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Lubricated Soft Normal Elastic Contact of a Sphere: A New 
Numerical Method and Experiment
Zezhou Liu,‡a Hao Dong,‡b Anand Jagotab,c and Chung-Yuen Hui*a,d

An important problem in lubrication is the squeezing of a thin liquid film between a rigid sphere and an elastic substrate 
under normal contact.      Numerical solution of this problem typically uses iteration techniques.   A difficulty with iteration 
schemes is that convergence becomes increasingly difficult under increasingly heavy loads.   Here we devise a numerical 
scheme that does not involve iteration.  Instead, a linear problem is solved at every time step.   The scheme is fully automatic, 
stable and efficient.   We illustrate this technique by solving a relaxation test in which a rigid spherical indenter is brought 
rapidly into normal contact with a thick elastic substrate lubricated by a liquid film. The sphere is then fixed in position as 
the pressure relaxes.   We also carried out relaxation experiments on a lubricated soft PDMS (polydimethysiloxane) substrate 
under different conditions. These experiments are in excellent agreement with the numerical solution.

1. Introduction
For engineering surfaces to operate smoothly and durably 
during contact it is often necessary to use a lubricant – typically 
a thin layer of oil to reduce friction and adhesion. An important 
class of lubrication problems is when a coherent liquid film 
exists between two surfaces and the hydrodynamic pressure is 
sufficiently large to support a normal load without solid-solid 
contact. Elasto-hydrodynamic lubrication (EHL) is an important 
subclass of this problem in which the elastic deformation of at 
least one of the surfaces is significant. 
     Traditionally, the mechanics of stiff lubricated contacts such 
as metal bearings and pistons1-3 has been studied using EHL 
theory. An excellent review of EHL theory can be found in the 
article by Zhu and Wang.4 EHL theory is also of fundamental 
importance to the understanding of filtration, coagulation and 
adhesion of small particles.5-7  In the tire industry, EHL theory 
governs how tires perform on a wet road.8, 9  Recent interest in 
soft materials and bio-medical applications have expanded the 
use of EHL theory to study lubricated contact between a soft 
elastic solid and a hard surface and for contactless rheology.10   
For example, EHL theory has been used to study the lift forces 
of cylinders near compliant walls.11, 12 
     A conventional problem tackled by researchers in EHL is that 
of sliding. The standard approximation is to assume steady state 
conditions so the solution is independent of time.   A numerical 

method for the point contact sliding problem was developed by 
Evans and Snidle,13 who extended the inverse method first 
proposed by Dowson and Higginson14 for line contact. The 
essence of the approach is that, assuming a pressure field, the 
shape of the film is calculated in two different ways: one by 
elasticity and the second by inverting the Reynolds equation. 
The difference between the two calculated film shapes is used 
to iterate the actual pressure field, that is, the pressure is 
adjusted until the two shapes agree with each other. 
     Here we are interested in another fundamental problem 
which involves both time and space. This is the normal contact 
problem of squeezing a liquid film between two elastic surfaces.  
The line contact problem in which a thin liquid film between two 
infinite circular cylinders is squeezed by a normal force has been 
analyzed by many investigators.15-17 The point contact problem, 
which involves lubricated normal contact of elastic surfaces, has 
been less studied. A seminal study of the point contact problem 
was carried out by Davis et al.,18 on the normal collision of two 
elastic spheres.   Normal lubricated contact and sliding of rough 
surfaces have been studied by Persson and co-workers19-21 by a 
combination of random surface contact mechanics and 
lubrication theory.  More recently, Wang et al.22 also developed 
a numerical method to study the deformation of elastic coatings 
under normal lubricated contact.  
     Our primary goal in this paper is to present a new numerical 
technique to solve the normal point contact problem. As in all 
EHL problems, the governing equation for flow is the Reynolds 
equation, which is highly nonlinear. This equation is coupled to 
elasticity via an integral equation which relates the elastic 
displacement to the hydrodynamic pressure. To the best of our 
knowledge, the numerical techniques designed to solve this 
coupled nonlinear problem all require iteration. These iteration 
procedures typically break down when the liquid film thickness 
is very small or pressure very high. Also, convergence can be 
very slow and involves many iterations. A common way to 
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alleviate some of these difficulties is to use the inverse solution 
method first introduced by Dowson and Higginson.14 In this 
method, direct iteration is applied only in the low-pressure 
domain and the pressure is solved inversely in the high-pressure 
region. This method has been shown to be successful in 
handling high pressures. For example, Lee and Chang17 obtained 
the pressure and deformation profiles between two normally 
approaching lubricated cylinders using direct iteration in the 
low pressure (inlet) region and using Newton-Raphson to solve 
the nonlinear equation in the high-pressure region. However, 
this procedure often requires manual adjustments, and the 
domain of high/low pressure can change continuously 
depending on the loading history. Hence, the method is not fully 
automatic. Likewise, in the point contact sphere collision 
problem, Davis et al.18 reported that their iterative procedure 
breaks down when the elastic displacement of the colliding 
spheres is comparable to the initial film thickness. In their case, 
convergence in this regime is obtained using a relaxation 
technique. Again, this procedure usually requires manual 
adjustment of the relaxation parameter which differs from 
problem to problem. Recently, a new iterative numerical 
technique was developed by Wang et al.22 to study the 
deformation of elastic coatings under normal lubricated 
contact. In this scheme, the thickness of the liquid film is used 
as the iterant. Once it is specified, the pressure is computed by 
solving the Reynolds equation. The force acting on the indenter 
and the elastic displacement is then obtained using this 
pressure. From this displacement one can update the film 
thickness. In general, this updated film thickness does not 
satisfy force equilibrium; the film thickness is iterated until force 
balance is satisfied.
      In this paper, we devise a novel numerical technique to solve 
the point contact problem without resorting to iteration. The 
numerical scheme boils down to solving a linear system of 
equations at each time step. The numerical scheme is stable, 
fast and can be solved using any standard matrix solver such as 
those in Matlab®. The solution scheme is fully automatic. We 
demonstrate this technique on the relaxation test. In this test, 
a rigid spherical indenter is brought close to contact with an 
elastic surface lubricated by a thin liquid film of initial minimum 
thickness z0. The indenter is then rapidly pushed down by a pre-
determined amount dc.  The indenter’s displacement is held 
fixed immediately after dc is reached. During this holding phase, 
flow reduces the hydrodynamic pressure and the elastic 
substrate rebounds. In this problem, the long-time force acting 
on the indenter depends on whether  is less than or equal 0cd / z
to one. 
     Since we are primarily interested in soft lubricated contact, 
we focus on the case of constant viscosity. However, it has been 
known for a long time that at very high pressures, the viscosity 
of many lubricants increases rapidly with pressure. This 
phenomenon is very important for applications involving hard 
lubricated contact and can present additional numerical 
difficulty. A simple model for this dependence takes the form23

                                     (1)0
pe 

where  is the viscosity at ambient pressure and  is the 
0 

viscosity-pressure coefficient. It should be note that  is 

typically very small - it takes pressure on the order of hundreds 
of MPa for significant increase in viscosity 23.   Since the modulus 
of soft materials rarely exceeds a few MPa, there is little chance 
that this effect is relevant for soft contacts - the material will fail 
long before any substantial increase in viscosity. 
      The plan of this paper is as follows. Formulation of the point 
contact problem is summarized in Section 2. We then apply this 
formulation to model the relaxation problem. The experimental 
method for the relaxation test is described in section 3. In 
section 4 we highlight some simple analytical results on the 
relaxation test. These results provide physical insight and also 
serve as a check of our numerical method.  In section 5 we 
present a numerical scheme to solve the general point contact 
problem. We then apply this scheme to solve the special case of 
a relaxation test. Section 6 compares the numerical results with 
experimental data. This is followed by Summary and Discussion.

2. Problem formulation and Geometry
The geometry consists of a rigid sphere of radius R lying above 
an elastic half space which is immersed in a fluid with viscosity 

 (Fig. 1). A cylindrical coordinate system  is used to   r ,z
specify position, with z = 0 corresponding to the undeformed 
surface of the elastic half space, which occupies z < 0. In the 
following, we make the usual approximation that deformation 
is restricted to a small region near the south pole of the sphere 
so that its surface can be approximated by a paraboloid.  The 

initial film thickness profile is defined by ,  
2

00
2
rh r,t z
R

  

where  denotes the initial position of the sphere bottom. 0 0z 

At this position, the system is quiescent and there is no pressure 
acting on the substrate; as a result, the vertical displacement of 
the substrate, denoted by , is zero everywhere. Here we  w r,t
have made the usual thin film approximation that the 
deformation is restricted to a small region near the south pole 
of the sphere so its surface can be approximated by a 
paraboloid. The substrate is assumed to be linearly elastic with 
Young’s modulus E and Poisson’s ratio . 

Fig. 1 (a) Geometry of a rigid sphere in lubricated contact with an elastic half space. 

The original position of the bottom of the sphere is at . (b) The sphere is pushed z0

downwards with a constant velocity v. The solid line denotes the surface of the 
sphere at time t. 

       We allow only vertical indenter motion, so the center of the 
sphere is directly above r = 0 and its position is completely 
specified by its vertical coordinate . The liquid film  z t

thickness,  is given by h r,t
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                             .                   (2)     
2

2
rh r,t z t w r,t
R

  

Note in our coordinate system, for positive pressure.   0w r,t 
The axisymmetric Reynolds equation for hydrodynamic 
lubrication in cylindrical coordinates is:24   

                            ,                  (3)
31

12
h rh p
t r r r

   
     

where p is the hydrodynamic pressure and h is given by eq. (2). 
To evaluate the gap or film thickness h in eq.(2),  one needs the 
elastic displacement w which is related to the pressure by:25

                  ,                   (4)   
 2

0

4 4
*

u ruw r,t p u,t K du
E u r u r

  
  

   


where  is the plane strain modulus of the half  21*E E /  

space and K is the complete elliptical integral of the first kind. 
Equations (2-4) are the governing equations for EHL for our 
geometry. 

2.1.  Special case:  Relaxation test

An example of a point contact problem that has not been 
previously studied is the relaxation test. In this test, the sphere 
represents the tip of a rigid indenter. At time t = 0, it starts to 
move downwards at a fixed speed v0 until  (loading phase). ct t
At the end of the loading phase the indenter has travelled a 
distance . After the indenter position is fixed 0c cd v t 0c ct d / v
(hold phase). Specifically, the evolution of z in eq.(1) is: 

                                      (5a,b)  0 0

0

0 c

c c

z v t t t
z t

z d t t
  

   

The boundary condition is that the pressure vanishes at  and r  

 at the origin. The latter condition reflects the fact that, 0p
r





because our domain is axisymmetric, we expect the pressure field 
to have a local extremum at r=0. The initial condition for the loading 
phase is 

                                                           (6a,b)  00z t z    00  
dz t v
dt

2.2. Normalization 

We introduce the following normalization to expedite analysis:
 ,  , , ,  ,                              cr r / Rd ch h / d ct t / t cz z / d cw w / d

                                                                      (7a-f)
2



c

Rp p
E d

Here a bar denotes a dimensionless quantity.   Substituting eqs.(7a-
f) into eqs.(2-5) and assuming a constant viscosity   results in 0 

,                 (8a)3h prh
t r r r

        

2

2
rh z w  

                    (8b)  
 22 0

8 4u urw p u ,t K du
u r u r

  
  
   



                                                (8c,d)  0

0

0 1
1 1

z t t
z t

z t
  

   
where

         ,                         (8e,f)
5 2

3 2
0 06

* /
c

/

E d
v R




 0 0 cz z / d

The initial conditions eqs. (6a,b) become:

                                          (9a-b)  0
0

0     1.
t

dzz t z ,
dt 

   

Using eq.(8a) and eqs.(8c,d), the normalized partial differential 
equations (PDEs) for the loading and holding phase are:

 (loading)     (10a)
32

01 1  
2

w r pr z t w t
t r r r

                  

         (hold)         (10b)
32

0 1 1
2

w r pr z w t
t r r r

                 
For the hold phase, we impose continuity of pressure and 
displacement field at . The boundary condition for both eqs. 1t 

(10a,b) is that the pressure vanishes at infinity and  at the 0p
r





origin. 

The force F during relaxation is computed by integrating the 
pressure field and is

                                        .         (11a)   
0

2F t p r,t rdr


 
Using the normalization scheme eqs. (7a-f), the normalized force 

 isF

              .         (11b) 
3 2

0

2 2
/

cE d RF F F p r ,t rdr




   
Equations (10a,b) imply that the solution of the relaxation 

problem depends on two dimensionless parameters,  and  .   Let 0z 

us consider the physical meaning of these parameters. In a relaxation 
test,  means indentation is smaller than the initial 0 0 1cz z / d 

separation between the spherical indenter and the soft substrate. 
This means that it is not possible to drain the fluid underneath the 
indenter sufficiently to establish solid/solid contact. For this case, 
flow will continue until pressure vanishes everywhere during the 
hold phase. This results in the indentation force approaching zero at 
long times. On the other hand, when , indentation is large 0 1z 

enough so all the fluid underneath the indenter is eventually drained. 
For this case, the indentation force is non-zero at long times. The 
parameter  in eq.(8e) is the ratio of flow velocity generated by 

hydrodynamic pressure which scales with  to the flow 1 1 2
0 cR E d   

velocity cause by indentation,26 i.e.,  . Physically, large 0 cv R / d

indentation speed, high viscosity, soft substrate and small 
indentation reduce flow and hence decrease .   In the following we 
will explore more precisely how some of these parameters control 
the relaxation process. Here we give an estimate of  for soft 
materials. The indenter speed  can vary by several orders of 0v

magnitude in an experiment, typically from 1 μm/s to 1 mm/s.  For 

Page 3 of 9 Soft Matter



ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

soft solids such as PDMS the plane strain modulus  Pa. 64 10*E :

For a moderately viscous liquid,  Pas. Taking  mm, 0 1.  1R 

 μm, we find . For very stiff solids such as metals, 10cd  410 10 

 can be extremely large, since  can be six orders of magnitude  E

higher.  In this case, other assumptions such as isoviscosity (see eq. 
1) and incompressibility of the lubricant, are often inaccurate.

3. Materials and Methods

3.1.  Sample fabrication

Poly(dimethylsiloxane) (PDMS) samples about 2 cm x 2 cm x 
5mm were fabricated based on a silicone elastomer kit (DOW 
SYLGARD 184, DOW Corning). The elastomer base and curing 
agent were mixed in a ratio of 10:1, and the mixture was cured 
for 2 hours at 80 ℃. 

3.2.  Relaxation Experiment

Load and displacement of an indenter made of a glass bead (2 
mm radius, McMaster-Carr) indenting a flat lubricated PDMS 
sample were measured and recorded by a custom-built flat-on-
flat tribometer (see 26 for description). The PDMS strip as 
prepared was mounted on the flat-on-flat tribometer and 
silicone oil (100 Pa-s at 25 ℃, Sigma-Aldrich) that served as 
lubricant was added on the top surface of the PDMS sample. 
After adding lubricant, the indenter was slowly (0.001 mm/s) 
brought down until the indenter contacted the sample, as 
detected by a load cell. Then the indenter was lifted up a 
distance of 140 µm (i.e.,  = 140 m), and the system was 0z
allowed to relax for a few minutes.  This was followed by moving 
the indenter rapidly downward at a constant velocity of 0.1 
mm/s for (a) 126 µm (dc/z0 = 1.11), (b) 140 µm (dc/z0 = 1), or 
(c) 154 µm (dc/z0 = 0.91). Indenter motion was then halted 
abruptly and the indenter was subsequently held in place.  The 
normal force and the position of the indenter were recorded 
during this process as a function of time.  Based on collected 
data, the corresponding ,  and  were calculated and  𝒕 𝑭
compared with numerical solutions.

4. Behavior of the solution in different regimes
Before diving into numerical methods and calculations, we 
discuss several special cases where approximate solutions can 
be obtained. These solutions give physical insights on the 
relaxation process and serve as a check of our numerical 
method.

4.1.  Asymptotic solution for large 

As noted above,  is typically much greater than one.   For this 
case, eq.(10a) suggests looking for a solution where the 
pressure is of order  . Hence, the displacement of the 1 / 
substrate is also of order  and can be ignored relative to 1 / 

. Substituting  into eq.(10a) and keeping 
2

2
rz   ˆp p r ,t / 

only leading order terms, eq.(10a) becomes:

                     (12a)  
321

2
ˆdz r pr z t

dt r r r

           
1 t 

Equation (12a) can be integrated with respect to the spatial 
coordinate; the resulting hydrodynamic pressure is

                                  (12b) 
22

4 2
z rp z t



 

  
 

&

where . Note this solution is valid only for short z dz / dt&
times or sufficiently low pressure where elasticity can be 
neglected. For example, the pressure given by eq.(12b) depends 
on  --it becomes unbounded at the origin  as . z 0r 0z 
Indeed, for  (large indentation), the pressure predicted by 0 1z 

eq.(12b) becomes unbounded at  as  since 0r  1t 
 reaches zero at  (recall that holding occurs 0z z t  0 1t z 

at ).  Thus, for large indentations, eq.(12b) is valid only for 1t 
short times . On the other hand, for small indentations 1t 
where , the pressure given by eq.(12b) is valid for the 0 1z 

entire loading phase provided that . For this case, 1 
eq.(12b) can be used as the initial condition for eq.(10b). 

4.2.      Long time solution for the relaxation problem:  

Relaxation is governed by eq.(10b).  Here we note that a natural 
time scale in the holding phase is obtained by renormalizing 

time t as  where . c Rt t t / t t / t   %
3 2

0
3 2

6 /

R c/
c

Rt t /
E d
  

Later, we shall see that  is the characteristic relaxation time. Rt
With this new normalization, eq.(10b) is:

                    (13)
32

0
1 1           

2
w r pr z w t
t r r r


                

%
%

Consider first the regime of large indentation where .  In 0 1z 
this regime, we expect most of the fluid will be squeezed out at 
long times and the pressure field is given by the classical Hertz 
theory 25:

     (14)    2
0 01 1

0

z r r r zp r ,t
r r




        


%

where  is the normalized contact radius. 01r z  

Mathematically, this can be seen by noting that  

      (15) 
2 2

0 01 0 1
2 2
r rh r r ,t z w w z

 
             

 
%

is the Hertz contact condition and satisfies eq.(13) exactly for 
. Thus, for , the long-time indenter force is r r 0 1z 

positive and should plateau to (using Hertz theory and eqs. 
(11a,b))

                     (16)   3 2 3 2
0 0

4 2 1
3 3

/ /
c

E RF d z F z

     

The situation is more complicated for . There is no simple 0 1z 
analytical solution for the long-time pressure distribution other 
than the fact that it decays to zero everywhere so . The 0F 
behavior in this regime will be explored numerically in sections 
5 and 6. 
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5. Numerical Method
In the following, we focus on the numerical solution of the 
general case where h is given by eq.(2). Without loss of 
generality, we use the same normalization as eqs.(7a-f), except 
that time t is normalized by T,  i.e., , where T is a t t / T
characteristic time in the problem.    T varies from problem to 
problem. For example, in the relaxation problem, 0 0 cT z / v t 

. We discretize time into equal steps, . We   0 1jt j t , j , ,...  

replace the infinite interval  by a finite interval  0r , 

 and discretize it into N equally spaced points , i.e., 0r ,L    ir

,  .  Denote solution at time step j at to 1i ir r r    1 i N  ir
be  .   The differential equation eq.(8a) can be written as: j

ip

                 (17a)
 

   

2
3

2

2 313

w dz pm r ,t
t dt r

w p pm r ,t r m r ,t
r r r r



 

  
         

                       

where . The 1st and 2nd spatial    
2

2
rm r ,t z t w  

derivatives of pressure at time step  j+1 are computed using 

 ,  ,           (17b,c)
 

2 1 1 1
1 1

22
1

2j j j
i i i

j

p p p p
r r

  
 



  


 

1 1
1

1

j j
i i

j

p p p
r r

 




 


 

The time derivative is computed using:

,      (18a,b)
1

1

j j
i i

j

w w w
t t





 


 

1

1

j j

j

dz z z
dt t










This is a backward Euler discretization that is first-order 
accurate and due to its implicit nature provides greater 
numerical stability compared to an explicit Euler discretization. 
The key is to avoid solving a nonlinear equation, thus negating 
the need to iterate which is the main source of difficulty. This is 
accomplished by evaluating  and the spatial derivative  m r ,t
of displacement at the previous time step j, i.e.,

  and       (19a,b)
2

2
j j ji

i i
rz w m

 
   

 
1

j j
i iw w w

r r
 


 

where .This hybrid method preserves stability and  j
jz z t

allows us to solve a linear problem at each time step.  After 
some algebra, the discretized version of eq.(17a) is 

         

     
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3 2 3 21 1 1

1
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3 1 1

1

2

2 1

j j j j j j j j j
i i i i i i i i i

j j j j j
i i i

r
w m m n r p m m n r p

t

r
m p w z z i N

t





  


 


                


       



                                                                                           (20a)

where  .        (20b)13
j j j

j i i i
i i

i

w w mn r
r r

 
    

In order to evaluate the displacement field  at time step j, we jw
assume the pressure distribution within the domain 

 is uniform and equal to , where  2 2m mr r / , r r /    j
mp

 (Fig. 2). Within the domain , the pressure 2 m N   0 2, r /

is .1
jp

Figure 2. Discrete pressure distribution within each spatial step is used to create the 
algebraic set of equations.

The integral connecting pressure to displacement field eq.(8b), 
is evaluated numerically according to:

                          (21a)
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
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
where

                        (21b,c)
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i i

r r / i
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i i

u urˆ ˆw K du , w
u r u u r

u urK du
u r u u r











 
  
   

 
 
   




It is important to note that  and  in eqs.(21b,c) are 1iŵ imŵ
independent of pressure and surface displacement and hence 
need to be determined only once and stored as a vector. This 
further speeds up the numerical procedure.  Physically,  are imŵ
influence coefficients for the displacement at a field point due 
to the pressure at a source point. The boundary conditions are:  

 and . The cylindrical coordinate 2 1

0

0
j j

r

p p p
r r

 
 

 
0j

i Np  

system causes a singularity at the origin ( ) (see 1 0r r 
eq.(8a)). Here we bypass this difficulty since eq.(20a) is for 

. We simply enforce boundary conditions using2 1i N  
                                               (22a)1 2

j jp p

                                                     (22b)0j
i Np  

Equations (20a), (21a) and (22a,b) constitute a linear system of 

equations for the pressure and displacement in the   1 thj 

time step once the pressure and displacement in the jth time 
step are known.  No iteration is needed. The matrix associated 
with this linear system of equations is given in the Appendix. It 
should be noted that in many applications, e.g., in the relaxation 
problem consider in this work,  is a known function of time so z

can be evaluated exactly so the discretization eq.(18b) dz / dt
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is not necessary. In certain cases, such as the collision problem 
of Davis,18 is determined by solving two first order linear z
ordinary differential equations (ODEs) in time.  

In our numerical technique, one starts the simulations with 
 (  can be found using eq. (21a)). The initial position of 1 1

iz , p 1
iw

the indenter/sphere, , is known from initial condition. In 1z
many problems, the system is initially quiescent, with zero 
pressure everywhere. However, for the ideal relaxation 
problem, there is a sudden pressure jump at  as indicated 0t 
by eq.(12).  For  and for initial film thickness that is large 1 
in comparison with elastic displacement, an excellent choice for 

 is to use eq.(12b). For this case, the error will be small even 1
ip

if one use  since these conditions imply small pressure 1 0ip 

. However, eq.(12b) should not be used if these  1 / :

conditions are not met, for example, if  is not large. A simple 
way to bypass this issue is to ramp the velocity of the indenter 
or sphere quickly from 0 to , which is exactly what is done in 0v
real life.  This can be accomplished by starting the simulation at 
an earlier time,   when the system is quiescent so1 0t t  

 and define  1 0p r,t t  

         for          (23) 
2

0
12

tz t z t
t

 
   

 
1 0t t  

6. Special case: Relaxation test

6.1.  Convergence Test

We apply our numerical scheme to simulate the relaxation test. 
First, we carried out a convergence test by changing the 
element size ( ) and time step size ( t) or domain size (L). r 
Fig. (3) plots the pressure distribution at the end of the 
relaxation test for a large indentation test where  for 0 0 5z .
different meshes, time steps and domain sizes. Note that our 
choice of  implies that the elastic displacement is twice 0 0 5z .
of the initial thickness of the fluid layer, yet we have 
encountered no numerical difficulties. The numerical solutions 
lie right on top of each other. In the following calculations, we 
will use ,  and .0.01r  0.001t  4L 

6.2.  Results: Relaxation Test

Figs. 4a-c plot the pressure distribution for different normalized 
indentation depths  and normalized time  for . The 0z t 100 
pressure in the loading phase ( ) is shown by solid lines.  For t  1
the holding phase where , pressure distributions are t  1
indicated by dashed lines. For large indentation, , the .z 0 0 5
short time and long-time asymptotic solutions are shown for 
comparison. In this case the long-time pressure distribution 
matches the Hertzian profile (eq. 14), as expected. For small 
indentation where  (Figs. 4b,c), pressure increases 0 2z 
transiently and then decays rapidly to zero in the hold phase. 
(at the time scale of ,  in Fig. 4c corresponds to 1

R ct t  t  10
).  A further check of our numerical scheme is to /c Rt t t 10 10

compare the long-time pressure with the Hertz pressure eq.(14) 
which is indicated by the black symbols (o).    If our numerical 
scheme is accurate, the long-time pressure for should 0 1z 

converge to the Hertz pressure for long times, which is the case 
in Figure 4a. Figs. 5a-c show the film thickness profile for 

different indentations at different times. As expected, for small
      
Figure 3. Pressure distribution at the end of the relaxation test for a large indentation 

test where  for different mesh, time step and domain sizes. 0 0 5z .

indentation depths ( , Fig. 5b,c), a thin layer of fluid z 0 1
remains on the entire interface. However, for indentation 
depths  (Fig. 5a, ) , most of the fluid in the pocket z 0 1 .z 0 0 5
formed by the deformation of the elastic substrate has been 
squeezed out by . The surface displacement of the 5t 
substrate for different indentation depths at different times is 
shown in Figs. 6a-c. For small indentation depths , Fig. z 0 1
6(b,c), the substrate surface rebounds to its original flat state 
for .    This is not the case for larger indentation depths 5t 
where . For these cases, the Hertz pressure causes z 0 1
permanent substrate deformation (Fig. 6a).

6.3.  Comparison Between Experiment Results and Numerical 
Solution

As a further check on our numerical solution and lubrication 
model, we performed relaxation experiments as described in 
the Experimental Methods section. To compare experimental 
and simulation results, we converted dimensionless variables to 
dimensional values based on equations (7a-f) and (11a,b).  Figs. 
7a-c show the comparison between numerical solution and 
experimental results for a fluid viscosity of 100 Pa-s (as provided 
by the manufacturer) and Young’s modulus of 2.94 MPa, a 
reasonable value for Sylgard-184 PDMS.   Since PDMS is almost 
incompressible, we set  .   It is evident that experiments .  0 5
and numerical solutions are in excellent agreement. 

7. Discussion and Conclusion

We developed a new numerical scheme to solve lubricated 
normal elastic point contact problems. We applied this 
numerical technique to simulate a relaxation test. We provide 
simple analytic expressions for short- and long-time behavior. 
We also conducted relaxation experiments on a glass 
(indenter)/silicone oil (lubricant)/PDMS (substrate) system to 
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test our model and numerical scheme. We found excellent 
agreement between our numerical solution and experimental 
data. Our numerical method is stable, highly efficient and fully 
automatic.   

Figure 4. Normalized pressure distribution as a function of normalized time for different indentation depths. Results during loading phase  are shown by solid  t  1
lines. Results during holding phase  are shown by dashed lines. (a) Large indentation: ; symbols (short time (x), long time (o)) are asymptotic results (eq.  t  1 .z 0 0 5
(12b) and eq. (14))., (b) transition case:   (c) small indentation: .   z 0 1 z 0 2

Figure 5. Normalized liquid film thickness profile as a function of normalized time. Time profiles during loading phase   are shown by solid lines. Profiles during  t  1
holding phase  are shown by dashed lines. (a) Large indentation: , (b) transition case:   (c) small indentation: .  t  1 .z 0 0 5 z 0 1 z 0 2

Figure 6. Normalized substrate surface displacement profile at different times. Results during loading phase  are given by solid lines. Results during holding  t  1

phase  are given by dashed lines. (a) Large indentation: , (b) Transition case:   (c) Small indentation: .  t  1 .z 0 0 5 z 0 1 z 0 2

      
0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

0.05

Numerical Solution
Experimental Results
Hertz Theory

Figure 7. Comparison between numerical solution and experimental results based on 100 Pa s silicone oil and PDMS Young’s modulus of 2.94 MPa for (a) z0 / dc = 1.0, ∙
(b) z0 / dc = 1.11, and (c) z0 / dc = 0.91. The short black line on the right-hand side shows the fully-relaxed solution for force given by eq. (16).
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      The geometry in this paper is mathematically equivalent to 
the normal lubricated contact of two elastic spheres provide 
that R in (1) is replaced by the reduced radius which is related 
to the radii of the spheres  and by 25 .  1R 2R 1 1 1

1 2R R R   
Likewise, the plane strain modulus of the half space in (3) E

should be replaced by the reduced modulus:
                            ,        (24)   1 2 1 2

1 1 2 21 1 1*/ E E E     
where  are the Young’s moduli and Poisson’s ratios of the i iE ,
spheres. With these simple modifications, our numerical 
method can be used to analyze lubricated contact of elastic 
spheres.  Also, with a bit of effort, one can use a variable mesh 
(e.g., a finer mesh at the location of large pressure gradient) or 
variable time steps. 
      The numerical method used in this work assumes a constant 
time step and a uniform spatial mesh which is easy to 
implement but less efficient. In some problems, it may be useful 
to modify this technique to variable time stepping and non-
uniform spatial meshing. Such modification is rather 
straightforward. Another improvement is to change the current 
time stepping method to more accurate integration schemes 
such as the Runge-Kutta method. In this way one can take larger 
time-steps. Also, it is not difficult to generalize our numerical 
method to include pressure dependent viscosity. In addition, 
since the Green’s function for elastic substrate with finite 
thickness is known,27 our numerical scheme can be easily 
modified to account for an elastic substrate with finite 
thickness. This method can also be extended to study 
viscoelastic substrates. As noted in the Introduction, there is 
considerable interest in problems where the surfaces are not 
smooth.  Our numerical formulation should readily 
accommodate spatially varying surface profiles and be 
applicable to this class of problems.  Other EHL problems such 
as lubricated sliding of a sphere can be more difficult to solve 
because of increased complexity such as loss of axisymmetry.  
These modifications and extensions will be studied in future 
works. 
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Appendix

Equations (24) – (26) form a linear system of equations.  In 
matrix form:
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     For the loading phase of the relaxation test, we get rid of the 
last two rows and columns of the matrix (the matrix is 2N by 2N) 

and use  in , where 1jz j t  
2

2
j j ji

i i
rm z w

 
   

 

   3 2
2j j j j

i i i iA m m n r   , , ,    3 2j j j j
i i i iB m m n r    3j j

i iC m

, , ,  
 2

j j
i i

r
E w

t


 


 2r
D

t


 


4 c
i i

t

tF f
S


  2r

G



 

Force control:
1

11 12 1 1 1
1

21 22 2 1 2

1
1 2 1

1
1

1
2 2 2 2

3 3 3

1
1 1 1

1 2

ˆ ˆ ˆ1 0
ˆ ˆ ˆ1 0

ˆ ˆ ˆ1 0
0 1 1

0
0 1

0 0
1

j
N

j
N

j
N N N N N

j

j j j j

j j j

j j j
N N N

j
N

N

w w w w
w w w w

w w w w
p

D C A B G p
D C A B G

D C A G p
p

F F F
t















  



 
 
 
 
 
 
 
 
 
 

 
  
 

  
 
 
 
 
 
 
 
  

L
L

O M M O M M

O O M M

L

2

1
1

1

1

0
0

0
0

0

j

j
N

j

jj

E

E

Fv
zz







   
   
   
   
   
   
   
   
   
   
      
   
   
   
   
   
   
   
   
   
   

  

M

M

this difficulty is removed by noting that  

      (25a)
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The second term in (20a) can be evaluated using L’Hopital rule 
and we get

              (25b)
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Substituting (25b) into (25a), we obtain
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                                                                                                        (25c)
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Thus, for the first node, i =1, (20a) discretizes to:

                           (26d) 
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