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Orbital Chemistry of High Valence Band Convergence and
Low-Dimensional Topology in PbTe

Madison K. Brod! and G. Jeffery Snyder*!

! Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208,
USA. E-mail: jeff.snyder@northwestern.edu

Abstract

The exceptional thermoelectric performance of PbTe is partially due to the high valley
degeneracy, Ny, of the band edges. In this paper, we specifically look at the valence band (VB)
structure of PbTe, which has been described using a 2-band model consisting of a light valence
band with a maximum at the L-point in the first Brillouin zone and a heavy band with its
maximum along the ¥-line. The light and heavy band extrema are located at low symmetry
points, resulting in valley degeneracies of Ny = 4 and Ny = 12, respectively. The relative
energy positions of the light and heavy valence bands can be tuned with temperature and defect
concentration to make them effectively converged. In this study, analytical solutions from the
tight-binding method are employed to understand the possible orbital interactions that that
lead to this VB convergence. Both temperature and alloying based methods are explained as
means to tailor the VB structure to achieve high valley degeneracy through band convergence.
We predict five strategies for tuning valence band convergence: () alloying to introduce unfilled
cation-s (s) defect states above valence band edge, (i) increasing the lattice parameter through
alloying or temperature, (¢i¢) alloying to decrease the energy difference between anion-p and
anion-s states, (iv) alloying to replace filled Pb-s (s2) states with filled cation-s states that are
lower in energy, and (v) decreasing the strength of anion spin-orbit interactions. Furthermore,
we find that when the VBs are in a highly converged state, there is a topological transition in
the electronic band structure to two-dimensional (2D) and potentially to one-dimensional (1D)
character. Assuming acoustic-phonon scattering, we use the Boltzmann transport equation
(BTE) to predict a significant enhancement in thermoelectric performance for the 2D and 1D
band model, with a theoretical 27" > 10 predicted for the 1D topology, ~20 times greater
than that predicted for the 3D topology. Although we specifically discuss PbTe, the qualitative
results of this work can be applied to all the IV-VI, (IV = Ge, Sn, Pb; VI = S, Se, Te) rock salt

compounds.
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1 Introduction

1.1 Enhanced Thermoelectric Performance upon Band Convergence

Thermoelectric materials convert heat into electricity and vice-versa, making them candidates for
waste-heat recovery and solid-state refrigeration, which could help in the development of clean and
sustainable sources of energy and refrigeration.™ For decades, thermoelectric materials such as
PbTe” have been used by NASA in space-based applications. However, in order to achieve the
widespread application of these materials for renewable energy generation and refrigeration, it is
necessary to further optimize the thermoelectric figure of merit, given by 2T = S?0T/(kg + k1),
where T is the temperature, S is the Seebeck coefficient, o is the electrical conductivity, and xg
and k1, are the electronic and lattice contributions to the thermal conductivity, respectively.2 As

2T approaches infinity, the efficiency of a thermometric devices approaches the Carnot efficiency. 1V

The maximum achievable zT of a thermoelectric material increases as its thermoelectric quality
factor, B, increases (see Eqs. |B27 in Appendix B). The quality factor is proportional to
the weighted mobility, ., (see Egs. and in Appendix B) which can be expressed as
Hw = po(Mpog /me)?’/ 2 where fi9 is the mobility parameter of the carriers, mpog is the density
of states (DOS) effective mass, and m, is the free electron mass. The DOS effective mass can be
expressed as mpng = N‘2/ 3mz, for a multi-valley electronic structure where Ny is the band or valley
degeneracy, and m; is the DOS effective mass for each valley. ®IHLS Therefore the quality factor,
B, is proportional to the valley degeneracy, so increasing Ny (without substantially increasing inter-
valley scattering) enhances the performance of a thermoelectric material. In this work, we focus on
two primary methods to achieving high valley degeneracy. The first method is having band extrema
at low symmetry points in the Brillouin zone (BZ) of high symmetry crystal structures when
there is no (or limited) inter-valley scattering. 1919 [ ower-symmetry points map onto multiple
symmetrically equivalent points, providing more pathways for carrier transport. For instance, an
extrema at a point with 6 symmetrically equivalent points in the BZ would have a degeneracy of
Ny = 6.2Y The second method involves converging multiple band extrema within a few kg7 in

energy at different (or the same) points in the BZ. #1021

Additionally, it has been predicted that reducing the dimensionality of thermoelectric mate-
rials significantly improves thermoelectric performance.?42% Traditionally, low-dimensional behav-
ior is achieved by designing nano-scale materials that confine electronic transport in at least one
direction.*>“” That being said, when multiple bands contribute to transport, this type of low-
dimensionality that leads to quantum confinement can actually reduce thermoelectric performance
by breaking degeneracy.?®2? However, low-dimensional transport has been observed in bulk three-
dimensional (3D) materials that have 2D Fermi surfaces.?#243) Gains in thermoelectric performance
are observed in these bulk materials with low-dimensional electron bands, providing novel pathways
to achieve the efficiency gains associated with low-dimensionality without the challenges and costs

associated with synthesizing nano-scale or nano-structured material or the loss in thermoelectric
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power from degeneracy-breaking quantum confinement effects.*224

1.2 Convergence Behavior in PbTe Valence Bands

For several decades, PbTe has been one of the highest performing thermoelectric materials, reaching
2T > 1 for certain alloys.#231%34 PhTe and the similar SnTe and GeTe based alloys have been
employed as a power source for NASA space missions since the 1960’s%32. PbTe has a direct

bandgap at the L-point in the BZ, which has a degeneracy of Ny = 4,#16:2133156:37

and inter-valley
scattering is symmetry-forbidden at the L-point*819  Another crucial feature of the PbTe VBs
is that there is a secondary valence band along the ¥ symmetry line, which is found experimentally

to be ~0.1-0.2 eV below the L band maximum (at low temperature). 45

The maximum along ¥ is at an even lower symmetry point and has a valley degeneracy of Ny =
12 #534730839742 A g temperature increases, the energy of the L VBM decreases relative to that of the
¥ VBM, causing the bands extrema to approach each other in energy.#10:38404L The two bands
converge at T ~700 K, resulting in an exceptionally high valley degeneracy#10:10:21:32N38384 145716
with an effective Ny > 12(X) + 4(L) = 16, likely in the range of Ny ~ 30 to Ny ~ 70.49 DFT
calculations suggest that there is a topology change when the two VBs are converged and the X
pockets merge into the L pockets forming threads or tubes, leading to 2D electron bands in 3D

PbTe (and the other lead chalcogenides). 24400

The convergence of the valence band (VB) carrier pockets in PbTe can also be tuned by alloying
with various substitutions, #8R21E2858647T50 For instance, alloying PbTe with PbSe, decreases the
energy of the secondary VBM along X relative to the primary VBM along L.# By contrast, cation-
site alloying with impurities, such as Cd, Mg, Mn, Na, Sr, and Hg—all of which introduce s states

above VB edge—increases the energy of the ¥-band relative to the L band.8H0521i52:305 7750

Here, we develop analytical tight-binding (TB) solutions that describe the relative positions of
the L and ¥ VB extrema in rock salt PbTe. We find that the ¥ VB forms because of nearly the same
but weaker interactions as the L band. We extend this TB analysis discuss the relative positions
and convergence of two additional VBs, one with a maximum along the A symmetry line and one
with a maximum at W. Using these solutions, we predict trends in the VB convergence behavior
with respect to various orbital interactions and use them to understand the role of temperature
and alloying in achieving high convergence. We find a topological transition in the TB electronic
structure, regardless of which TB parameters were tuned to achieve convergence, of PbTe from a

3D topology to 2D and even 1D topologies when the VBs are in a highly converged state.

The evolution of the Fermi surface topology of lead chalcogenides and the corresponding trends
in thermoelectric performance are summarized in Fig. [Il We show idealized sketches of the valence
band Fermi surfaces corresponding to various topologies. The 3D topology is characterized by
ellipsoidal pockets (Fig. ) at L. As the bands become more converged, heavier pockets form at
the ¥ band maximum (Fig. [Ip). Eventually, the L and ¥ pockets converge completely to to form
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Figure 1: Evolution of the PbX (X = S, Se, Te) valence band Fermi surface topology and enhancement in the
thermoelectric performance upon increased band convergence.(a) The least-converged 3D Fermi surface is
characterized by four ellipsoidal pockets centered at the L-points. (b) As the bands become more converged,
elongated heavy ellipsoidal pockets form at the ¥ maximum. (c) The 2D topology resembles 12 tubes,
simplified as cylinders. (d) The 1D Fermi surface resembles 6 sheets with a finite thickness. As the Fermi
surface evolves from (a)-(d), the valley degeneracy (Ny ), density of states mass (m},g), weighted mobility
(tw), thermoelectric quality factor (B), and thermoelectric figure of merit (27°) all increase.

tubes (or threads) corresponding to a 2D topology (idealized as cylinders forming the edges of a
cube with side length 27 /a in Fig. ) As discussed later, these tubes are actually bent towards
the center of the cubic face. Finally, as additional VB pockets at W and along A converge with the
L and ¥ pockets, with the tuning of spin-orbit interactions, the Fermi surface evolves into sheets
(Fig. ), which are indicative of 1D-type transport.

Furthermore, we use the effective mass model to compare the topological electronic states
of PbTe and predict substantial thermoelectric performance gains in lower-dimensional topolo-
gies, with a predicted theoretical maximum ~ 20 times greater for the 1D topology of the highly
converged VBs without SOC than for the 3D ellipsoidal topology. This enhancement can be at-
tributed to large increases in the effective valley degeneracy to Ny ~ 180 for the 2D topology and
to Ny ~ 2600 for the 1D case. Finally, we propose alloying-based design strategies to achieve
these highly converged, low-dimensional topologies. The qualitative results of this analysis are also
applicable to the other Group IV chalcogenides (GeTe, SnTe, PbSe and PbS).

2 Background — Tight-Binding Model for PbTe

The tight-binding (TB) method, also described as the linear combination of atomic orbitals (LCAO),

is a chemically intuitive method for approximating the electronic structure of materials, with the

Page 4 of 43



significant advantage of extremely short computational times. The TB method employs an or-
thonormal basis of atomic orbitals (s, p, d, etc.) and can be described by a set of overlap pa-
rameters, which are related to the hopping integrals that comprise the TB Hamiltonian.?%! They
describe the strength of interactions between pairs of atomic orbitals and whether they are bonding
or antibonding in nature. These parameters are approximately related to the interatomic spacing
through the relationship ~ 1/d?, where d is the interatomic spacing between neighboring orbitals.
In general, these overlap parameters are expressed in the form V,g,,, where oo and 8 denote the
orbitals interacting and m denotes the type of bonding (o, 7, etc).”?%°%0l Here, we use four types
of these overlap parameters to describe the nature and strength of the orbital interactions in PbTe,
Vissos Vspos Vppo, and Vppr. These describe the of s—s o-bonding, s—p o-bonding, p—p o-bonding,
and p—p m-bonding, respectively. We consider all of these interaction types for both nearest neigh-
bor (anion-cation) and next-nearest neighbor (anion-anion or cation-cation) interactions, giving a
total of 13 overlap parameters.%? The sign of the parameter determines whether the interaction is

bonding (negative) or anti-bonding (positive) in nature at I".6}

In this work, the TB analytical solutions describing the VB edge in PbTe are reminiscent of
the simple quantum mechanical solution for the bonding and anti-bonding in a diatomic molecule.
Consider a diatomic molecule, MX with an energy level diagram depicted in Fig [2h. The on-site
energy for a M-atom cation orbital, Ejs, is the energy of the atomic orbital. Similarly the on-site
energy for the anion X orbital is Ex. The overlap parameter describing the interaction of these
two orbitals is Vasx. Note that this simple diatomic molecule model is generalized to account for
the bonding between any types of orbitals. When M and X bond, they form a bonding (Ep;x_)
state (having stronger X than M character) and an antibonding (Easx4+) state (having stronger
M character) with energies approximately described by Eq. 61=63 The energy Epx— or Epyxy
relative to the average of the two on-site energies (|Eyxs — 3 (Exm + Ex)|) can be described by
the hypotenuse of a right triangle with legs A and V as seen in Fig. [Ipb.

(@) (b)

MX*
TN Enix-
EM _M .'/’ - \\ 1
\ AN EMXi — E (EM + EX)
2A \ AN Vmx
\\&\---7/:)L EX
\MX L2 1
EMX+ A= — (EM — EX)

2

Figure 2: (a) Simple energy level diagram for a heteropolar diatomic molecule MX. The energy difference
between the cation state M and the anion state X is given by 2A. (b) The energy difference for the bonding
and antibonding states relative to the average value of the onsite energy in a diatomic molecule can be
described by a right triangle.
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1 1
Bapxs = 5 (Ba+ Bx) + 5/ (Bar - Bx)? + 4V (1)

The plus (+) solution describes the anti-bonding state, and the minus (-) solution describes
the bonding state. If Vi;x = 0, then the solutions are simply the on-site (unchanged atomic)

energies. If Ejy = Ex (homopolar covalent bond) the change in energy is simply Vasx.

A TB model developed by fitting the TB parameters to Density Functional Theory (DFT)
calculations of the PbTe electronic band structure using the Perdew-Burke-Ernzerhof (PBE)%4
functional has been used to understand the orbital interactions that explain the location of the
VBM and the shape of the VB edge in PbTe. The results along with the methods used to develop
the TB model in this paper are described elsewhere.%? In PbTe, the upper three VB states consist
primarily of Te-p character. Below the Te-p valence bands is a distinct Pb-s band, and below this
is a Te-s band. At the L-point, there is a repulsive, or antibonding, interaction between the Te-p
states and the Pb-s states below them, pushing the Te-p states at the VB edge higher in energy

and resulting in a energy maximum there, 82402065707

3 Results and Discussion

3.1 Analytical Tight-Binding Solutions

Using an 8-dimensional TB basis consisting of the Pb-6s, Pb-6p.,p,,p., Te-5s, and Te-5p.,py,p-,
analytical expressions for the eigenvalues of the TB Hamiltonian are determined and are used to
derive an analytical approximation describing the VB convergence. The analytical form of the TB
Hamiltonian used to determine these solutions is described in Appendix A. Spin-orbit coupling
(SOCQ) effects are not considered when deriving the analytical expressions but are discussed later,

numerically. The size of the basis would be doubled (16-dimensional) to account for SOC effects.

In order to determine an analytical expression that describes the convergence, we define a
point ¥ in the BZ that is located exactly 2/3 along the I' — K symmetry line at ¥’ = (7/a, 7/a,0),
where a is the lattice constant. This point represents the approximate location of the ¥ VBM and
has many of the same interactions as found at L = (7w /a, 7/a, 7 /a). The true, numerical value of the
Y maximum is denoted as ¥* in this paper, and its exact location varies based on the parameters
used in the calculation. There are 12 symmetrically equivalent ¥’ points in the first BZ for the rock
salt structure. Although the exact location of the secondary VBM along . varies with temperature
and composition, it is generally located at approximately this point in the TB model, so this point
is chosen to help evaluate approximate analytical solutions. There are also maxima located along
A symmetry line (Ny = 6) and at the W-point (Nyy = 6). The maxima along the A is found
at a point ~ 4/9 along the A-line (I' — X) and is denoted by A* throughout this paper. Like
>*, its location is not constant. However, for the sake of analytically describing the A band and

the interactions responsible for its maximum, we define a point, denoted A’, halfway along A at
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Figure 3: Labeled PbTe electron bands calculated using the TB model without SOC. The local valence band
maxima (VBMs), valence bands (VBs) along A and X, conduction bands (CBs) at L and along ¥, and valley
degeneracies (Ny ) are labeled. The energy of the VBM at L is labeled with a blue circle, the energy of the
VBM at W is labeled with a green square, and the two degenerate VBs below the VBM at L is labeled with
a magenta star. J is shown as the energy difference between the VBM at L and the VBM along X.

A" = (7/a,0,0). There are 6 symmetrically equivalent A*~ and A’-points in the first BZ. The
maxima are labeled in Fig. |3 along with their valley degeneracies and additional values of interest
for analyzing the band structure. A labeled diagram of the first BZ that shows the location ¥’ and
A’ can be seen in Fig. in Appendix D.®® The DFT-PBE (no SOC) band structure for this same

path and energy window can be seen in Fig. S5 of the Supporting Information.

The parameter, d, is defined as the difference in energy between the primary and secondary
VBMs located at L and along ¥ (at X*), respectively, where Eypy(L) (shown with a blue circle
in Fig. is the energy of the L. VBM, and Eypp(X*) is the energy of the (true) ¥ VBM,
the exact location of which varies. It can be expressed through the equation, 6 = Eypy (L)
—FEypym(X*), and is shown in Fig. We use § as a proxy for the VB convergence. Therefore,
if Bypy(L)> Evpum(E*), a decrease in § corresponds to greater VB convergence. In order to
determine an analytical approximation for §, analytical expressions for the valence band eigenvalues
(energies) of the TB Hamiltonian at both L and near the ¥ VBM are determined.

At the L-point, the eigenvalue representing the light band extrema are described by Egs.
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1 1 2
Eypu(L) = 5 (E,1e(L) + Eg pp) + 2\/(E;7T6(L) - Es,Pb> +48V2, (2)
[l),Te(L) = Ep,Te + 4Vppfr,T6 - 4VppU,Te (3)

E pp is the on-site energy of the Pb-s state, E, 7. is the Te-p onsite energy term, and Vip,
here denotes the o-bonding TB parameter that describes the interaction between the Pb-s and Te-p
orbitals. Vppr 1e and Vpps1e describe the Te-p-Te-p 7- and o-bonding interactions, respectively.
Note that Eq. has a form similar to that given in Eq. describing a heteropolar diatomic
molecule. From these equations, we can see that the VBM at L is primarily from Te-p orbitals
(aligned along [111]), which are increased in energy from repulsive antibonding interactions with
its 6 nearest-neighbor Pb-s states. There is also a slight reduction in energy due to next-nearest
neighbor o- and m-bonding interactions with the Te-p orbitals. We will see a similar correspondence
to the diatomic molecule model at the other VBM points, which will be discussed in more detail

later.

The other two degenerate valence band states at L (below the VBM state), denoted Ey pa(L)
and shown with a magenta star in Fig. [3| are described by the analytical solution expressed in Eq.

[ with no net Vj,, interaction.

Evpa(L) = Epre + 2Vppore — 2Vipm,Te (4)

The solution at L is an exact eigenvalue solution to the TB Hamiltonian without SOC. How-
ever, the solution at Y’ is not as simple and can only be approximated. If we ignore the relatively
weak Te-s/Te-p interactions, the analytical approximation for the ¥, or heavy-band, maximum
can be expressed in Egs.

1 2
EVBM(E/) = ( ;7T6(Z/) + Es7pb) + 2\/(E;),Te(2/) - Es,Pb) + 32‘/5%00 (5)

| =

;,Te(zl) = Epre — 2Vipo,re + 2Vppr,Te (6)

El

p7T6(Z’ ) like E;,Te(L) is essentially an adjusted on-site energies that results from anion—p

interactions. Here, we see that the character of the VBM at Y’ is very similar to that at L. Both
exhibit primarily Te-p character with antibonding interactions with Pb-s (slightly weaker at ¥ than

at L) and some Te-Te next-near neighbor p—p bonding interactions.

The TB interaction between the Te-s and Te-p states, described by the TB parameter, Vp, e,
is not entirely negligible when studying the VB structure. We do not go into details here, but it

can be shown that increasing Vi, 7. and decreasing the energy difference between the Te-p and
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Te-s states would increase Ey gy (X') relative to Eypy(L). This trend is related to the fact that
the Te-p orbital comprising the VBM along ¥ is antibonding with its next-nearest neighbor Te-s
orbitals, while the Te-p state at the L VBM is non-bonding with these Te-s orbitals.

Egs. 2] and [5| show that the L VBM has a greater dependence on Vj, than the ¥ VBM, so we
expect increasing the magnitude of Vyp, to increase the separation between the light and heavy VB
band extrema (when Eyv gy (L) > Eyvpap(X)). Additionally, the dependence of the ¥ band energy
on Vo e indicates that strengthening the anion s-p interactions would increase the ¥ VB relative
to the L band. With regards to the next-nearest neighbor anion-p interactions (o and =), The L
band has a stronger dependence on the Te p—p interactions, but at both the L and ¥ maxima, they

decrease the band edge energy as they increase in strength.

We introduce a new parameter, ¢’, which represents an approximation for § using the analytical
expressions or approximations for Eypp(L) and Ey gy (X'). To evaluate ¢, we ignore Vipo,Te for
simplicity, so &’ can be expressed through Eq. The parameter V), 7. represents the combined
strength of the m- and o-bonding between next-nearest neighbor anion-p interactions and can be
expressed as Vpp 17e = VppoTe — Vppr,Te- Vppr,Te is always less than zero, and V), 1e is greater than
zero, so Vp, e is strictly a positive value. The parameter, A, represents half of the energy difference

between the anion-p and cation-p states and can be expressed as A = %(Ep,Te — Es pp).

0 = ~Vpre + [/ QA = WVppre)? + 48V, — /(24 = 2Vpp1e)? + 32V, (7)

Finally, we solve for the value of V;,, at which &' = 0 in order to approximate the value at
which maximum convergence of the light and heavy VBs can theoretically be achieved, according
to the TB model. The value of Vj,, at which the L- and X-bands are exactly converged is denoted
as Vg, and expressed in Eq. The energy of the valence band extrema at this point, Ej 5,,, is

expressed in Eq. [9

Vao =\ AVipe + V2, 1. (8)

Ey gy = Epre +2Vip re 9)

We can rearrange Eq. [§ to find the critical convergence value of any of the three parameters.
For instance, A* = 3(E, 1. — Es pp) = Vi, — Vpr7Te)/Vpp7Te. The converged state is the same
regardless of which parameter is tuned to its critical value to achieve the convergence. One crucial
observation from this derivation is that the approximated maximum energy of both the converged
light and heavy VBs is equivalent to the energy of the doubly degenerate VB states below the
VBM at L when V), = Vg;m, or when A = A*. That is Ej,5,; = Evpa, so for cases where SOC

interactions are minimized, multiple bands would have the same energy, leading to higher effective

band degeneracy than can be obtained from only the convergence of the L and ¥ maxima alone.
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We also obtain an analytical approximations for the W= (7 /a, 27 /a,0) and A VBMs, as their
convergence behavior is critical for understanding topological transitions in the PbTe Fermi surface
discussed later. The eigenstate of the W VBM, Ey (W), (labeled with a green square in Fig.
without SOC is expressed in Eqs. where Vs, py is the overlap parameter describing the

o-bonding interactions between the next-nearest neighbor Pb-s orbitals.

1
Byt (W) = (Bl ro(W) + L py(W)) + 51 /(B) 1o (W) = B (W) 416V3,  (10)
E; Te(W) = Ep,Te - 4‘/;7p7r,Te (11)
o.po(W) = Es py — 4Viso, P (12)

Based on this solution, we expect the energy of the VB edge at W to increase with V,, and

to decrease with increasing A.

Finally, we can approximate a solution at A’ (1/2 along A), by ignoring the Te-p/Pb-p in-
teractions and simply studying the Te-p/Pb-s interactions along with the next-nearest neighbor
interactions. The approximation for the TB eigenvalue corresponding to the VB edge at A’ is
described through Eqgs. [I3]-

Bypu(A) = ;( " re(A) + ELp 2\/ Elpo(A) = B 5y (A))2 +16V2,  (13)
el = S (B (A) + B (N) + 5/ (By o (A) = Bore M) + 128V, (14)
pre(A") = Epre + 4Vppr e (15)

E¢ e (A") = Egre + 4Viso Te (16)

VispoTe is the overlap parameter between the next-nearest neighbor Te-p and Te-s orbitals.
We do not give the solution for Eg’ Py, in Eq. but it is a correction to the Pb-s on-site energy
at A’ that takes into consideration the Pb-s/Pb-p and Pb-s/Pb-s interactions at this point. The
dependence on Vip, at A’ is the same as it is at W. We also expect the repulsive Te-s/Te-p

interactions to further increase the energy of the A VBM.

10
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If only the interaction between the Te-s and Pb-p orbitals is taken into account (all overlap
parameters except for Vs, are set to zero), then the A VBM would be located at exactly A’, and
the ¥ maximum would be located at exactly X’. It is the second order interactions that cause the
location of the maximum in k-space to vary off these points, the A maximum slightly towards I'
and the ¥ maximum slightly closer to 1/2 instead of 2/3 along the I'-K path.

3.2 Comparison to Diatomic Molecules

Egs. and [13] all describe the relationship of the energy of the VB extrema with respect
to the interaction between the Pb-s and Te-p states, quantified by Vi,,. We observe that these
equations have a form analogous to that describing the anti-bonding state in a diatomic molecule
bond (described by the TB model) depicted in Fig. Comparing Eq. |1 to Eqgs. and
we can obtain an effective diatomic overlap parameter, Vp, for each VB extrema. At the L-,
¥'-, W-, and A’-points we obtain Vp(L) = 2v/3Vsps, VD(Y) = 2v2Vips, VD(W) = 2V4p,, and
Vp(A') = 2V, respectively. The pre-factor in front of V;,, in each of these expressions represents
the effective number of s-p o-bonds contributing to the energy of the VB extrema. In order to relate
this to an orbital bonding picture of the VB state, it is instructive to rewrite these expressions as

follows:

VD(W) =2x1x V:epo (19)

VD(A/) =2x1x %pa (20)

In general, we can write Egs. 20} in the following form.

Vp =N X1 x Vypo (21)

In Eq. N is the net number of anti-bonding interactions, and [ is the cosine projection
of the vector between the I'-point and the relevant k-point along the orientation of the p-orbital
o-bonding axis. The p-orbital referenced here is the one that contributes to the eigenstate of
the highest VB. The other two p-orbitals would correspond to the two lower VBs. The value of
N in Eqgs. can be visually determined (Fig. 4) as the number of bonding or antibonding
configurations between the Te-p orbital and the nearest neighbor Pb-s orbitals. Each Te-p orbital

11
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is surrounded by 6 nearest neighbor Pb-s orbitals. At the I'-point, the Pb-s and Te-p orbitals are
oriented such that half of the interactions are bonding, and half are antibonding, yielding zero
net-bonding between the Te-p and Pb-s orbitals,%? as seen in Fig. {h. Therefore, at I' we would
have Vp(I') = 0. The ps, py, and p, orbitals at the I'-point are degenerate, so an equivalent picture
can be drawn for all three of these p-orbital orientations, but for simplicity only the p, orbital is
shown. Applying phase changes to the orbitals for the other relevant k-points of interest, we can

count the number of bonding/anti-bonding interactions.

At A’) the k vector is along the [100] direction, so the p-orbital is aligned along the direction
toward the Pb-s orbital (z), giving a cosine projection of [ = 1. The phase of one of the neighboring
Pb-s states along this direction flips, so 2 of the neighboring Pb atoms have s-orbitals in an anti-
bonding configuration with the Te-p orbital (Fig. dp). A similar Pb-s orbital configuration relative
to the Te-p orbital can be drawn at W, but multiple repeat units would be required to show the full
symmetry of the orbital phases. At X', the phases of the Pb-s orbitals along 2 of the 3 Cartesian
directions alternate, resulting in 4 of the Pb-s orbitals being in an antibonding configuration with
the Te-p orbital (Fig. [dk). The VBM p-orbital at this point is aligned in the [110] direction, yielding
| = 1/4/2 and effectively weakening the interaction. Finally, at the L-point, the phases of the Pb-s
orbitals alternate in all three directions such that the Te-p orbital is anti-bonding with all 6 of the
nearest-neighbor Pb-s orbitals (Fig. ) The VBM p-orbital is aligned such that it is parallel to
the [111] direction, giving in [ = 1/+/3.
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Page 12 of 43



Page 13 of 43

Journal of Materials Chemistry A

(b)

Figure 4: Representation of the orbital configurations of the highest energy Te-p orbital (making up the
valence band maximum) surrounded by 6 nearest-neighbor Pb-s orbitals in an octahedral coordination at (a)
T, (b) A’ (¢) ¥’, and (d) L. Blue coloring is used for the Te-p orbitals and purple coloring is used to show the
Pb-s orbitals. The light and dark shading represents the + or - phase of the orbital. The cosine projection
between the p-orbital and the x-axis, [ is labeled for each case. The Pb-s orbitals that are separated from
the Te-p orbital by a vector that is entirely orthogonal to the Te-p orbital’s o-bonding axis are shaded with
a lower opacity to represent the fact that they are non-bonding with the Te-p orbital shown.

3.3 Trends in the Convergence Behavior of PbTe Valence Bands

Using Egs. [2| and [5| the analytical trends of ¢’ with respect to A, Vgpe, and Vpp 7, normalized to
their initial values (used to produce Fig. [3]), are plotted in Fig. . When all the parameters are at
their initial values, ¢’ is approximately 0.2 eV. The bands become more converged (6" — 0 ) as Vpp 7
and A increase and as Vyp, decreases. The decrease of ¢’ with Vj,, 7. indicates that strengthening
interactions between the next-nearest neighbor Te-p orbitals increases the convergence of the heavy
and light VB pockets. Furthermore, both the increase of ¢’ with Vs, and the decrease of ¢’ with A,
suggest that stronger cation-anion s—p interactions decrease convergence when the cation-s states

are lower than the anion-p states.

Next, we perform a series of virtual ”experiments” (or thought experiments) to better under-

stand qualitatively the evolution of the VB structure upon the variation of several TB parameters.
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Figure 5: Analytical trends in &' = Eypyn(L)—Evpnm(X'), a proxy for VB convergence, as a function of
Vispos A, and V,,, 7. (normalized to their initial values). The bands become more converged (4 decreases)
as the splitting between the Pb-s and Te-p on-site energies (2A4) and the interaction strength of the Te-p
orbitals (Vpp re) increase and as the interaction strength of the Pb-s and Te—p orbitals (Vsp,) decreases. The
VB convergence of PbTe can be tailored by engineering the orbital interactions towards ¢’ = 0.
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Figure 6: Evolution of TB bands for PbTe calculated (without SOC) as the overlap parameter describing
the interaction between the Pb-s and Te-p states, V;,,, and the energy splitting between these two states
varies. As Vo decreases from (a)-(c), the CBM at L increases in energy relative to the VBM at L, the X,
A, and W VBMs increases in energy relative to the L VBM. The three L VBs also converge. The same trend
is seen in (d)-(f) as the Pb-s state is decreases away from the Te-p on-site energy, increasing A. Note that
the 0 values are calculated based on the calculated maximum along ¥ and not the exact ¥'-point.
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In these thought experiments, we vary individual TB parameters at a time, while keeping the others
fixed. In reality, these parameters are coupled in such a way that one parameter would not change
in isolation. For instance, increasing the lattice parameter via strain or temperature would de-
crease all of the overlap parameters by a certain factor due to the increase in interatomic distance.
While it is not realistic to change the strength of only a single orbital interaction in a real material,
this novel approach allows us to gain a more direct understanding of the mechanism behind the
evolution of a band structure upon the modification of the material (via alloying, doping, strain,

temperature effects, etc) in terms of recognizable atomic orbitals.

The progression of the calculated E vs. k relationship for PbTe as the Vj,, parameter is varied
from its initial value to Vg, (moving down the red line in Fig. [5) can be seen in Fig. @a—c. In Fig.
|§|d—f, we see the evolution of the band structure as Pb-s decreases to increase A = %(Ep,Te —E; pp)
(green line in Fig. [5) to its critical value of A* = 4.7 eV, or E, e — Es pp = 9.4 V. We see virtually
identical trends in the VB behavior from a-c as from d-f, showing that the method of tailoring the
VBs does not affect the topology of the final state. Because the anion s—p interactions are not

considered in the evaluation of V*

wpo and A*, the convergence condition leads to a negative value

of the calculated § when the approximation, &' = 0. A negative value of ¢ simply means that the
VBM at ¥* is higher than the L. VBM. We see simultaneous convergence of the L and % band
extrema and of the three L valence bands. Additionally, the maxima of the A and W VBs increase
in energy relative to the L VBM, such that they also converge with the L and ¥ bands. This is
extremely promising behavior because it suggests the possibility of achieving even higher valley

degeneracy than expected from only the convergence of the L and ¥ VBMs.

Furthermore, the bandgap energy, E,, decreases as Vj,, increases, which is evident from the
fact that the CBM at L increases in energy relative to the position of the VBM at L as V),
decreases. As the strength of this interaction increases, the energy VBM at L increases, while the
CBM remains the same. More details on the TB analytical expression for E; can be found in
Appendix C. The increased convergence of the L, 3, A, and W bands with the reduction of V,,
can be attributed to the fact that the energy of the L. VBM (Eq. has a greater dependence
on Vi than the energy of the ¥, A, and W VBMs do (Egs. and . Therefore, as Vi,
decreases, the energies of the L, W, A, and ¥ VBMs all decrease, but the energy of the L. band

decreases the most rapidly.

The thought-experiment results from varying Vy,, and A with SOC interactions considered
and from changing the anion-site parameters (Vypo 7e, Ep1e — Es e, and Vpp 1) can be found in
the Supporting Information (Figs. S1-S4). The ¥ and A maxima increase in energy relative to
the L band as Vg, 1 increases (Fig. S2), the anion s—p splitting (E, 7. — Eg7¢) decreases (Fig.
S3), and Vpp, e increases (Fig. S4). As expected, the relative energy of the W band is unchanged
upon varying Vipe1e and E, 1. — E, 1, as it has no dependence on the anion s—p interactions.
In general, for interactions between an anion state and cation state, the effect of increasing the
interaction parameter is qualitatively analogous to decreasing the on-site energy difference between

the interacting orbitals. This yields two separate routes to tuning s-p coupling. Furthermore, a
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greater value of Vj,, 7. increases the energy of the W, ¥, and A bands relative to the L band, as

expected.

The trends in the TB description of the PbTe VBs, give us several potential routes for in-
creasing convergence: decrease the strength of (filled) cation-s/anion-p interactions, increase the
strength of the anion-p/anion-p interactions, alloy with a cation that has cation-s state lower than
Pb-s (increase A), increase the strength of the anion s—p interactions, and decrease the s—p split-
ting of the anion on-site energies. All of the strategies given here assume that we are starting with

Evpym(L) > Evpu(X*), but the opposite statements are true when Ey pas(L) < Eyvpar(X*) .

Decreasing the strength of the filled cation-s/anion-p interactions can be achieved by increas-
ing the lattice parameter because of the 1/d?-dependence of the TB overlap parameters. Although
lattice expansion would decrease Vips, Vpp 1e, and Vi, e, the effect on convergence is strongest
upon varying Vy,,. This is consistent the increase in the L band relative to X band as temper-
ature increases, found experimentally and from first-principles calculations.#*4' We can also tune
convergence by alloying with a defect that would increase the lattice parameter. SnTe and PbSe
both have a smaller lattice parameter and exhibit a greater separation of the ¥ and L bands at a
given temperature.*%3 However, it is worth noting that the trends in convergence with respect to
modifying the anion-p/anion-p and anion-s/anion-p interactions are not consistent with observed
experimental trends in convergence with respect to temperature. This contradiction tells us that
the increase in convergence of the L and > VB extrema upon an increase in temperature or in-
crease in lattice parameter is due to the cation-s/anion-p interaction. Therefore, we do not consider
in detail the strategies involving increasing the strength of the anion-s/anion-p interaction or the
anion-p/anion-p interactions in this study. That being said, we can focus on tuning the anion s-p
splitting as a means to modify the anion-s/anion-p interaction. Because convergence is favored
with a smaller amount of s—p splitting in the anion states, Te is a better choice than Se when the
L band is higher than the ¥ band because the s—p splitting energy decreases from Se to Te®, At
higher temperatures (7' > 700 K) where the ¥ band is higher, alloying with PbTe with Se would
be beneficial. This is consistent with the experimental finding that shows alloying PbTe with Se
increases the L VB relative to the ¥ band.?

3.4 Influence of Cation-Site Defects on VB Convergence

The results of the previous section help to explain experimental results that show that cation
doping can enhance VB convergence and suggest that there are routes to enhance this even fur-
ther 213313530 THI6I Ope technique for doing so involves alloying to introduce cation-s states below
the Pb-s states (at the expense of Pb-s states). This would be equivalent to moving down (left to
right) the green line in Fig. |5| (increasing A). In order to achieve this, it is necessary to alloy the Pb
site with an element that exhibits greater s—p splitting, such as Ge.% Therefore, we think this ex-
plains why promising materials have been found in PbTe—GeTe alloys as a means to engineer more

highly converged VBs. GeTe has attracted much attention as a high-performing thermoelectric ma-
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unfilled cation-s state

E — Eygm (eV)
o

Figure 7: TB electron dispersion of a model rock salt structure where there is an unfilled cation-s above the
filled anion-p states. The energies of the states that correspond to the maxima of the L and ¥ bands in PbTe
are labeled with a blue circle at E{, 5(L) and green inverted triangle at Ef, 5(X'), respectively. Replacing the
filled Pb-s states with unfilled cation-s states moves these energies down such that they are local minimums
instead of local maxima like they are in PbTe.
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terial, (04

so it is worth considering the role of the large s—p splitting in its performance. On the
other hand, T1 would introduce a cation-6s orbital with an on-site energy higher in energy relative
to the Pb-6s orbital but still below the Te-5p states.%Y This type of impurity is predicted to reduce
the convergence of the VBs by increasing the L, VBM relative to the 3, A, and W VBMs. However,
T1 is known to be a very effective p-type dopant that actually enhances the thermoelectric power
of PbTe:T1 relative to that of pristine PbTe 2¥OM This divergence from the predicted behavior
here is due to the fact that TI is a resonant impurity, as the TI-6s states overlap with the Te-5p
states, and resonant impurities are known to substantially increase thermoelectric performance by

increasing the DOS near the band edge. (&2

A potentially powerful route to engineering highly converged VBs that exhibit the 2D topology
is to alloy in such a way to introduce unfilled cation-s (s") states higher in energy than the anion-p
states. This strategy is consistent with the experimental trends seen upon the addition of cation-
site dopants (Cd, Hg, Mn Na, Sr, and Mg).2H33:35808 090983 When these cation-site dopants are
substituted on the Pb-site of PbTe, they introduce cation-s states above the Te-p-dominated VBs

at the expense of the Pb-s states located below!.

The TB model for a generic rock salt structure can be modified to help understand the effect
of defect-s states on the electron dispersion. We use this as a thought experiment to understand
the TB eigenstates in the MTe end-member (M = Mg, Mn, Cd, Na, Sr or Hg) in PbTe-MTe alloys.
Fig. [7]shows the electron dispersion corresponding to a rock salt structure where there is an unfilled
cation-s state ~1.6 eV above the anion-p states. The splitting between the cation-p and anion-
p states, the anion p—p interactions, and the strength of V), all correspond to the values used
to approximate PbTe electronic structure shown in Fig. We choose 1.6 eV for the difference
between the anion-p and filled cation-s state because this is approximately the difference between
the on-site energy differences of Te-p and Cd-s states.®Y The eigenstates that correspond to the
VBMs of the L and ¥ in PbTe are labeled in Fig. [7] with a blue circle and green inverted triangle,
respectively. It is important to note that when the (unfilled) cation-s states are above the Te-p
states, the eigenstates that were the VBMs in PbTe are now the lower of the three Te-p states at
both L and ¥'.

Consider the cation defect, M, with unfilled s° states. When the cation M-s states are entirely
above the anion-p states, the energy corresponding to the VBM eigenstates at the L— and YX—points
must be modified from those given in Egs. 2] and f] When the anion s—p interactions are ignored,
these eigenstates, denoted EY, 5(L) and EY, 5(X'), are given by Egs. and respectively. In

these expression, V!

4po denotes the TB overlap parameter between the defect cation-s (M-s) state

and the Te-p states. The expressions for E 1. (L) and E}, 1.,(¥') are the same as those given in
Egs. Bl and [0} respectively.

1 1 2
Eyp(L) = & (Buns + Byre1)) = S/ (Bons = By (1) + a5V, )

19



Journal of Materials Chemistry A

1 1 2
By p(2) = 5 (Barr + By () - 2\/ (Bear = Byp(s)) 432V, (23)

The only difference between the solutions for the case where the cation-s states are above the
anion-p states and where the cation-s states are below the anion-p states (like in PbTe) is that
there is a minus (-) sign in front of the radical in the former case and a plus (+) sign in the latter
case. In both cases, there is a repulsive interaction between the Te-p and cation-s states at the
L-point and at the Y/-point that is stronger at the L-point. However, when the cation-s state is
below the Te-p states, it pushes the energy of the Te-p state up, but when it is below the Te-p
state, it pushes it down, with the force at L being stronger than it is at ¥’. The unfilled defect-s

state will also push the W and A maxima down, but to a lesser extent than at L .

When these defect M-s states are incorporated into PbTe the repulsive interaction between
the unfilled defect-s states with the filled Te-p states partially counteracts the repulsive interaction
between the filled Pb-s states and Te-p states. In other words, the presence of these cation-s
defect states effectively weakens the repulsive interaction between the Pb-s and Te-p states, V.
As shown in analytically in Fig. [5] and numerically in Fig. [6] weakening Vi, decreases §, thus
increasing convergence, given that the L band is higher in energy than the ¥ band. Furthermore,
the effective weakening of V), is expected to increase the bandgap energy (see Appendix C). These
effects are consistent with what is observed experimentally upon the addition of Mg, Cd, Mn, Sr,
Na, and Hg in PbTe; the energy of the > VB increases relative to the energy of the L band, and

: 353647149169
E, increases.

3.5 Low-Dimensional Behavior of Converged PbTe Electronic Structure

Low-dimensional materials have been studied as a means to engineer and enhance thermoelectric
transport properties. 2222472080084 Ty pically, low-dimensional electronic structures are expected
in nano-structured materials that physically confine the electrons, such as thin-film with thickness
on the nano-scale, nanowires, and quantum dots.?2520:84 While improvements can be seen in low-
dimensional materials with a one sub-band model, when all degenerate bands and sub-bands are
included in the transport of the bulk system, the quantum confinement in low-dimensional materials
is detrimental to thermoelectric performance, as it breaks band degeneracy.*®2? However, properties
of low-dimensional electronic structures also exist in bulk 3D materials, and these materials do not
exhibit degeneracy-breaking quantum confinement. 222450407485 For instance, Dylla et al. found
that SrTiO3 has a Fermi surface that can be described as three orthogonal 2D cylindrical Fermi
surfaces, and therefore; it exhibits some transport properties that would be expected from a 2D
material despite the sample being in its bulk 3D form."" Enhanced thermoelectric performance has
been predicted for a 3D bulk materials with a 2D Fermi surfaces.*#24 Note that when we refer
to 1D, 2D, and 3D Fermi surfaces, we are not describing the dimensionality of the Fermi surface

geometry itself, but rather to the dimensionality of the density of electronic states described by
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that Fermi surface. That is, for a 1D or 2D topology, the Fermi surface expands with energy in

only one or two dimensions giving a DOS like that of a true 1D or 2D system.

Here, we compare two ”states” for the VB structure based on the relative strength of the
cation-s/anion-p interaction: converged (V;p, = 0.75 €V) and "not converged” (Vip, = 0.9 V).
The terms ”converged” and "not converged” are simply relative descriptors of the VB structure.
As discussed in the prior section, multiple parameters can be adjusted to tune convergence, but for
simplicity, we limit our study here to a variation in Vj,,. When the PbTe VBs are not in a highly
converged state, the Fermi surface just below the VB edge would be described by ellipsoidal pockets
(4 total) around L (Fig. [1h).#4%™ As the VBs become more converged (Vy,e = 0.75 without SOC),
the VB edge in the electronic dispersion becomes nearly flat along the W-L-X*~A* directions
(Fig. [Bh). Recall that * and A* are the true, calculated values for the local maxima along those
directions and change depending on the parameters used in the calculations (and whether or not
SOC is included).

This flat band dispersion results in the Fermi surface fairly close to the band edge exhibiting
unique 1D character despite the material itself being in its bulk 3D form. As seen in Fig. B¢, the VB
Fermi surface (calculated 0.10 eV below the L VBM) can be described as a set of orthogonal sheets
of a finite width that contain the L—, ¥*— A*— and W- points in the BZ. There are two sheets
along each of the three Cartesian directions. Unlike a traditional 1D material, such as a nanowire,
net electronic transport in this system occurs identically along all three Cartesian directions, but
is restricted to a single direction on a given sheet of the Fermi surface. In this way, it can be
thought of as the electronic structure of three orthogonal 1D systems. For the component of the
conductivity along the z-direction, only the sheets oriented in the y — z plane would contribute to

the transport, with analogous behavior for the y- and z- directions.

Assuming parabolic bands characterized by a unique effective mass in each direction, the 3D
electronic structure of a material can be described by the dispersion relationship shown in Eq.
where m; my, and m, are the effective masses along each of the three Cartesian directions. 23086
The effective mass is inversely proportional to the curvature of the dispersion relationship in its

respective direction. That is, m; = h?(d?E/dk?) ! He0sT

R2E2 Rkl R2E?
+ +
2myg  2my  2m,

E(ky, ky, k) = (24)

For a given sheet in the converged PbTe VB Fermi surface, the curvature is zero in two of the
three directions. The effective mass in the two flat directions approaches infinity.%? The velocity
of the charge carrier in a given direction is related to the partial derivative of the dispersion

relationship.2%e0
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In Equation [25] v; is the carrier velocity along the i—direction, where i = xz,y, or z. The
velocity in a given direction is inversely proportional to the respective effective mass. Therefore,
when there is virtually zero dispersion in a given direction (flat band), then the effective mass
in that direction approaches infinity, and the velocity approaches zero. Consequently, the carrier

transport is effectively zero in that direction and limited to the other direction(s).

When studying PbTe, it is important to consider SOC effects to gain a more accurate repre-
sentation of the electronic structure.®32 While the analytical solutions are not found with SOC
interactions considered, the TB bands were calculated with SOC using the value of V,, = 0.75
and a Te SOC parameter of 0.3 eV (Fig. [Bb). While the three VBs at L, the VB extrema at W
and at A*, and the two highest VBs along 3 are not as highly converged upon the addition of
SOC, the maxima of the L and ¥ VBs are still nearly converged with each other. Therefore, the
convergence condition derived for the L and 3 VBs still holds when SOC is included. The SOC
interactions reintroduce curvature in the VB edge between L and W and between ¥* and A* in
the highly converged case, as seen in[8p. As a result, the effective mass near the band edge is finite
along two of the three directions, so the Fermi surface 0.10 eV below the L. VBM exhibits a 2D
instead of a 1D topology. This analysis introduces an additional design strategy: engineering an

alloy that weakens the SOC interactions relative to pure PbTe.

The Fermi surface structure we find after introducing SOC resembles the 2D Fermi surface
of lead chalcogenides described by Parker and Singh.?*4Y We do not have to go so deep into the
VB edge (note that the ”depth” is somewhat arbitrary, as this is a model system) to reach this
2D topology as we did to reach the 1D topology shown in [8; the 2D topology is obtained in the
converged bands with SOC only 0.05 eV below the L. VBM. The 2D Fermi surface can be described
as 12 curved tubes that contain the L-point and ¥ maximum in the BZ (Fig. [d). Later, we
approximate these tubes as cylinders to model thermoelectric transport properties via Boltzmann

transport model.

Topological transitions in the non-converged bands to lower-dimensional 2D or 1D Fermi
surfaces from 3D or 2D Fermi surfaces, respectively, can be achieved by moving the Fermi energy
farther below the VB edge. For instance, we can obtain a 2D Fermi surface 0.14 eV below the Fermi
energy when Vg, = 0.9eV (not converged), and SOC is included, as seen in Fig. . Additionally,
if the Fermi surface in Fig. is expanded to ~ 0.25 eV below the L. VBM, then then the cylinders
grow into the sheets seen in the highly converged electron bands without SOC (Fig. ), as the VB
edge is mostly flat along W-L->X*—A* at this energy below the band edge.

In summary, convergence of the L. and ¥ VBMs alone leads to a 2D Fermi surface topology, and
the added convergence of the A and W band extrema promotes the 1D topology. In practice, the 2D
topology can be achieved mainly by alloying the cation-site with an element that introduces unfilled
cation-s states above the VB edge. A secondary approach would involve substituting Pb sites with
Ge, which has a greater s-p splitting. Finally, by alloying PbTe to promote convergence of the L, 3,

W, and A bands we can reduce the carrier concentration required to achieve the lower-dimensional
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Figure 8: TB electron bands and valence band Fermi surfaces for variations of a PbTe tight-binding model. ¥*
and A* are the true maxima along ¥ and A. (a) When SOC is not included, the top of the highly converged
VB edge is nearly flat along W-L-X*~A* (b) but when SOC is introduced, curvature is reintroduced along
L-W and ¥*~A*. (¢) The Fermi surface 0.10 eV below the L. VBM for the highly converged PbTe electronic
structure without SOC resembles a set of 6 orthogonal sheets. (d) When SOC is included, the Fermi surface
0.05 €V below the L maximum forms 12 tubes. (e) The thread— or tube-like Fermi surface is found 0.14
eV below the L-point band edge for a non-converged VB edge with SOC. (f) For the highly converged case
with SOC, the VBs form sheets 0.25 eV below the L VBM. For (d)-(f) we use C (converged) to denote the
highly converged case, where V;,, = V,, = 0.75 eV, and NC (not converged) when the original value of
Vipe = 0.9eV is used.
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Fermi surface topologies. SOC interactions appear to break the high degeneracy required for the
1D topology in favor of the 2D topology. Therefore, the 1D topology could be achieved in a real
material by substituting the Te site for S or Se, which have weaker SOC interactions, with S
having the weakest.°%" %9 However, because substituting S or Se for Te on the anion-site would
decrease the lattice parameter, thus decreasing convergence of the L, ¥, A, and W VB extrema, it
is necessary that this is compensated for via the incorporation of the appropriate cation dopants

to counteract the effect of reducing the lattice parameter.

3.6 Transport Model for Low-Dimensional Electron Bands

To understand the effect of the low dimensional electron bands on the thermoelectric transport,
we use the Boltzmann transport equation (BTE) and compare the computed properties to that of
a 3D system,PHOLZIASOSTISE5 We assume electron-phonon scattering dominates where the scat-
tering rate is proportional to the density of electron states, as it is in deformation potential and
phonon scattering. It has been shown that phonon, or deformation potential, scattering provides a
good description of transport in lead chalcogenides.!® For the 1D case, we assume a Fermi surface
described by 6 sheets (two perpendicular to each Cartesian direction) and a square face with side
lengths I1p = 2v/27/a where a is the lattice parameter (Fig. o ). The 2D Fermi surface is approx-
imated by 12 cylinders (4 parallel to each Cartesian direction) with length lop = 27/a (Fig. ).24
Lastly, the 3D model is described by 4 spheres at L (8 half-spheres) (Fig. )

The dispersion relationship defining the idealized 2D bands is described by Eq. where
i, =x,y, or z, but i # j.

21.2
Rk Rk

2m,~ 2mj

E(ky, ky, k) = (26)

Along each tube, the effective mass is infinite along the direction parallel to its length, restrict-
ing electronic transport to the other two orthogonal directions. That is, for a cylinder oriented along
the z-axis in the BZ, transport would be limited to the x- and y- directions due to infinite effective

mass (zero curvature) along the the z-direction.
For the 1D sheet topology, we have the following dispersion:

h2k?

B(ke by be) = 5

(27)

In this case, transport is limited to only the ¢ direction, as carrier velocity would be virtually

zero along the other two directions.

We provide the expressions for the scattering time, 7, Seebeck coefficient, S, quality factor, B,
Lorenz factor L, figure of merit, 27", and DOS, g(¢), for 1D, 2D, and 3D PbTe bands in Appendix

B. Because we are using 7 < 1/g the expression for S, L, and 2T are identical for 1D, 2D, and 3D
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in terms of B and the reduced Fermi Level, n, where n = Er/kpT, and EF is the Fermi energy.
They are given in Eqgs.

(kB \? [3Fa(n)Fo(n) — AFE(n)
= (%) | F2(n) ] (#9)
S%(n)
2T(n,B) = —5——— (30)
By +L0)

F;(n) is the Fermi-Dirac integral, which is defined in Eq.

co i
ro= [ (1)

Although S is the same for all three dimensions for a given value of 1, the reduced chemical
potential is a function of the hole concentration, p, which is given by p = [ g(E)f(E — p)dE,
where f(E—pu) is the Fermi-Dirac distribution. Because the DOS is different for each dimension, the
relationship between p and n changes with dimensionality, as seen in Egs. where p1p, pP2p,
p3p represent the number of holes per unit volume of the material corresponding to the idealized
1D, 2D, and 3D Fermi surface cases for PbTe, respectively. Note that in these expressions, we
define the hole concentration in terms of the band effective mass, m; (band curvature mass along
the dispersive direction) instead of an equivalent DOS effective mass, m},g, which we shall define

later.

_12(2mjkpT)'/?
pip = g F_1(n) (32)
12mikpT
= b2 R
p2D s 1U) (33)
2(2mikpT)>/?
p3p = #F% (n) (34)

Using Eqgs. and Eq. we can calculate the Pisarenko relationship at 300K (S vs.
p) for each dimension as seen in Fig. @a The lattice parameter is taken to be a = 6.46 A,
and the band effective mass is taken to be m; = 0.2m..*4 For a given 7, the Seebeck coefficient
increases as the dimensionality of the bands is reduced. This increase in thermopower as the band
dimensionality progresses from 3D to 1D is attributed to the higher hole concentration for a given

7 due to the general increase in Fermi surface area from the 3D to 1D case. The 2T vs. p curve
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Figure 9: Transport model analysis for 1D, 2D and 3D Fermi surface topologies in PbTe assuming phonon
scattering, a lattice thermal conductivity of k7 = 1.5 Wm™'K~!, and mobility parameter of uy = 1200
em?V~1s71. (a) Pisarenko plots (S vs. p) for PbTe with 1D, 2D and 3D Fermi surfaces. (b) 2T vs. p curves
for the 1D, 2D, and 3D models. The 3D model yields a peak zT ~ 0.6, the 2D model gives a peak zT ~
6, and the 1D model predicts a peak zT" ~ 13. (c) The effective (3D) m},g increases from mj, g = 0.5m,
for the 3D topology, to m},og ~ 6m, for 2D, and to m},og ~ 40m,. predicted for fully converged, 1D PbTe.
(d) The maximum effective valley degeneracy, Ny, increases from Ny = 4 for the 3D model to Ny ~ 180
for the 2D model and to Ny ~ 2700 for the 1D model.

26

Page 26 of 43



Page 27 of 43

Journal of Materials Chemistry A

at 300K is then calculated based on Eq. [30] assuming a constant lattice thermal conductivity of
kr, = 1.5 WmK~!8% and a constant mobility parameter, pg, of 1200 cm?V~—1s~1.5% Note that
these are approximate values assumed for the sake of comparing the thermoelectric performance
from the different Fermi surface topologies. In reality, these value depend on temperature and
carrier concentration. The value of g, was estimated based Hall effect on data from Crocker and
Rogers.=? It is found that the maximum predicted 2T is greatest for the 1D Fermi surface, followed
by the 2D and then the 3D topology (Fig. @b) We predict a peak 21 ~ 0.6 at p ~ 6 x 10!® cm™3
for the 3D model, 2T ~ 6 at p ~ 3 x 10' cm™ for the 2D model, and 2T ~ 13 at p ~ 1 x 10%°

cm 3 for the 1D case.

We apply the effective mass model for the 3D case to the Pisarenko calculations for the 1D
and 2D models to determine a 3D equivalent DOS effective mass (m},ng = mZN?/ 3) for each value
of p (Fig. |§|c) and then calculate an effective valley degeneracyY at each carrier concentration (Fig.
Eﬁ) To perform this analysis, the equation for the carrier concentration in terms of the density
of states mass, mJ,,g, corresponding to the 3D model is needed. We assume a valley degeneracy
of Ny = 4 for the 3D model with carrier pockets at L, so we can simply rewrite Eq. as shown

below.

Fi(n) (35)

Applying Egs. and to the calculated Pisarenko curves in Fig. [Gh, we can calculate
mpog, and for each value of mp,,g, we determine an effective Ny through the expression Ny =
(mBOS/mZ)S/Q. For this analysis, we treat all of the S vs. p data as if it comes from 3D parabolic
bands, regardless of the true dimensionality of the Fermi surface from which it comes. mp5g
and Ny are both constant for the 3D model with respect to p, but for the 1D and 2D models,
they are a function of carrier concentration. They initially plateau then start decreasing between
p ~ 102! — 10%2cm™3. For the 3D model, we obtain mppog = 0.5me, corresponding to Ny = 4. At
the value p corresponding to the peak 2T, we calculate mp,5g ~ 6m. and Ny ~ 180 for the 2D case
and mpog ~ 40m. and Ny ~ 2600 for the 1D model. Clearly, a the topological transition to lower-
dimensional Fermi surface yields a massive increase in transport channels. These values of effective
Ny are much greater than what we would expect from simply adding the valley degeneracies of the
VB extrema (4(L)+12(3)+6(W)+6(A) = 28), suggesting that a shift to studying topology changes
in the band structure is necessary for predicting transport behavior in highly converged electronic

structures.

Because the quality factor is proportional to Ny, if we apply the 3D effective mass model to
the 1D and 2D bands, we predict a significantly higher B for the 1D and 2D cases. The quality
factor for the 3D PbTe band model used here is constant at B = 0.2, but for the 1D and 2D models,
the quality factor that corresponds to the 3D model varies as a function of the hole concentration,
p. Therefore, we use the values of B corresponding to the maximum predicted 27" for comparison

purposes. The quality factors at the maximum z7’s for the 2D and 1D bands are approximately

27



Journal of Materials Chemistry A

B ~ 9 and B ~ 130, respectively, showing significant gains relative to the 3D bands. It is important
to note that the predicted values for Ny, and consequently m},,q and B, and 27T, represent upper-
bounds and most certainly overestimate the true valley degeneracy and thermoelectric performance
because of inter-valley scattering and other assumptions made here. These extremely high values
predicted for the 1D band topology are purely theoretical but give an idealized electronic structure
to strive for and motivates the search for convergence beyond that found in the 2D topology.
Even achieving a band structure intermediate between the 2D and 1D cases would vastly improve

thermoelectric performance.

4 Conclusion

We present analytical solutions for a TB approximation of the PbTe VB structure to better under-
stand the orbital interactions that lead to higher VB convergence and to changes in the topology
of the electronic structure. We use the analytical TB expressions without SOC to determine qual-
itative trends in VB convergence with respect to orbital interaction strengths and orbital on-site
energies (Vipo, VppTe, and 2A = E, 7. — Eg pp). There is a critical value for these three parameters
where the VB extrema at L and ¥’ are approximately converged. When SOC interactions are
minimal, the A and W bands are also effectively converged with the L and ¥ band at this point,
resulting in a 1D Fermi surface topology. When SOC is introduced, approaching the same critical
value of V! _ leads to the convergence of the L and ¥ VBs, but the topology of the bands has 2D

spo

character, as SOC breaks the convergence with other the VB pockets (W and A).

Based on the qualitative trends determined with the TB model, we propose several alloying
design strategies based on anion-cation and anion-anion interactions to tailor the valence bands in
such that they approach the highly converged 1D topology. The recommended strategies are listed

below:

i Introduce unfilled cation-s (s°) defect states above anion-p states (Cd, Mg, Hg, Mn, Sr, and
Na)

ii Increase lattice parameter via alloying or temperature increase
iii Decrease anion s—p splitting
iv Introduce cation-s defect states below Pb-s states (at the expense of Pb-s states)
v Minimize the strength of the (anion) SOC interactions
We apply an effective mass model using the BTE to predict thermoelectric transport val-

ues for the 3D, 2D, and 1D bands and predict enhanced thermoelectric performance when the

dimensionality of the bands decreases, which occurs as more VB pockets converge. The increase
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in predicted thermoelectric performance is understood by applying the 3D effective mass model
to the 1D and 2D bands, and we predict substantial gains in thermoelectric performance from a
massive increase in the number of transport channels available in 2D and 1D bands. The 1D and
2D transport behavior is analogous to 3D behavior with extremely high valley degeneracy, and
therefore a significantly enhanced quality factor and z7'. The gains in performance are greater for
the 1D bands than the 2D bands, suggesting that engineering or alloying PbTe or other materials to
achieve this unique 1D topology could lead to tremendous gains in thermoelectric performance and
theoretically lead to z1" > 10, roughly 20 times larger than the zT we predict for the 3D ellipsoidal
Fermi surface topology. While this extremely high 2T is only a theoretical prediction for a highly
idealized case, it motivates work towards increasing VB convergence beyond that found in the 3D
and 2D Fermi surface topologies. By strategically alloying PbTe based on the qualitative trends
discussed here, it is possible to tune and reduce the doping concentration needed to achieve these

favorable, low-dimensional Fermi surface topologies.
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Appendices

A PbTe Tight-Binding Hamiltonian

The analytical TB solutions for rock salt PbTe without SOC were determined by solving for the
eigenvalues of the Hamiltonian given in Eq. using the Slater-Koster matrix elements and

20561 The Hamiltonian, H, is an Hermitian matrix, so

following the method outlined by Rohrer.
H;; = H ji» Where H ji is the complex-conjugate of Hj;;. The 8-dimensional TB basis is comprised
of Pb-6s, Pb-6p,, Pb-6p,, Pb-6p., Te-5s, Te-5p,, Te-5p,, Te-5p. atomic orbitals. Note that when

SOC is included the size of the Hamiltonian increases by a factor of four, as the basis becomes

16-dimensional to account for spin-up and spin-down electrons separately. 5552
Hyy Hyp -+ Hig
. Hyy Hyp -+ Hag
H=1 : (A1)
Hgi Hsy --- Hss

We do not provide the expressions for every Hamiltonian element here, but representative
examples of Hamiltonian elements are given below in Egs. E,p represents the on-site
energy terms, where a denotes the orbital (s or p) and b denotes the element (Pb or Te). The
overlap parameters of the form, V,g,,, where o and (3 represent the two orbitals (s or p) and m
represents the type of bonding (o or 7). When there is an element label in the subscript, the overlap
parameter represents the interaction between the next-nearest neighbors for that element (Pb or
Te). When there is no element referenced in the subscript, then the parameter represents a nearest
neighbor interaction between Pb and Te. However, Vj,,1 and Vy,s2 are used here to distinguish
between the two different nearest neighbor s—p interactions. Vy,s1 denotes the interaction between
the Pb-s and Te-p orbitals, and V,,2 denotes the interaction parameter between the Te-s and Pb-p
orbitals. Note that this is different than the convention used in the main text, where Vj,, denotes

the Pb-s/Te-p interaction (since we do not reference the Te-s/Pb-p interaction in the main text).

Hi1 = Es pp + 2Vsso,pplcos (kza/2 + ky /2) + cos (kya/2 — kya/2)+
cos (kya/2 + k.a/2) + cos (kya/2 — k.a/2)+
cos (kza/2 + k,a/2) + cos (kza/2 — k,a/2)] (A2)
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9
Hiy = —7%%p07pb[sin (k‘xa/Z + k:ya/Q) + sin (ka:a/2 - ky/2)+

sin (kza/2 + k.a/2) + sin (kza/2 — k,a/2)] (A3)

Hy3 = (Vypo.rb — Vippr,pb) [c0s (kza/2 + kya/2) — cos (kya/2 — kya/2)] (A4)
His = 2Vssp[cos (kza/2) + cos (kya/2) + cos (ksa/2)] (A5)

Hig = —2iVipe1 sin (kya/2) (A6)

Has = —2iVipeo sin (kya/2) (A7)

Hag = 2Vippo c0s (ke /2) + 2Vppr[cos (kay/2) + cos (kza/2)] (A8)

Hrr = Epre + (Vopo,re + Vopr 1e) [cos (kza/2 + kya/2) + cos (kya/2 — kya/2)+
cos (kya/2 + k.a/2) + cos (kya/2 — k.a/2)]+
2Vppr Telcos (kza/2 + k,a/2) + cos (kga/2 — k.a/2)] (A9)

B Transport Model for 1D, 2D, and 3D Bands in Bulk 3D PbTe

We consider an transport model developed using the Boltzmann transport equation (BTE )2 0L2H5:608 709594

to model thermoelectric transport in PbTe to understand how it changes as the VBs become more
highly converged. The 3D Fermi surface pockets have a degeneracy of 4, and the Fermi-surface
cylinders for the 2D case have a degeneracy of 12 , radius k, and length lop = 27 /a, where a is the
lattice parameter. For a cylinder oriented along the z-axis, k% = k2 —i—k:Z, with analogous expressions
for all three directions. In PbTe, the 1D Fermi surface can be described as sheets with thickness
2k, a square cross-section characterized by a side length of l;p = 2v/27/a, and degeneracy of 6.

For a sheet aligned in the = — y plane, k = k., with analogues in all three directions.
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B.1 Density of States (DOS)

The expressions for the PbTe DOS in each dimension, g,,p(e) (m = 1,2,3), where ¢ = E/kpT,
and E is the energy below the VB edge, are given in Eqgs.

12(2m)1/? e
12m;
g(e) = ok (B2)
2(2m* 3/2
g3D(€) — (71_2%?‘)(]{:31"')1/251/2 (B3)

The above expressions for the DOS are used to determine the hole concentrations per unit cell

in each dimension, as given in Eqgs. in the main text.

B.2 Electrical Conductivity, o

In general, the electrical conductivity is given in Eq. 15=24=86

o(T) = /e;T(E)UQ(E)g<E) (—jj;) dE (B4)

v(F) is the carrier velocity at a given energy and can be broken down into its direction
components. In the 1D topology case vZ(E) = 2E/m}, in 2D v2(E) = E/m}, and in 3D v2(E) =
2E/3mj, where vy(FE) is the velocity component along the z-direction. For a cubic material,
vy = vy = v,. The expression for v(F) is the same regardless of the topology because for the 1D
case, v2(E) = v2(E), in 2D v*(E) = 2v2(E), and in 3D v*(E) = 3v2(E), yielding v*(E) = 2E/m}

for all three topologies.™”

In this model, we assume a DOS dependent scattering rate which would come from an energy-
independent matrix element in Fermi’s golden rule as used in analytic theories of deformation
potential or acoustic phonon scattering.!? The DOS dependence gives an energy-dependent scat-
tering time, 7, given by 7 = 79e”, where r depends on the assumptions made in the scattering-time

pomy 6
e )

model used. 7y is a constant that is given by 75 = where m7j is the intertial effective mass.
For the constant scattering time approximation (7 independent of energy), the scattering exponent
is given as r = 0. In this paper, where we assume acoustic-phonon scattering, the value of r is
—1/2,0, or 1/2 for the 3D, 2D, and 1D cases, respectively. The value of r for acoustic-phonon

scattering is chosen such that 7 o< 1/g.

The term %T(E)UQ(E)Q(E) in Eq. can be combined to the single term o(FE), which is

the electrical conductivity transport function.’? That is, we can write the electrical conductivity as
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o= [o(E) <—%> dE. Furthermore, o(FE) can be written in terms of a transport coefficient, og,,
through the expression, o(E) = og,e®, where s =1/2+r,1+4r, or 3/2 + r for the 1D, 2D, and 3D
cases, respectively, and the form of op, varies with the dimensionality of the band, as seen in the

following set of equations.

8e (2m kpT)?  (mi\'/?
OFEy,1D — ( CL27Th ) Ko mb (B5)
8emekpT my
OEp2D = Wﬂo (mb> (B6)
de (QmEkBT)?’/2 m;\ 22
OFo,3D = 3273 1o mb (B7)

Because we assume Ny = 4 for the 3D pockets at L in PbTe, we can rewrite equation [B7] in

— 2/3
terms of mp g, where mp,,q = my4 /3.

(B8)

_ e(2mekpT)*? (mBos > i
OBo3D = 0

3m2h3 Me

. 3/2
In Eq. ’B_Sl, the term, g (mDOS) , is the weighted mobility, p.,, for the 3D effective mass

Mme

model.%F Therefore, we can rewrite OEy,3D in terms of fi,.

e (QmEkJBT)?’/2
3m2h3

It is instructive to rewrite Eqs. in terms of the hole concentration (Egs. in the

main text).

OFEy3D = P (B9)

2 pipepo
== B10
2
. _ 2papeio (B11)
; _ 2pspetio (B12)
Eo3D = 3 Fy ()

Using Eq. along with Egs. the electrical conductivity for each case can be

expressed as follows.

2p1pepo 1 F*%(n)
— ZP1D®R0 ) == B1
O1D 3 <T+ 2) I (7]) ( 3)

1
2
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2p2petio Fr(n)
oogp = ———(r+1 Bl14
o = 2250 (g 1) ) (B14)
_ 2pspepio 3 Fr+%(77)
O30 =~ r+5 ) 7 o) (B15)

If we use the acoustic-phonon approximation for scattering time, these equations can be sim-

plified, as shown below.

_ 2pipepo Fo(n)

B16

TS EL ) (B16)
2
_ 2papepo

oap = 5 (B17)
2 F{

oap = pspepo Fo(n) (B18)

3 Fi(n)

If we were to use the constant scattering time approximation (r = 0), it would be more evident
that on a given point of the Fermi surface, the charge carriers in the 1D case can only travel in
one of the three directions, that the charge carriers of the 2D topology can move in two of the
three directions, and that they can transport in all directions in the 3D case. That is, we can write
the electrical conductivity for these three cases as o1p = (1/3)pipepo, o2p = (2/3)p2pepp, and

03D = P3DENo-

B.3 Seebeck Coefficient, S

The general expression for the Seebeck coefficient, S given by the BTE is expressed in Eq.

s(r) - <k3> Jole) (—%’;) (e —n)de B19)

e

(n) - n] (B20)
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- (2)
(&

When the acoustic-phonon scattering approximation is used, these expressions reduce to that

3(n)
B ”] (522)

found in in Eq. 28 for all three dimensionalities.

B.4 Lorenz number, L

The electronic component of the lattice thermal conductivity can be expressed as k. = Lo, where
L is the Lorenz number, given in by L = 2% — S2. The expression for kg is given in Eq. Srl

ko(T) =T (?)2 /(5 —n)?0(e) <Z£> de (B23)

Therefore, the Lorentz factor can be written in the forms shown in Eq.

L <k3> (r+3) () g F,_y ) = (n+ ) F2, ()
1D =

+DTE, () (2
Ly = (2} €D sl 2 Fa(n) -
2 (r+2)(r+3 F _ s(mFE._ 1(n) — r+§2Fr2 3(n)
Lap = <k:;3> (r+3)(r+3) +3 +22 (r+3) +3 (B26)

(r+3)" F2,, ()

If we use the acoustic-phonon scattering approximation, all three of the above expressions

reduce to the equation for L given in Eq. of the main text.

B.5

Quality Factor, B, and Figure of Merit, 21T

In general, the zT' for this effective-mass model in all three cases can be calculated using Egs.

B27

82
Tip(n, B) = —— o (B2)
(T+1/2)B1DFT,%(77) + L(n)
S%(n)
ZTop(n B) = ——5 (B28)

(r+1)B2p Fr(n) T L(n)
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Tyn(n, B) ) (B29)

Gene)”
By L)

The quality factor, B, is defined in terms of o, in Eq. [B30*!2. For each topology, the quality

factory is calculated from the corresponding og,.

B <’@>2 0T (B30)

e KL,

For the acoustic-phonon scattering assumption used in this paper, the zT’s for the 1D, 2D,
and 3D PbTe bands are identical, and given in Eq. [30] of the main text.

C Bandgap Energy from Tight-Binding Model

PbTe has a direct bandgap at L,20-42400607098 g5 an analytical expression for the bandgap energy
of PbTe can be found simply by subtracting the analytical solutions of the VBM from the CBM.
If we do not include SOC, we can find exact analytical solutions to the tight-binding eigenvalues
that represent the VBM and CBM.

The solution for the VBM state is given in Eq. [2] in the main text. The expression for the
CBM, Ecpum(L) is analogous except the anion and cation orbitals interactions are flipped. Here,
we must distinguish between the two nearest-neighbor Vj,, in the same manner as in Appendix A,
where V51 refers to cation-s/anion-p interactions, and Vip,o refers to anion-s/cation-p interactions.

Using this notation, we can express the CBM energy as follows:

1 2
(ES,Te + E;,Pb(L)) + 2\/<E1/0,Pb(L) - ES,Te) + 48‘/:92;;02 (Cl)

N |

Ecpm(L) =

.26(L) = Ep b+ 4Vipr pb — 4Vppo b (C2)

Therefore, the bandgap energy, E,, can be written in the form below.

1
Eg:§

1
B (\/ (Ep,py — Bsre = 4Vpp,pp)” +48V7 5 \/ (Epre — Es,py — 4Vpp1e)” + 48Vsigl> (C3)

(Este — Espv+ Eppo — Epre — 4Vip,po + 4Vpp 1) +

Vpp, P describes the strength of the cation-p interactions and is defined through the expression,

Viop,Pb = Vppo.Pb — Vppr,pp. From Eq. we see that the bandgap energy increases as (1) Vipo1
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(cation-s, anion-p) decreases, (2) Vipoo (anion-s, cation-p) increases, (3) the difference in on-site
energies between the cation-s and anion-p states increases, (4) the energy splitting between the
anion-s and cation-p states decrease, (5) the anion-p interactions are strengthened (V) 7. increases),

and (6) the cation-p interactions are weakened (V,,, p, decreases).

While the above equation allows us to determine trends in E, with respect to TB orbital
interactions and on-site energies, it is expected to significantly overestimate the bandgap, as SOC
interactions are not considered. When SOC interactions are included, the bandgap energy de-
creases, AHO6B8IBIDTII \We can also relate some of the trends in bandgap energy to the convergence
trends discussed in the main text. For example, decreasing Vip,1, increasing the on-site energy
difference between the cation-s and anion-p states, and increasing V), 7. all increase the bandgap

and converge the VB extrema.

D Labeled First Brillouin Zone for the FCC Lattice

Fig. depicts the first Brillouin Zone (BZ) for the face-centered cubic (FCC) lattice with high-
symmetry points labeled.®® The red cube with red lines across the two diagonals of each face
is included as a visual guide. The points ¥’ and A’ are not conventional high-symmetry points
and are defined specifically for the purposes of this study. We define these points (and the other

conventional high-symmetry points) at follows, where a is the lattice parameter:

There are 12 symmetrically equivalent X'-points, 6 symmetrically equivalent A’-points, 6
equivalent W—points, 4 equivalent K—points, 4 L-points, 3 X—points, and 1 I'-point in the first
BZ.
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Figure D1: Labeled first Brillouin zone (BZ) of an FCC lattice. A red cube with red lines across the two
diagonals of each of the 6 faces is included as a visual guide. The cube has a side length of 27 /a, where a is
the lattice parameter. The I'-point is at the center of the cube and BZ, the L-point is at the corner of the
red cube and at the center of the hexagonal face of the BZ, the X-point is in the center of the square face
of the BZ, the W-point is on the corners of the BZ faces, the K-point is found on the edge-centers of the
hexagonal first BZ faces, and the X/-point is located at the center of the edges of the red cube. The A’-point
is at the center of the faces of the red cube, exactly halfway between I'" and X.
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