Vickers hardness have a relationship among each other. When shear modulus is equal 

to 200 GPa the Vickers hardness decreases as bulk modulus increases which conveys some inverse 

relation between Vickers hardness and bulk modulus having constant shear modulus which explains why 

the correlation between Vickers hardness and bulk modulus is not closer to 1 compared to shear modulus 

as an example. However, the general trend as can be seen from Figure 4 (c) is that Vickers hardness 

increases as bulk modulus rises as well. Therefore, the direct correlation is confirmed between bulk 

modulus and Vickers hardness which is in good agreement with Pearson’s correlation matrix shown in 

Figure 3. Furthermore, when bulk modulus is constant with a value of 300 GPa as an example, the value 

of Vickers hardness grows as shear modulus rises as well, which implies that Vickers hardness rises as 

shear modulus increases with constant bulk modulus. The previous few statements illustrated from Figure 

4(c) elucidate why the model of linear [97-98] or non-linear [99] bulk modulus that calculates Vickers 

hardness failed. Although the overall trend from Figure 3 is that Vickers hardness of the materials grows 

as bulk modulus rises, Figure 4(c) reveals some visual insight on Vickers hardness which declines as bulk 

modulus increases with constant shear modulus. Generally speaking, materials with high Vickers 

hardness are likely to be found in the upper-right corner of the 2D map of bulk modulus vs. shear 

modulus. 

 

Poisson’s ratio has an extremely high opposite correlation with Vickers hardness with a correlation 

coefficient of −0.948. This result of Pearson correlation matrix confirms that brittle materials have high 

Vickers hardness. Poisson’s ratio and Pugh’s ratio can be used as criteria to distinguish brittle and ductile 

materials. According to Pugh’s ratio, a material is brittle when 𝑘 ≥ 𝑘𝑐𝑟 and ductile when 𝑘 < 𝑘𝑐𝑟 where 

𝑘𝑐𝑟 ≈ 0.571 [100-103]. According to Poisson’s ratio, a material is brittle when 𝜐 ≤ 0.33 and ductile or 

malleable when 𝜐 > 0.33 [104]. Figures 4 (a) and 4 (b) show how Pugh’s ratio and Poisson’s ratios differ 

with bulk modulus and shear modulus to further explain the relationship between Vickers hardness with 

brittle and ductile materials. 

 

As can be observed from Poisson’s and Pugh’s ratios’ criteria for brittle and ductile materials, they are 

opposite each other in the sense that brittle (ductile) materials exist when the Poisson’s ratio is low (high) 

and the Pugh’s ratio is high (low) [105]. That was also visually seen in Figures 4 (a) and 4 (b). The areas 

where Pugh’s ratio is high are the same areas where low Poisson’s ratio values occur, and vice versa. 

Figures 4 (a) and 4 (b) confirm that superhard materials usually have low Poisson’s ratio and high Pugh’s 

ratio. That also explains why the correlation between Pugh’s ratio and Poisson’s ratio is −0.998 in 

Pearson correlation matrix (Figure 3). In fact, if Eqs. (8) and (11) that represent Poisson’s ratio and 

Pugh’s ratio equations, respectively, are combined, they will yield equation 16 in Ref. [106]:  

 

𝜐 =
3−2𝑘

2(3+𝑘)
=

3−2𝑘

6+2𝑘
     (16) 

 

Eq. (16) also proves that Poisson’s ratio and Pugh’s ratio are inversely proportional to each other. Note 

that Eq. (16) restricts Poisson’s ratio value in the range −1 < 𝜈 ≤
1

2
, while for Pugh’s ratio ∞ ≥ 𝑘 > 0 

[105]. 

 

In Figure 5, we also plot the composition triangle of contour distribution of bulk modulus, shear modulus, 

and Vickers hardness for the new ternary B-C-N compounds reported in this work. Figure 5(a) illustrates 

that high bulk modulus compounds are concentrated in the region where B atoms are about 50% while C 

and N atoms have diverse percentages. Similar trend is found for shear modulus of ternary B-C-N 

structures in Figure 5(b). As clearly seen in Figure 5(c), the contour distribution of Vickers hardness  

vastly similar to that for shear modulus, while it has large differences with the contour of bulk modulus. 
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We also see that high Vickers hardness compounds are likely to occur in the region where B to N ratio is 

around 1:1 or less with higher concentration of C atoms (more than 50% to both B and N). 

 

 
Figure 5. Composition triangle of contour distribution of (a) bulk modulus, (b) shear modulus, and (c) 

Vickers hardness for the new ternary B-C-N materials reported in this work. 

 

 

C) Insights on Vickers hardness from atomic and electronic level features 

 

In the previous discussions, mechanical properties such as bulk, shear, and elastic moduli, Poisson’s ratio, 

and Pugh’s ratio were used to explain Vickers hardness. Although they are useful to explain Vickers 

hardness, atomic descriptors are still needed to explain Vickers hardness at the atomic level. Atomic 

descriptors can be consistent and proportional to Vickers hardness as was shown in the Pearson 

correlation matrix in Figure 3. Therefore, Table 2 and Table 3 will show some atomic descriptors that will 

help in expounding Vickers hardness in more details. Table 2 shows carbon allotropes and B-C-N 

structures with high Vickers hardness and their respective material properties, while Table 3 shows 

carbon allotropes and B-C-N structures with low Vickers hardness and their material properties. The two 

tables are presented to differentiate the materials with high Vickers hardness from the materials with low 

Vickers hardness in terms of their material properties. Six materials will be shown in each table: the first 

three are ternary B-C-N structures, and the second three materials are carbon allotropes. 

 

Table 2: Selected superhard B-C-N structures and carbon allotropes with corresponding material 

properties.  

Materials ID Composition 

Vickers 

Hardness, 

(GPa) 

Universal 

Anisotropy 

Elastic 

Modulus, 

(GPa) 

Density, 

(𝑘𝑔/𝑚3) 

Volume per 

atom, (𝑚3/
𝑎𝑡𝑜𝑚) 

Average 

local 

potential 

Average 

ELF 

165-4-24-BC4N-r46x-np-

id0-20210507-094212 
B4C16N4 84.589 0.0393 983.533 3.4271 5.8839 −12.9668 0.42604 

160-4-24-BC6N-r6-p-

id0-20210506-082421 
B3C18N3 83.800 0.0448 990.202 3.4414 5.8433 −13.0187 0.42762 

164-4-16-BC6N-r46-np-

id0-20210507-093548 
B2C12N2 83.359 0.0804 982.632 3.4208 5.8787 −12.9803 0.42629 

166-8-48-C-r6-np-id0-

20210426-180510 
C48 92.816 0.0216 1098.295 3.4904 5.7141 −13.1787 0.43122 

194-8-100-C-r567-np-

id0-20210426-180626 
C100 92.329 0.0932 1039.989 3.4153 5.8396 −13.0537 0.42916 

194-6-64-C-r567-np-id0-

20210426-180618 
C64 89.191 0.0953 1001.570 3.3795 5.9015 −12.9823 0.42762 

         

Page 15 of 28 Journal of Materials Chemistry A



Page 16 of 28 

 

Table 3: Selected non-superhard B-C-N ternaries and carbon allotropes with corresponding material 

properties.    

Materials ID Composition 

Vickers 

Hardness, 

(GPa) 

Universal 

Anisotropy 

Elastic 

Modulus, 

(GPa) 

Density, 

(𝑘𝑔/𝑚3) 

Volume per 

atom, (𝑚3/
𝑎𝑡𝑜𝑚) 

Average 

local 

potential 

Average 

ELF 

103-4-32-B2CN-r468-p-

id0-20210506-085316 
B16C8N8 5.584 2.3552 221.851 2.7062 7.3079 −11.3952 0.41134 

230-3-96-B2CN-r46-np-

id0-20210506-084739 
B48C24N24 8.403 2.9596 260.923 2.5922 7.6294 −11.0451 0.38016 

169-4-24-BCN2-r46-p-

id1-20210507-093500 
B6C6N12 8.902 1.7577 197.058 2.3904 8.8285 −10.0149 0.32822 

14-5-20-C-r3489x-np-

id0-20210426-175559 
C20 17.008 2.6245 366.645 2.7341 7.2947 −11.6681 0.39784 

166-3-108-C-r456x-np-

id0-20210426-180505 
C108 22.759 1.0010 444.769 2.6250 7.5977 −11.1035 0.37629 

191-3-36-C-r4568-np-

id0-20210426-180605 
C36 32.523 1.5164 554.205 2.9314 6.8037 −11.8796 0.39783 

 

Table 2 shows some instances of superhard materials and their material properties, and Table 3 shows 

other instances in which the materials are not superhard. It can be noticed that universal anisotropy tends 

to be lower in superhard materials shown in Table 2, whereas anisotropy is higher in materials with low 

Vickers hardness shown in Table 3. Therefore, anisotropic materials tend to have lower Vickers hardness. 

The results shown in Table 2 and 3 confirm the inverse correlation between Vickers hardness and 

universal anisotropy shown in Figure 3 in Pearson correlation matrix which has a correlation coefficient 

of −0.586. Regarding density, superhard materials tend to be denser than non-superhard materials which 

conveys that superhard materials are more packed. The correlation coefficient between density and 

Vickers hardness is 0.782 as shown in Figure 3 in Pearson correlation matrix. Volume per atom is 

essentially the volume divided by the number of atoms. If the volume per atom is low, then the material 

has a higher density and vice versa. Therefore, volume per atom and Vickers hardness are inversely 

commensurate with each other having a correlation coefficient of −0.787 as shown in Pearson correlation 

matrix in Figure 3. Furthermore, B-C-N materials in Table 3 have less carbon fraction than those in Table 

2, which confirms the results in Figure 5 that the B-C-N structures with high Vickers hardness have 

higher carbon atomic fractions or concentrations compared to B-C-N structures with low Vickers 

hardness. 

 

At the electronic level, local potential reflects the type of interactions between the nucleus with positive 

charge and the electrons with the negative charge [86-87]. Negative local potential indicates attraction 

and positive local potential signifies repulsive interactions. Interesting enough, the average local potential 

for superhard materials is more negative which implies that more attractive interactions exist in superhard 

materials which might also explain why superhard materials are denser and more packed. Pearson’s 

correlation map (Figure 3) clearly shows that, the correlation coefficient between Vickers hardness and 

average local potential is -0.784, which essentially indicates that materials with higher Vickers hardness 

tend to have lower (more negative) local potentials, and vice versa. Moreover, average ELF indicates the 

probability of finding electrons at a certain point in the unit cell. Superhard material are more inclined to 

have higher average ELF which suggests that superhard materials have higher electron density and are 

more packed since the electrons are distributed throughout the unit cell whereas non-superhard materials 

have less average ELF which implies that some empty spaces exist in the unit cell of non-superhard 

materials which also explains why they have less density. It is also known from the literature that electron 

concentration is directly proportional to hardness [19]. The correlation coefficient between average ELF 

and Vickers hardness is 0.658, which indicates that Vickers hardness positively correlates with the 

Page 16 of 28Journal of Materials Chemistry A



Page 17 of 28 

 

average ELF distribution throughout the unit cell. It is also worth pointing out that, both average local 

potential and ELF are easy to access in first-principles calculations, e.g. they can be immediately 

outputted after structure optimization. Our first-principles calculations of several hundred carbon 

allotropes and B-C-N ternaries have shown that, the average CPU time for obtaining local potential and 

ELF takes only a few minutes, while traditional calculations of elastic constants by the Hessian matrix 

(matrix of the second derivatives of the energy with respect to the atomic positions, i.e. IBRION = 6 

DFPT calculations in VASP runs) take several hours for each structure. Then, obtaining local potential 

and ELF is at least two orders of magnitude faster than direct calculations of elastic constants. Therefore, 

local potential and ELF are tremendously promising and helpful for fast and accurate screening superhard 

materials once the structures are optimized. 

 

 

D) Machine learning insights from local potential and electron localization function 

 

From the previous results and discussion through Pearson correlation matrix, we know that the generated 

descriptors of local potential and ELF are (directly or inversely) proportional to Vickers hardness 

depending on the descriptor. A machine learning algorithm needs to be implemented to confirm that the 

generated descriptors from local potential and ELF affect the results of trained machine learning models 

for predicting Vickers hardness by reducing the error in the machine learning models, which will also 

verify the novelty of the generated descriptors to enhance the predictions performed by the machine 

learning models. Composition descriptors have been widely utilized in machine learning to predict 

mechanical properties with acceptable successful results [1, 14, 83]. Combining structural descriptors 

with composition descriptors has also proved to generally enhance the machine learning models to predict 

material properties, in particular for mechanical properties [84]. The composition descriptors that were 

used in Refs. [1, 14, 83] utilized the atomic and chemical properties of constituent elements as follows: 

(1) atomic number, (2) atomic weight, (3) period, (4) group, (5) families, (6) Mendeleev number, (7) 

atomic radius, (8) covalent radius, (9) Zunger radii sum, (10) ionic radius, (11) crystal radius, (12) 

Pauling electronegativity, (13) Martynov and Batsanov (MB) electronegativity, (14) Gordy 

electronegativity, (15) Mullinke electronegativity, (16) Allred and Rockow (AR) electronegativity, (17) 

metallic valence, (18) number of valence electrons, (19) Gilmor number of valence electron, (20) valence 

s, (21) valence p, (22) valence d, (23) outer shell electrons, (24) 1st ionization potential (kJ/mol), (25) 

polarizability (A2), (26) melting point (K), (27) boiling point (K), (28) density (g/mL), (29) specific heat 

(J/g K), (30) heat of fusion (kJ/mol), (31) heat of vaporization (kJ/mol), (32) thermal conductivity 

(W/(mK)), (33) heat atomization (kJ/mol), (34) cohesive energy, and (35) electron affinity (kJ/mol). The 

composition descriptors that are produced based on the atomic features from the elements are the 

maximum, minimum, difference (range) between maximum and minimum, and average of the elemental 

properties of the constituent elements in a composition, which in total produces 35 × 4 = 140 descriptors 

for each material from the composition. The descriptors from the structures are density, packing fraction, 

volume per atom, and space group (total of 4 descriptors for each material). The new descriptors from 

local potential and ELF that will be added to the machine learning model are the maximum, average, and 

minimum values of local potential (total of 3 descriptors for each material) and ELF (total of 3 descriptors 

for each material). 

 

The machine learning models were trained based on three levels of descriptors. The first machine learning 

model is trained with composition descriptors only as in Refs. [1, 14, 83]. The second machine learning 

model is trained with both composition and structural descriptors, while the third machine learning model 

is trained with the combination of composition, structural, local potential, and ELF descriptors. To gauge 

the novelty of the new local potential and ELF descriptors, the results from the machine learning model 

that uses local potential and ELF descriptors must be compared to the machine learning model that uses 

previously existing descriptors namely composition descriptors used in previous work [14, 83] and see 

whether the new descriptors enhance the new machine learning model. Carbon allotropes have the same 
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composition descriptors which makes it impossible to train a machine learning model based on carbon 

allotropes using composition descriptors solely. Machine learning models learn from the variance that 

exists in the features, and carbon allotropes have no variance due to having the same values (zero 

variance) in the features generated from composition. For that reason, B-C-N materials are selected for 

training the machine learning model since B-C-N structures can be distinguished from composition 

descriptors due to the various B-C-N elemental fractions from one B-C-N material to another. The 

machine learning algorithm used in the training process is the ensemble learning algorithm named 

Extreme Gradient Boosting [15] implemented in the open-source software, Python. Some 

hyperparameters in the machine learning algorithm, Extreme Gradient Boosting, is 0.03 for the learning 

rate and 600 for the number of trees in the forest. The data was split into 80% for training and 20% for 

testing. The quality of the machine learning models is judged based on two parameters: (1) Mean 

Absolute Error (MAE), and (2) R2 score between the predictions and test data. MAE represents the 

average error quantity between the “true” values and predicted values. In this work, MAE measures the 

error between test DFT data for Vickers hardness and the predicted Vickers hardness from machine 

learning. R2 score is a statistical measure which measures the variance proportion between an independent 

variable with a dependent variable. In this work, R2 is a manifestation of how consistent the predicted 

results are with the test data. Comparing the testing data, which is usually 20% of the total data, with the 

machine learning model predicted results is a standard procedure in machine learning, which can confirm 

that the machine learning model was able to capture the trends in the training dataset and can predict the 

test data whether with/without underfitting or overfitting. Underfitting occurs when the machine learning 

model cannot accurately predict the testing data due to the lack of descriptors that can capture the trends 

which can be shown by large MAE and low R2 score while comparing the predicted results with the test 

data. Overfitting occurs when the machine learning model learns from the noise in the training set which 

will show low MAE for the training set. However, when the machine learning model has the issue of 

overfitting, the machine learning model will have high MAE and low R2 score in the testing dataset. The 

goal from this scheme is to confirm that the generated descriptors from local potential and ELF affect the 

results of machine learning models trained on Vickers hardness by reducing MAE and increasing R2 score 

in the testing dataset to verify the novelty of the generated descriptors to enhance Vickers hardness 

predictions. In Figure 6, the results of MAE and R2 score are compared among the three machine learning 

models between the test data and the machine learning model predicted results. 

 

As seen in Figure 6 (a), MAE decreases as the number of descriptors increases from 1- composition 

descriptors only with MAE = 11.7, then 2- composition and structure descriptors with an MAE score of 

5.7 to 3- combined composition, structure, local potential, and ELF descriptors with an MAE of 4.3. This 

proves that adding local potential and ELF descriptors improves the performance of machine learning 

models trained on Vickers hardness. With combined descriptors, the model predicts Vickers hardness 

closer to the “true” value calculated from DFT with much lower error (i.e., MAE in this work). R2 scores 

show the consistency levels of the machine learning predicted Vickers hardness to the calculated values 

by DFT. The machine learning model trained on solely composition descriptors have the worst 

consistency levels between the test data and the predicted results with R2 score of only 27.8%, but R2 

score has significantly improved to 72.8% by adding structural descriptors to the original composition 

descriptors. The novelty of our work manifests itself by improving R2 score further to 88.9% through 

adding new descriptors of local potential and electron localization function. The results prove that adding 

local potential and ELF descriptors improved MAE score from 11.7 using composition descriptors only 

used in previous work [14, 83] to an MAE score of 4.3 combining descriptors from previous work to the 

novel local potential and ELF descriptors which is an impactful novelty in this work for future studies on 

superhard materials. 
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Figure 6. Comparison of the prediction results with the test data using the two gauging machine learning 

parameters: (a) MAE and (b) R2 score among three machine learning models with the three different types 

of descriptors. 

 

 

 
Figure 7. Predicted Vickers hardness vs. tested Vickers hardness data from three machine learning 

models trained on Vickers hardness using the following descriptors in each model: (a) composition 

descriptors only, (b) composition and structure descriptors, (c) combined composition, structural, local 

potential (LOCPOT), and electron localization function (ELF) descriptors. The dashed lines define the 

perfect prediction slope to be the consistency indicator between the predicted results and test data. 
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Figure 7 shows the predicted Vickers hardness results against the test data calculated by DFT for all three 

machine learning models which should give more insights into the results of MAE and R2 score. It shows 

how the predicted results of Vickers hardness from the three machine learning models vary with the test 

data of Vickers hardness calculated by DFT. In the first machine learning model shown in Figure 7 (a) 

that only used composition descriptors, R2 score was substantially low which shows enormous 

inconsistency of the predicted Vickers hardness from machine learning with the calculated test results 

from DFT, and MAE was substantially high consequently. The reason for the colossal inconsistency in 

the predicted Vickers hardness is that the machine learning model predicted that many materials have the 

same Vickers hardness close to 50 GPa which can be shown as a straight horizontal-like line of points 

when in fact those materials have different values of Vickers hardness as shown by their respective 

Vickers hardness values from the test results in the x-axis. Those materials located on the horizontal-like 

line might have the same composition, and that is why the machine learning model predicted their 

Vickers hardness to be equal. What caused the machine learning model to have the same prediction of 

Vickers hardness for the materials in the horizontal-like line is the weights from training the machine 

learning model in which the machine learning model was not able to identify the difference in all those 

materials based on composition only which begs the necessity for another descriptor or descriptors to be 

used by the machine learning model as an input to distinguish those materials from each other. The 

phenomenon that happened in Figure 7 (a) shows what is known in data science as underfitting which 

occurs when a machine learning model is unable to capture the relationship between the features and the 

predicted output. In Figure 7 (b), the machine learning model was trained using the same composition 

descriptors plus structure descriptors, and the model shows better consistency between the predicted 

results with the tested Vickers hardness data compared to the first one which used composition 

descriptors only. The second machine learning model has noticeably lower MAE and higher R2 score 

compared to the first one which in consequence yielded more consistency between the predicted results 

and test data. Adding the structure descriptors solved the underfitting issue in the results from the 

machine learning model that used the composition descriptors shown Figure 7 (a). The results shown in 

Figure 7 (c) were from the third machine learning model that used the same composition and structure 

descriptors from the machine learning model shown in Figure 7 (b) along with a total of six other 

descriptors from ELF and local potential. In the third machine learning model, the predicted and test data 

look even less dispersed and more consistent than the second machine learning model in Figure 7 (b) 

which explains why the machine learning model has lower MAE and higher R2 score. The results from 

the machine learning model show that the issue of underfitting shown in Figure 7 (a) was enhanced. 

Moreover, overfitting does not occur since the machine learning model was able to accurately predict the 

results in the test data which proves that the machine learning model did not learn from the noise data 

during the training process. The results shown in Figure 7 (c) validate the novelty of the descriptors from 

local potential and ELF as was already shown in Figure 6 (c) as well. It is also worth noting that, we have 

run the machine learning code multiple times in which the machine learning code gave different results in 

each run. However, the R2 score and MAE did not change much in all of the runs. For example, when all 

the composition, structural, ELF and local potential descriptors were combined, we had R2=90% as the 

highest percentage and R2=87.8% as the lowest percentage. This is normal since the shuffle function is 

activated in the train and test split part of the code. However, the results were always similar and 

consistent in each run among all the three machine learning models. The train and test data might differ 

between different runs, which is why the R2 score and MAE results differ in each run. However, the 

testing and training sets have a wide range of Vickers hardness values, which was ensured in each run. 

The tested Vickers hardness in Figure 7 shows that the testing data in all the models have a wide range of 

data points from low Vickers hardness to high Vickers hardness. 

 

Before closing, we would like to explain Vickers hardness from more fundamental electronic level. In 

Figure 8 we compare the spatial distribution of local potentials between two representative B-C-N 

ternaries, i.e. a non-superhard material (B6C6N12) and superhard material (B3C18N3). The plots were 

produced through VESTA code [78]. Both plots were produced from the same plane which was [001]. 
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The plots were made at different distances from the origin to find the image in which the comparison 

between the local potential in both materials can be explained more clearly. The blue color in the VESTA 

code [78] represents extremely low values of local potentials which signifies attractive interactions [86-

88]. The opposite is implemented to the red color which represents positive values of local potentials 

(repulsive interactions) [86-88]. 

 

 
Figure 8. Spatial distribution of local potentials in (a) 169-4-24-BCN2-r46-p-id1-20210507-093500 

(B6C6N12, a non-superhard material) with distance of 0.3 Å from origin and (b) 160-4-24-BC6N-r6-p-id0-

20210506-082421 (B3C18N3, a superhard material) with distance of 1.8 Å from origin. The plots were 

created by VESTA code [78] and viewed along [001] plane. 

 

For B6C6N12 shown in Figure 8 (a) the Vickers hardness is 8.9 GPa, which belongs to non-superhard 

material, while for B3C18N3 shown in Figure 8 (b) its Vickers hardness is 83.8 GPa and the material is 

superhard. The blue color in Figure 8 denotes attractive interactions between positive and negative 

charges (i.e., nucleus and surrounding electrons). That is why the blue color in both plots in Figure 8 is 

almost perfectly circular. As the distance increases from the nucleus, the color changes from blue, to light 

blue, to green, to yellow, and finally red, which is where the electrons have increasingly more repulsive 

interaction between each other. Figure 8 (a) was taken at a distance where the blue color was more 

common and red color was less dominant compared to the other distances from the origin. Figure 8 (b) 

was produced where the blue color could be viewed, and the red color could also be viewed clearly 

compared to the other distances. It is shown that in Figure 8 (a) the red color is more dominant even 

though at that distance red color is less prevalent compared to the other distances from the origin, which 

means the red color is even more pervasive in other distances compared to the selected distance. 

Therefore, the interactions are extremely repulsive at the selected distance and more repulsive at other 

distances. In Figure 8 (b) the local potential was less red in other distances, but that distance was selected 

for comparison purposes to show that even when red is more common in B3C18N3 at some distance, the 

red color in B3C18N3 is still less prevalent than B6C6N12. The fact, that the local potential in B6C6N12 

shown in Figure 8 (a) has a higher red color concentration than B3C18N3 shown in Figure 8 (b), essentially 

demonstrates that more repulsive interactions prevail in B6C6N12 as compared to B3C18N3. The higher 

concentration of negative and attractive local potential also explains why superhard materials have higher 
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density and are generally more packed compared to the low dense and less packed non-superhard 

materials which have higher repulsive, positive local potentials as was seen in B3C18N3 and B6C6N12. This 

observation made from Figure 8 confirms the difference of local potentials between superhard materials 

and non-superhard materials, which was initiated by the correlation coefficient in Pearson correlation 

matrix in Figure 3, and then was perceived by the machine learning model through reducing MAE as 

presented in Figure 7.  

 

 

IV. Conclusions 

 

Materials discovery has been a crucial topic in the recent years with the goal to generate and discover 

materials with specific demands and desirable properties. In this work, we report hundreds of new ternary 

B-C-N compounds and carbon allotropes structures with super high hardness generated by the state-of-

the-art RG2 package. The atomic configuration of each material was optimized using high precision first-

principles calculations. Vickers hardness was calculated using Tian’s model. Several descriptors (atomic 

and mechanical descriptors) were used to explain Vickers hardness from Pearson correlation in this work. 

To the best of our knowledge, we introduce, for the first time, new descriptors namely local potential and 

electron localization function to further explain and enhance machine learning based models to boost the 

accuracy for Vickers hardness predictions with lower mean absolute error and higher 𝑅2 score. The 

spatial distribution of local potentials has successfully, for the first time, provided deep insights into 

interpreting Vickers hardness at the atomic level, and the average local potentials can be used as a 

measure to give some initial idea on the magnitude of Vickers hardness of the material. The machine 

learning model was utilized in deducing physical insights from atomic level features, i.e., local potential 

and electron localization function on Vickers hardness. We believe this work pushes our knowledge and 

understanding of superhard materials into a promising direction through introducing new but easily 

accessible electronic level descriptors (at least two orders of magnitude faster than traditional direct 

calculation of elastic constants from first-principles), which will help in accelerating the materials 

discovery procedure that uses machine learning algorithms to discover advanced materials with 

fascinating and captivating properties. 
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