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Molecular Dynamics Studies of Entropic Elasticity of Condensed 
Lattice Networks Connected with Uniform Functionality f = 4  
Katsumi Hagita,*a and Takahiro Murashimab 

To study the linear region of entropic elasticity, we considered the simplest physical model possible and extracted the linear 
entropic regime by using the least squares fit and the minimum of the mean absolute error. With regard to the effect of the 
fluctuation of the strand length Ns, the strand length with fluctuation was set to a form proportional to (1.0 + C (R − 0.5)), 
where R is a uniform random number between 0 and 1 and C is the amplitude of fluctuation. This form enabled us to 
analytically calculate the fluctuation dependence of the elastic modulus G. To reveal the linear regions of entropic elasticity 
as a function of the strand length between neighboring nodes in lattices, molecular dynamics (MD) simulations of condensed 
lattice networks with harmonic bonds without the excluded volume interactions were performed. Stress-strain curves were 
estimated by performing uniaxial stretching MD simulations under periodic boundary conditions with a bead number density 
of 0.85. First, we used a diamond lattice with functionality f = 4. The linear region of the entropic elasticity was found to 
become larger with the increasing number of beads in a strand Ns. For Ns = 100, the linear region had a strain of up to 8 for 
a regular diamond lattice. We investigated the effect of strand length fluctuation on the diamond lattice, and we confirmed 
that the equilibrium shear modulus G increases as the obtained analytical prediction and the linear entropic region in the 
stress-strain curves becomes narrower with increasing fluctuation of Ns. To investigate the difference in network topology 
with the same functionality f and uniform strand length Ns, we performed MD simulations on regular networks of the BC-8 
structure with f = 4 prepared from the ab initio DFT calculations of carbon at high pressure. We found that the elastic 
behavior depends on the network connectivity (i.e., topology). This indicates that the network topology plays an important 
role in the emergence of nonlinearity owing to the crossover from entropic to energetic elasticity.

Introduction 
 
Rubber elasticity has attracted increasing academic and 
industrial interest.1-5 In particular, suitable molecular dynamics 
(MD) simulation methods and theories need to be developed 
for crosslinked rubbers that show linear entropic elasticity even 
under a large deformation. Theories could be evaluated and 
confirmed directly through large-scale MD simulations in which 
the spatial scale relations correspond to experimental ones. 

Crosslinked polydimethylsiloxane (PDMS) rubbers can show 
linear elasticity over a wide strain region for strains exceeding 
10.6 For example, Sakai7,8 and Shibayama9,10 reported tetra-
polyethylene glycol (PEG) gels with high stretchability. 
Nonetheless, the relationship between the network topology of 
crosslinked polymers and nonlinear behaviors must be clarified 
because some crosslinked rubbers exhibit nonlinear behaviors 
at lower strain regions. According to the foundational work of 
Pincus,11 the excluded volume (EV) effect leads to the 

nonlinearity observed under high elongation when both ends 
are stretched further than the Flory radius of unperturbed coil. 
Recently, Katashima12 confirmed that the extended Gent model 
in uniaxial and biaxial stretching measurements on Tetra-PEG 
gels. In biaxial stretching, the cross term due to the EV effect 
was significant. Contrarily, there was no cross-term 
contribution due to the EV effect in uniaxial elongation. Further, 
the EV effect was found to be essential in gel swelling. 

For the uniaxial elongation of gels in solvents, the bond 
stretching effect owing to chain crossing prohibition was 
considered minor even in the high-strain region, although 
solvent-free rubber materials showed nonlinear elasticity in this 
region. Very recently, elastic polymer networks have been 
theoretically investigated while ignoring the EV effects13-22; 
however, direct confirmations through MD simulation have not 
been obtained. A simulation-based study can conclusively track 
the emerging nonlinear elasticity in the high-strain region as a 
function of chain length; therefore, we conducted large-scale 
MD simulations. As mentioned above, the threshold strains 
were expected to depend on the connectivity (topology) of the 
polymer network under the uniaxial elongation. Thus, 
theoretical studies have used models that allow chain crossing 
to investigate the elasticity of gels and/or rubbers. For example, 
Johnson et al.13-15 extensively examined the topological effects 
on the polymer elasticity of real Gaussian phantom networks. 
They developed a real elastic network theory (RENT) to consider 
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the effect of cyclic defects in the phantom network. Lang16-20 
studied the elasticity of polymer model networks with cyclic 
defects extensively. Panyukov21,22 investigated the effects of 
loops in polymer networks. 

These recent studies13-22 have aimed to extend classical 
theories such as the affine network model (ANM)23-25 and 
phantom network model (PNM)26-28 to account for the effect of 
defects such as loops. Generally, the shear modulus G can be 
calculated as: 

𝐺𝐺 = (𝜐𝜐 − ℎ𝜇𝜇)𝑘𝑘𝐵𝐵𝑇𝑇, (1) 

where ν and µ denote the number of elastically active strands 
and junctions in the network, respectively; kB is the Boltzmann 
constant; T is the temperature; and h is a factor characterizing 
the model. For h = 0 and 1, Eq. (1) gives G for an ANM and a 
PNM, respectively. For PNM, by using the functionality f, Eq. (1) 
can be rewritten as GPNM = (1−2/f)νkBT. 

In MD simulations, reproducing the linear entropic elasticity 
up to high strains is currently difficult. Among pioneering MD 
simulations of crosslinked networks, Everaers and Kremer29-31 
investigated the elastic modulus of a diamond lattice network, 
and Grest et al.32,33 investigated that of an end-link gel with 
random crosslinking. To estimate the elastic properties of the 
Gaussian polymer networks of random end-link gels, Gusev et 
al.34-36 performed MD simulations using two MD models: (1) 
harmonic bonds without the Lennard-Jones (LJ) interaction,35 
and (2) finite extensible nonlinear elastic (FENE) bonds with the 
LJ interaction restricted to nearest and next-nearest neighbor 
beads along the chains.36 They estimated the shear modulus G 
from the terminal plateau behaviors of G(t) and by fitting the 
nominal stress for a small strain region (i.e., strain less than 1.1). 
Notably, they reviewed35 the correspondence between typical 
rubbers and Kuhn monomers. Because a strand of typical 
rubbers had 100 − 1000 skeletal bonds and a Kuhn monomer 
had ~ 10 skeletal bonds, the strand of typical rubbers had ~ 10 
− 100 Kuhn monomers. Based on this estimation, a network of 
up to 60 springs per strand was investigated.  

Among theoretical studies that compared the shear moduli 
of regular lattices with f = 3, 4, 6, and 8, Toda and Morita37 
performed MD simulations of polymer chain models using FENE 
bonds with and without the excluded volume interactions. They 
obtained the equilibrium shear modulus G by fitting the nominal 
stress σn to the following approximated equation: 

𝜎𝜎𝑛𝑛 = 𝐺𝐺 �𝜆𝜆 −
1
𝜆𝜆2� , (2) 

where λ is the strain (stretch ratio). The fitting region was 
expected to be limited because nonlinear behaviors arise from 
a function form of the FENE potential. In addition, the choice of 
the fitting region may be inconclusive because the dependence 
of stress values on the stretching rate in the low-strain region 
was not negligible, as reported in the present study. Because 
the strand length was not large enough in their work, the high 
stretching of the PDMS rubbers and tetra-PEG gels was not 
reproduced. 

To reproduce the linear entropic elasticity of the PDMS 
rubbers and tetra-PEG gels under high strains, using a long 

strand length and avoiding artifacts due to a nonlinear spring 
were essential. Treloar38 theoretically investigated the need for 
long chains to obtain a wide linear region for stretching. In the 
present study, MD simulations of polymer chain models were 
conducted using the linear spring of a harmonic potential 
without the EV effect. If MD simulations are performed without 
the EV effect for biaxial stretching and gel swelling, the results 
might be meaningless because the crossing prohibition is 
nonnegligible, as shown by Katashima et al.12 By contrast, for 
theoretical studies of uniaxial elongation, MD calculations 
without the EV effect are meaningful to decompose and 
factorize several effects. In particular, understanding the 
emerging nonlinear elasticity in the high-strain region as a 
function of strand length provides insights to relate theoretical 
polymer networks to actual ones. 

The remainder of this paper is organized as follows. The 
second section explains the simulation method for a polymer 
chain model of a linear spring. The third section presents 
analyses of the stress-strain relations of a regular diamond 
lattice with a unique strand length. The fourth section 
investigates regular diamond lattices with randomly fluctuating 
strand lengths. The fifth section discusses the typical behaviors 
of regular networks with different topologies. Finally, our 
conclusions are summarized in the last section. 

Simulation method 
 
In the present study, we performed coarse-grained (CG) MD 
simulations with a linear spring of a harmonic potential. For this 
purpose, we used the MD simulation software LAMMPS.39 

In the present model, the pair potential for every pair of 
beads is given by: 

𝑈𝑈pair(𝑟𝑟) = 0, (3) 

where r is the distance between the beads. For bonded beads, 
the harmonic potential was applied: 

𝑈𝑈𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏(𝑟𝑟) = 𝐾𝐾(𝑟𝑟 −  𝑟𝑟0)2, (4) 

where K = 40 ε/σ 2 is the spring constant, and r0 is the natural 
bond length of the linear spring. For comparisons with other 
models, such as the Kremer-Grest model,40 we set r0 = 0.975 σ. 
The prepared polymer networks were placed in a box under 
periodic boundary conditions (PBCs) with a bead number 
density of 0.85. The bead dynamics in our model were described 
by the Langevin equation with a friction constant ζ = 0.5 m/τ 
and temperature T. Here, the unit of T is ε/kB. The time scale is 
given by τ = σ (m/ε)1/2, where m is the mass of a monomer. The 
velocity Verlet algorithm was used for numerical integration of 
the Langevin equation with a time step ∆t = 0.005 τ. For 
simplicity, we set m = ε  = σ  = τ  = 1 hereafter. 

For preparing polymer networks, we obtained the regular 
lattice of carbon from ab initio density functional theory (DFT) 
calculations using Quantum Espresso.41 Diamond and BC-8 
lattices42-45 can be obtained under low and high pressures, 
respectively. The BC-8 structure had a backbone structure 
similar to a nested K4 lattice46 (also recognized as a double 
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gyroid,47,48 nested network of SRS,49 etc.) which is known to be 
a double network with f = 3. To achieve a smaller energy at a 
high pressure, the carbon lattice was weakly deformed to 
produce sp3-bonds with f = 4. To make a polymer network, the 
sp3-bond of these carbon lattices was replaced by a strand with 
some number of beads (Ns). Because the lattice constant of the 
unit cell depends on the atomic species, DFT calculation is 
required to specify the lattice constant. 

Figure 1 shows the lattice structure of the diamond and BC-
8 lattices. Cross-sectional views of the BC-8 lattice reveal 
anisotropy in one direction. Here, the numbers of bonds and 
nodes (nbond and nnode, respectively) in the unit cell of the 
diamond and BC-8 lattices were (nbond, nnode) = (16, 8) and (32, 
16), respectively. For ncell unit cells, the total number of beads 
Nt is given by ncell × (nbond Ns + nnode). 
 

 
Fig. 1 Schematic view of (a) regular diamond and (b) BC-8 
lattices. 
 

Stress-strain relations of elongated diamond 
lattice network with uniform strand length 
 

Stress-strain relations and estimation of linear region 

 
First, we investigated the case with Ns = 100. For this system, Nt 
= 201,000. Figure 2 shows the stress-strain curves under a 
stretching rate of 10−5. From a least square fit to Eq. (2), the 
fitted value of G was 0.0023821 for the strain range of 1.0 − 8.1, 
where the upper limit λu = 8.1 of the strain range was 
determined so as to minimize the mean absolute error (MAE). 
From Fig. 2, λu = 8.1 can be considered the onset of the 
nonlinear region. 

 
Fig. 2 Stress-strain curve of polymer network of regular 
diamond lattice with Ns = 100 under dλ/dt = 10−5. Red line 
represents data points obtained from simulation; green line 
represents the fitting curve to Eq. (2); and blue line is a linear 
function. 
 

The stretching rate of 10−4 was selected for this study 
because the difference between (dλ/dt =) 10−4 and 10−5 is 
negligible, as illustrated in Appendix A. Additionally, for dλ/dt = 
10−3, the apparent linear region appears to have widened due 
to poor fitting in the low-strain region. Furthermore, the dλ/dt 
value of 10−4 corresponded to the G and λu values of 0.0024238 
and 8.2, while the dλ/dt value of 10−3 corresponded to the G 
and λu values of 0.0025207 and 11.5, respectively. These 
findings suggest that a sufficiently low stretching rate should be 
used to determine the upper limit λu.  

We concentrated on a density ρ of 0.85 in this study because 
it is a common value for polymer melts described by the 
Kremer-Grest model.40 Additionally, the stress-strain curves for 
the cases with ρ = 0.1 and 0.3 are presented in the Appendix C. 
Because decreasing the density expands the corresponding 
network, the apparent linear region becomes narrower as the 
value of ρ decreases. As a result, cases with ρ = 0.85 were 
primarily investigated. 
 
 
Strand-length dependence of stress-strain relations 

 
Based on a one-dimensional model of entropic elasticity, we 
considered that λu was roughly proportional to Ns for small Ns. 
From the CGMD of a stretched single chain with the phantom 
chain model with (K, r0) = (40, 0.975), λu was obtained to be 5.0, 
7.2, and 10.1 for N = 50, 100, and 200, respectively (see 
Appendix D). In addition to the properties of the spring, the 
network structure is expected to affect λu and non-linearity at 
high strain emerges owing to the crossover from entropic 
elasticity to energetic elasticity. To investigate the Ns 
dependence on the nonlinearity in the high-strain region, we 
investigated cases with Ns values of 50 and 200. For these 
systems, Nt was 174,528 and 205,312, respectively.  

Figure 3 shows the stress-strain curve with dλ/dt = 10−4 for 
Ns values of 50 and 200. The fitting to Eq. (2) provided (G, λu) = 
(0.0059993, 5.1) and (0.00097443, 14.2) for Ns = 50 and 200, 
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respectively. In principle, the low-strain region was expected to 
not depend on Ns, as given by Eq. (2). However, notably, the 
deviation due to stretching rate (dλ/dt) dependence increases 
as Ns increases owing to the relaxation time of the strand. It 
should be noted that λu may be roughly proportional to Ns. 
Further, the values of λu = 5.1, 8.2, and 14.2 for N = 50, 100, and 
200 were clearly different from the values (5.0, 7.2, and 10.1) of 
a stretched single chain. We considered that the difference in 
the ratio of number of node points and chain particles has an 
effect, and detailed investigations and theoretical calculations 
of this behavior are in progress. 
 
 

 
Fig. 3 Stress-strain curve of polymer network of regular 
diamond lattice with Ns = (a) 50 and (b) 200 under dλ/dt = 10−4. 
Red line represents data points obtained from simulation; green 
line represents the fitting curve to Eq. (2); and blue line is a 
linear function. 
 

Figure 4 shows the stress-strain curve for Ns = 50. This curve 
could be divided into four characteristic regions, as shown in Fig. 
5: (1) a region depending on the stretching rate at low strain, (2) 
a region exhibiting linear entropic elasticity, (3) a crossover 
region between the entropic and energetic regions, and (4) a 
region characterizing the energetic elasticity. Estimations of the 
threshold values (lower and upper limits of linear region and 
lower limit of energetic elasticity region) are discussed below. 
 
 

 
Fig. 4 Schematic of the stress-strain curve of polymer network 
of regular diamond lattice with Ns = 50 under dλ/dt = 10−4. Two 
different lines (red and blue) represent the same stress-strain 
curve; the nominal stress σn of the red and blue lines is 
represented on the left- and right-hand-side y-axes. The four 

characteristic regions of the stress-strain curve are also 
indicated. 
 
 
Confirmation of entropic and energetic elasticities 

 
In principle, stress values in the linear entropy elastic region 
should be proportional to temperature (T), as well as 
independent of the harmonic potential's spring constant (K). 
Appendix E details the dependence of the stress values on T. To 
investigate the dependence of the stress values on K, we 
investigated the stress-strain curves of the regular diamond 
network for K = 20 under dλ/dt = 10−4 and compared it with the 
curve for K = 40. Figure 5 shows the stress-strain curve for Ns = 
100. The least squares fit provided (G, λu) = (0.0022847, 9.0), 
(0.0025461, 8.1), and (0.0025726, 8.0) for K = 20, 160 and 400, 
respectively. The corresponding plots for K = 160 and 400 are 
given in Appendix A. Thus, the values of G for K = 40, 160, and 
400 were almost the same, and the ratio of the estimated G 
between K = 20 and 40 (GK=20/GK=40) was 1.06. This indicates that 
G does not depend on K and that the linear region observed 
here is attributable to the entropic elasticity. It is worth noting 
that the interaction between bonded particles in the Kremer-
Grest model corresponds to a harmonic chain with K and r0 
values of 490 and 0.961, respectively, as explained in Appendix 
B. 
 

 
Fig. 5 Weak spring-constant dependence of stress-strain curve 
in the crossover region for polymer network of regular diamond 
lattice with K = 20 and 40 under dλ/dt = 10−4, represented by 
green and red lines. Purple and blue lines are the fitting curves 
to Eq. (2) for K = 20 and 40, respectively. 
 

A weak K-dependence was observed in the crossover 
regions of Figs. 5 and 10 (Appendix A). Due to the fact that this 
K-dependence was not proportional to K, it was ascribed to an 
entropic effect caused by the difference in chain stiffness rather 
than an energetic caused by K. 

For clarifying the energetic elasticity arising from bond 
stretching, MD simulations with K = 20 and 40 were performed 
for the cases with short strands Ns = 2, 5, 10, and 25. It was 
expected that the deformation of the network directly affects 
the shorter strands. The corresponding Nt values were 20,480, 
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19,008, 21,000, and 26,112, respectively. Figure 6 shows the 
stress-strain curves for Ns = 2, 5, 10, and 25 under dλ/dt = 10−4. 
We also performed MD simulations at T = 0.2 for Ns = 2 to clarify 
the temperature dependence in the high-strain region. A linear 
region seemingly originating from the energetic elasticity was 
observed in the high-strain region. Here, the energetic elastic 
modulus GE was estimated from the slope of the stress-strain 
curve.  The ratio of the energetic elastic modulus between K = 
20 and 40 (GE,K=20/GE,K=40) in the high-strain region was 
calculated for Ns = 2 and 5; the ratios were 0.500 and 0.501, 
respectively. These ratios directly reflect the difference among 
the spring constants K = 20 and 40. Notably, as illustrated in 
Appendix F, the average bond length was stretched in the 
energetic elasticity region. 
 

 
Fig. 6 Stress-strain curve of polymer network of regular 
diamond lattice with Ns = 2, 5, 10, and 25 under dλ/dt = 10−4. 
Here, T = 1.0. For Ns = 2, the stress-strain curves at T = 0.2 are 
presented. 
 

We try to estimate the thresholds of the linear region shown 
in Fig. 5 for all Ns. Table 1 shows the lower (λl1 and λl2) and upper 
(λu) limit of the linear region (2) and the lower limit (λE0) of the 
energetic elasticity region (4) as well as the corresponding 
elastic moduli (G and GE). λl1 is the lower limit of the linear 
region (2). At the lower limit, the ratio of the stress-strain curves 
for stretching rates of 10-3 and 10-4 is smaller than 1.05. λl2 is 
the lower limit of the linear region (2) as estimated for 
stretching rates of 10-4 and 10-5. λu and G are the upper limit 
and shear modulus of the linear region (2), respectively. λE0 is 
the lower limit of the energetic elasticity region (4). This value 
is obtained as the intersection with the x-axis. GE0 is the 
energetic elastic modulus of the energetic elasticity region (4). 
We confirmed that the linear region becomes wider for larger 
Ns, as noted by Treloar38. 

 
Table 1 Values of the lower (λl1 and λl2) and upper (λu) limit of 
the linear region (2) and the lower limit (λE0) of the energetic 
elasticity region (4) as well as the corresponding elastic moduli 
(G and GE). 

Ns λl1 λl2 λu G λE0 GE0  
2 N/A N/A 1.30 0.27045 3.24 7.3853 
5 N/A N/A 1.69 0.10479 4.96 2.8348 

10 N/A N/A 2.30 0.046403 7.25 1.2375 
25 1.74 N/A 3.97 0.014804 11.5 0.30421 
50 2.70 1.65 5.1 0.0060010 18.5 0.13662 

100 4.70 2.37 8.2 0.0024238 N/A N/A 
200 10.7 4.45 14.2 0.00096692 N/A N/A 

 

Cases with several distributions of fluctuating 
strand lengths 
 
For regular diamond lattices made of linear springs, a 
nonlinearity appears in the entropic and energetic regions. As 
discussed in the previous section, the onset of this nonlinear 
behavior depends on Ns. When Ns fluctuates, it is expected to 
have a large effect on the elastic modulus and onset of 
nonlinearity. In this section, we evaluated the stress-strain 
curves of systems in which each strand length was set as a form 
of 

𝑁𝑁s ( 1.0 +  𝐶𝐶 (𝑅𝑅 −  0.5) ) (5) 

from independent uniform random numbers R between 0 and 
1 with the amplitude C. This form was used simply because 
distributions with different characteristics are generated from 
one parameter, C. Moreover, this form enables us to analytically 
calculate the C dependence of the elastic modulus G. The 
behavior of G can be roughly explained by the effective spring 
constant k of a combination of parallel springs: 𝑘𝑘 = ∑ 𝑘𝑘𝑖𝑖𝑖𝑖 , 
where ki is a spring constant of the i-th spring. In the examined 
model, ki is described as ki = a/[Ns (1.0 + C (Ri − 0.5))]. Because 
Ri is a uniform random variable, the sum can be replaced by the 
integral of the interval [0.0, 1.0]. By using the Maclaurin series, 
[log (1 + C/2) - log (1 − C/2)]/C is approximately 1 + C2/12 for 
𝐶𝐶 ≪ �20/3. 

To confirm the obtained theoretical prediction (1 + C2/12), 
we evaluated G for C = 0.5, 1.0, and 1.5. The above strand length 
distribution function may not directly correspond to the 
experimental setups of Tetra-PEG gels,7-10,12 which use 
commercially available 4-arm PEGs. The commercial 4-arm 
PEGs (-SH / -MAL) is discrete, e.g. 2kDa, 5kDa, 10kDa, 20kDa and 
40kDa. Advanced calculations for discrete 4-arm pre-polymer 
distributions are readily available. 

Figure 7 shows the stress-strain curves for Ns = 100 and 200 
with C = 0.0 (uniform Ns), 0.5, 1.0, and 1.5 under dλ/dt = 10−4 
and 10−5. Table 2 shows (G, λu) obtained from the fitting to Eq. 
(2). The ratio of G for C = 0.5, 1.0, and 1.5 relative to that for C 
= 0.0 was 1.02, 1.06, and 1.14, respectively. Thus, G was 
approximately proportional to 1 + 0.06 C2. Because C indicates 
the irregularity (randomness) from the regular lattice with 
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uniform Ns, it can be concluded that as the irregularity increases, 
the nonlinearity increases. Intuitively, the network with larger 
number of short strands exhibited stronger non-linearity. The 
weak discrepancy of the coefficient for C2 is explained by 
rigorous theoretical calculations for a given network connection. 
These rigorous theoretical calculations are open problems.  
 

 
Fig. 7 Stress-strain curve of polymer network of diamond lattice 
with nonuniform strand length fluctuating around Ns = (a) 100 
and (b) 200 under dλ/dt = 10−4. Plots for dλ/dt = 10−5 are shown 
in Appendix G. 
 
Table 2 Fitting values of the equilibrium shear modulus G and 
upper limit λu of the linear region on the stress-strain curve. 

  Ns = 100 Ns = 200 
dλ/dt C G λu G λu 
10−4 0.0 0.0024238 8.2 0.00097443 14.2 
 0.5 0.0024740 8.3 0.00099335 14.1 
 1.0 0.0025701 8.1 0.00103301 13.3 
 1.5 0.0027566 7.2 0.00110891 12.4 
10−5 0.0 0.0023821 8.1 0.00096692 13.3 
 0.5 0.0024594 8.0 0.00098406 13.0 
 1.0 0.0025478 7.4 0.00102162 12.3 
 1.5 0.0027315 6.7 0.00109451 11.1 

 
According to Sorichetti et al.,50 the elastic modulus 

increased with increasing probability of shorter chains in a 
random network with constant functionality. As illustrated in 
Appendix H, the distribution of short chains increases with the 
increase in the value of C in the network based on Eq. (5). G's 
observed C-dependence could be interpreted as the result of 
short loops. Additionally, the details of the mechanism should 
be investigated further in the future.  

When the molecular weight between crosslinking points is 
not constant but follows a widely spread distribution, the 
randomness increases the stress and the deviation of the upper 
limit strain from the linear entropic line decreases. In other 
words, the linear entropic region becomes small when the 
randomness of Ns is high. 

Demonstration for different network topologies 
with same functionality f = 4 and uniform strand 
length 
 

The previous section clarified that the distribution of strand 
lengths affects the stress-strain curves, that is, the elastic 
modulus G and onset of nonlinear behavior λu. This section 
demonstrates that the stress-strain curves can be affected by 
different network topologies even if the strand length is 
constant. 

First, we investigated the BC-8 structure. The BC-8 structure 
for carbon has a unit cell shape for 16 carbons with a ratio of 
1:1:0.977 based on the structural optimization by DFT 
calculations42-45 at high pressure. In the present study, we 
investigated cases with both cubic and rectangular PBCs for the 
ratio 1:1:0.977. 

For clarity, we investigate the case of a cubic PBC. Figure 8 
shows the stress-strain curves of a polymer network of the BC-
8 lattice elongated independently in the x-, y-, and z-directions. 
Here, the anisotropic direction was the z-axis, and “Top” in Fig. 
1(b) corresponds to the surface perpendicular to the z-direction. 
In this section, the stretching rate (dλ/dt) was set to 10−4.  The 
behavior between the x- and y-directions and the z-direction 
was confirmed to differ owing to the anisotropy of the BC-8 
structure. Further, depending on the network topology, there 
exist a stretching direction in which the stress increases and one 
in which the stress decreases. As shown in Appendix I, the 
results of a rectangular PBC differed slightly from those of a 
cubic PBC. 
 
 

 
Fig. 8 Stress-strain curve of polymer network of BC-8 lattice 
elongated in x-, y-, and z-directions under cubic PBC with dλ/dt 
= 10−4. Green, blue, and purple lines represent the result of BC-
8 lattice stretching in x-, y-, and z-directions, respectively. For 
comparison, the case of diamond lattice is shown with red line. 
 

The elastic modulus G in the x- (or y-) and z-directions were 
estimated from the region of linear entropic elasticity, and the 
ratios among the directions were calculated. Table 3 shows the 
fitting values of G and λu of the linear region on the stress-strain 
curve for the BC-8 network with Ns = 100. The ratios of G in the 
z-direction relative to that in the x- (or y-) directions were 1.34 
and 1.41 times larger for cubic and rectangular PBCs, 
respectively. From the viewpoint of loops in the network,13 the 
difference in elastic modulus between the diamond lattice and 
the BC-8 network was caused by the higher-order loops, 
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although the minimal loop of the BC-8 network was constant. 
The direction dependence in the BC-8 network was the same. 
 
Table 3 Fitting values of the shear modulus G and upper limit λu 
of linear region of stress-strain curve of BC-8 network with Ns = 
100, estimated under dλ/dt = 10−4. 

 Cubic PBC Rectangular PBC 
 G λu G λu 
x-direction 0.0025928 7.3 0.0026391 7.4 
y-direction 0.0025989 7.4 0.0026349 7.2 
z-direction 0.0019326 7.4 0.0018753 7.5 

 
To investigate the relationship between the elastic moduli 

of the entropic and energetic elasticities, the ratio of the 
energetic elastic modulus GE in the x- (y-) direction relative to 
that in the z-direction was calculated for Ns = 2 and 5; the ratios 
were 1.34 and 1.32, respectively. The stress-strain curves for Ns 
= 2 and 5 are shown in Appendix J. The ratio for the energetic 
elastic modulus GE is expected to hold even in the case with Ns 
= 100, because the diamond lattice case discussed above does 
not show the Ns dependence in the energetic elastic region. The 
ratios of the energetic elastic modulus GE for Ns = 2 and 5 are 
very close to the ratios of the entropic elastic modulus for Ns = 
100. Thus, these ratios with close values indicate that the 
entropic and the energetic elastic moduli GE may be coupled 
through network topology. However, for the spring constant 
dependence of the diamond lattice shown above, the ratio  
(GE,K=20/GE,K=40) between K = 20 and 40 of the entropic elasticity 
was exceeded that of the energetic elasticity. These differences 
can be imagined from the comparison of the entropic and 
energetic elasticities between sum of two independent springs 
with K and a single spring with 2K. Both represent the same 
force in the energetic elasticity, while the sum of two springs 
possesses twice the force than a single spring in the entropic 
elasticity. A rigorous theoretical explanation for this issue 
remains an open problem. 

Conclusions 
 
To investigate the linear regions of entropic elasticity as a 
function of the strand length Ns, we performed CGMD 
simulations of condensed lattice networks with harmonic bonds 
without the EV interactions under PBCs with a bead number 
density of 0.85. We observed the stress-strain curves for 
uniaxial stretching with stretching rates dλ/dt = 10−3, 10−4, and 
10−5. The diamond and BC-8 lattices were investigated as 
regular networks with functionality f = 4.  

For a diamond lattice with uniform Ns = 50, 100, and 200, we 
found that the linear region in the stress-strain curves was wider 
for larger Ns. For Ns = 50, 100, and 200, the upper strain limit λu 
of the linear region was 5.1, 8.2, and 14.2, respectively. In the 
low-strain region, stretching rate dependence clearly existed for 
dλ/dt = 10−3 although those for dλ/dt = 10−4 and 10−5 were 
negligibly small. As a result, we found that the stress-strain 
curve can be divided into four regions: (1) a region depending 
on the stretching rate at low strain, (2) a region exhibiting linear 

entropic elasticity, (3) a crossover region between the entropic 
and the energetic regions, and (4) a region characterizing the 
energetic elasticity. We also confirmed the entropic elasticity of 
the linear region from the temperature dependence. 

To investigate the effect of the network topology on the 
stress-strain curves, we examined the diamond lattice network 
with fluctuating Ns and the BC-8 lattice network with uniform Ns. 
Consequently, we found that the linear entropic region 
becomes narrower for a larger fluctuation of Ns. For the BC-8 
lattice network with uniform Ns, the elastic modulus increases 
or decreases depending on the network connectivity (i.e. 
topology). 
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Appendix 
 

A. Stretching rate dependence on stress-strain curves 

 
Then, we investigated the dependence of the stress-strain 

curves on the stretching rate dλ/dt. Figure 9 shows the stress-
strain curves under dλ/dt = 10−4 and 10−3 (exceeding the value 
of 10−5 considered above). Here, (G, λu) was (0.0024238, 8.2) 
and (0.0025207, 11.5) for dλ/dt = 10−4 and 10−3, respectively. 
The apparent linear region seemingly widened for faster 
stretching. This is an artifact due to poor fitting in the low-strain 
region for a stretching rate of 10−3. These results indicate that a 
sufficiently low stretching rate should be applied to evaluate the 
upper limit λu. Because the difference between (dλ/dt =) 10−4 
and 10−5 is negligible, a stretching rate of 10−4 is sufficient for 
the present study. 
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Fig. 9 Stress-strain curve of polymer network of regular 
diamond lattice with Ns = 100 under dλ/dt = (a) 10−4 and (b) 10−3. 
Red line represents data points obtained from simulation; green 
line represents the fitting curve to Eq. (2); and blue line is a 
linear function. (c) Comparison among stretching rates (dλ/dt) 
of 10−5 (red), 10−4 (green), and 10−3 (blue). (d) Magnified view of 
low-strain region in (c). 
 

Figure 9(b) with dλ/dt = 10−3 clearly shows the remarkable 
dependence of the stress-strain curves on the stretching rate 
(dλ/dt) in the low-strain region, although the contribution to 
stress was only from the bond interaction. This behavior was 
caused by the fast deformation compared to the relaxation time 
of a single strand. In uniaxial elongation with a constant 
engineering strain rate, the applied deformation in the higher-
strain region was smaller. Thus, the stretching rate dependence 
in the low-strain region was more significant for larger Ns and/or 
faster stretching rate. It should be noted that increasing the 
number of ensembles to improve statistics is necessary to 
reduce noisy fluctuations in the region of low distortion. 
Because the current study is primarily concerned with the 
behaviors of large strain regions, only cases with dλ/dt = 10−4 
were predominantly investigated. 

Notably, these dependences differed greatly from those in 
the case of the Kremer-Grest model,40 which consists of FENE 
bonds and LJ pairs with the EV interactions, because the EV 
interaction has a large effect on stress in the low-strain region. 
It noted that the effect of the bond potential is very weak, the 
difference in the function form of the bond potential has no 
effect, and the strength of the spring around the equilibrium has 
a weak effect. The dependence of the stretching rate (dλ/dt) on 
the stress-strain curve in the low-strain region may be negligible 
if only the bond contribution to stress is considered. The 

difference from the Kremer-Grest model is described in detail in 
Appendix B. The stretching rate (dλ/dt) dependence in the low-
strain region was concluded to be larger for larger dλ/dt and/or 
larger Ns. 
 

B. Stretching rate dependence on stress-strain curves in Kremer-
Grest model 

 
To present the strong stretching rate dependence on stress-
strain curves in Kremer-Grest (KG) model40 due to the EV 
interaction at the low-strain region), we performed CGMD 
simulations of KG model of the regular diamond lattice with the 
uniform arm length. Here, the initial configuration of the 
diamond lattice was obtained staring from expanded diamond 
lattice without trapped entanglements. 
 Before presenting the effect, we showed that the effect of 
bond potential is due to the spring constant around equilibrium. 
In addition, we clarified that the difference of function forms 
between the FENE and harmonic potentials has no effect. From 
a Taylor series expansion for a potential between bonded beads 
in the KG model, the coefficients (K and r0) of the phantom chain 
model with harmonic bonds without the EV interactions were 
obtained as K = 490 and r0 = 0.961. For comparison, we 
presented the distributions of the bond length as shown in Fig. 
10 (a) for the cases with (K, r0) = (40, 0.975), (160, 0.975) and 
(400, 0.975) in addition to that with (K, r0) = (490, 0.961). Figure 
10 (b) presents stress-strain curves with Ns =100 for (K, r0) = (40, 
0.975), (160, 0.975), (400, 0.975) and (490, 0.961). The least 
squares fit provided (G, λu) = (0.0025461, 8.1) and (0.0025726, 
8.0) for K = 160 and 400, respectively. 
 
 

 
Fig. 10 Distributions of bond length and stress-strain curves for 
the phantom chain models with (K, r0) = (40, 0.975), (160, 0.975), 
(400, 0.975) and (490, 0.961). Here, the size of each bin is 0.05. 
In (a), the distribution for the KG model was presented for 
comparison. 
 

Figure 11 shows stress-strain curves of the KG model with Ns 
= 10, 25, 50, and 100 for dλ/dt = 10−3, 10−4, and 10−5. Here, the 
nominal stresses of the phantom chain model were scaled with 
the factor of 0.6 for all Ns. This universal constant will be 
understood by the microscopic characteristic of the model. 
Research in this direction is open problem. For dλ/dt = 10−3 and 
10−4, strong dependence of stretching rate dλ/dt was observed 
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at the low-strain region. The overshoot observed in the stress-
strain curve of the KG model was more apparent in the higher 
stretching rate. This artificial overshoot was originated from the 
collisions of the beads under rapid drawings out from a blob of 
strands. For the high-strain region, the stress-strain curves were 
in good agreement between the KG and phantom chain models. 
However, this high strain value exceeds the entropic linear 
region determined from Eq. (2). Namely, the KG model with Ns 
≤ 100 does not show the linear entropic elasticity. 
 
 

 
Fig. 11 Stress-strain curves of the Kremer-Grest model (dλ/dt = 
10−3, 10−4, and 10−5) and the phantom chain model with (K, r0) = 
(490, 0.961) (dλ/dt = 10−4). The nominal stress of the phantom 
chain model is multiplied by 0.6 for comparison. 
 
 
C. Density Dependence of on stress-strain curves  

 
The value of the number density ρ can be set arbitrarily for the 
network model that excludes volume interaction between non-
bonding particles. Thus, a ρ value of 0.85 is commonly used as 
the standard value for the Kremer-Grest model, which is 
frequently used to describe polymer melts and cross-linked 
rubbers. Additionally, a decrease in the value of ρ corresponds 
to the expansion of the network. As a result, the  strain value 
associated with the transition from entropy elasticity to energy 
elasticity is expected to be smaller for a reduced ρ value. 
 To further understand the ρ-dependence on the stress-
strain curve, networks with a ρ value of 0.1 and 0.3 were 
investigated. The stress-strain curves for ρ = 0.1, 0.3, and 0.85 
under stretching with dλ/dt = 10−4 are shown in Figure 12. As 
the value of ρ decreased, the apparent linear region became 
narrower. This is because decreasing the density equates an 
expansion in the network. Thus, cases with a ρ value of 0.85 

were predominantly investigated. Notably, the elastic module 
in the low strain region became smaller for a reduced ρ value. 
This was consistent with the behavior observed by Sorichetti et 
al.50 in the low strain region.   
 

 
Fig. 12 Density dependence on the stress-strain curves of a 
regular diamond lattice polymer network under dλ/dt = 10−4, 
with ρ = 0.1, 0.3, and 0.85 and Ns = 50 (a), 100 (b), and 200 (c).  
 
 

D. Stress-strain curves of a stretched single chain 

 
We evaluated stress-strain curves of a stretched single chain 
wrapping the PBC box as shown in Fig. 13 (a). At unelongated 
state, size L of the PBC box is set to the average of the strand 
length of the regular diamond lattice with the uniform arm 
length. Here, L = 4.258, 5.355, and 6.742, for N = 50, 100, and 
200, respectively. The PBC box was deformed with the rate of 
dλ/dt = 10−4. Figure 13 (b)-(d) presented the stress-strain curve 
for the phantom chain models with harmonic bonds and KG 
model. For the phantom chain model with (K, r0) = (40, 0.975), 
λu was 5.0, 7.2, and 10.1 for N = 50, 100, and 200, respectively. 
Here, λu denotes the upper limit of the strain range to fit Eq. (2).  
We found that the obtained λu was proportional to root square 
of N. 
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Fig. 13 Snapshot of a stretched single chain (a) and stress-strain 
curves with the phantom chain model (b) with (K, r0) = (40, 
0.975), the KG model (c), and the phantom chain model (d) with 
(K, r0) = (490, 0.961). Here, in (c), thin lines were stress 
contributed only from potentials among bonded beads.  
 
 

E. Stretching rate dependence on stress-strain curves 

 
As a test for entropic elasticity, we evaluated the temperature 
dependence of the equilibrium shear modulus G and upper limit 
λu for T = 0.2, 0.5, and 1.0 on the regular diamond lattice. 
Entropic elasticity is defined here as the part of elasticity that is 
proportional to temperature. Figure 14 shows the stress-strain 
curves for T = 0.2, 0.5, and 1.0. From the fitting to Eq. (2), (G, λu) 
= (0.00052053, 9.9) and (0.0012633, 9.3) for T = 0.2 and 0.5, 
respectively. The values of G for T = 0.2, 0.5, and 1.0 show a 
linear relation described by G = 0.0024169 T with the R-squared 
value R2 = 0.99926. The upper limit λu is almost constant. From 
the perfectly linear relationship of G(T), the observed linear 
region was concluded to be holding the entropic elasticity. In 
addition, we also obtained a linear relation of G = 0.0060557 T 
and G = 0.00098442 T for Ns = 50 and 200, respectively. Here, 
for Ns = 50, (G, λu) = (0.0012846, 6.0) and (0.0031113, 5.5) for T 
= 0.2 and 0.5, respectively; for Ns = 200, (G, λu) = (0.00021056, 
13.1) and (0.00050673, 5.5) for T = 0.2 and 0.5, respectively. As 
a result, the relation G = AT/Ns with coefficient A = 0.28611 was 
confirmed. It is noted that Ns is proportional to the squared 
radius of gyration of a strand without constraints. The obtained 
linear relation is consistent with Hooke’s law deduced from the 
one-dimensional model in statistical physics.  
 
 

 
Fig. 14 Temperature dependence of stress-strain curve of 
polymer network of regular diamond lattice with T = 0.2, 0.5, 
and 1.0 under dλ/dt = 10−4, represented by blue, green, and red 
lines. Brown, light-blue, and purple lines are the fitting curves 
to Eq. (2) for T = 0.2, 0.5, and 1.0, respectively. 
 
 
F. Bond length distribution 
 

To confirm that averaged bond lengths are constant in the 
entropic elastic region, we evaluated the distribution of bond 
lengths. Figure 15 presents distributions of the bond length for 
several strain values λ in the cases with Ns = 100 and 5. For Ns = 
100, the distributions were not changed. This behavior is typical 
of entropic elasticity. On the other hand, for Ns = 5, remarkable 
shifts were observed for large strains. Averaged bond lengths 
bave for λ = 5.5, 6.0, 6.5, and 7.0 were 1.151, 1.226, 1.311, and 
1.401, where the linear relation bave = 0.1667 λ + 0.2304 holds 
with R2 = 0.9983. 
 
 

 
Fig. 15 Probability distribution of the bond length for the cases 
with (a) Ns = 100 and (b) Ns = 5. Here, the size of each bin is 0.05. 
 
 

G. Stress-strain curve of polymer network of the diamond lattice 
with nonuniform strand length fluctuating around Ns =100 and 200 
under the stretching rate of 10−5 
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Fig. 16 Stress-strain curve of polymer network of diamond 
lattice with nonuniform strand length fluctuating around Ns = 
(a) 100 and (b) 200 under dλ/dt = 10−5. 
 
 
H. Distribution of the loop length for the cases with fluctuating 
strand length 

 
The minimal loop in the diamond lattice network contains six 
bonds (constant). Thus, the loop length distribution is Gaussian 
in nature, as the loop length is the sum of six uniform random 
numbers distributed around the averaged value. Additionally, C 
denotes the standard deviation of this Gaussian distribution. 
Figure 17 illustrates the probability distribution of the loop 
length of the minimal loop consisting of six bonds using actual 
counting. The probability of the shorter chains was found to be 
larger for larger C.  
 

 
Fig. 17 Probability distribution of the loop length of the minimal 
loop consisting of six bonds. 
 
 
I. Stress-strain relations for the BC-8 polymer network in the 
rectangular PBC 

 

 
Fig. 18 Stress-strain curves of polymer network of the BC-8 
lattice elongated to x-, y-, and z-direction under the rectangular 
PBC under dλ/dt = 10−4 (a). In (b), the difference between the 
stress-strain curves on the rectangular and cubic lattices are 
focused. The stress-strain curve on the diamond lattice (under 
the cubic PBC) is presented in (a) and (b) for reference. 
 
 
J. Energetic elasticity of the BC-8 polymer network with Ns = 2 and 
5 

 
From a linear fitting for high strain region, we obtained σn = 7.59 
λ − 19.72, σn = 5.66 λ − 14.71 for Ns = 2, and σn = 2.84 λ − 10.95, 
σn = 2.15 λ − 8.47 for Ns = 5. The ratio of G in the z-direction 
relative to that in the x- (or y-) directions was 1.34 and 1.32 for 
Ns = 2 and 5, respectively. 
 

 
Fig. 19 Stress-strain curve of polymer network of the regular 
diamond lattice with Ns = 2 and 5 under the cubic and 
rectangular PBC. Here, the stretching rate (dλ/dt) was 10−4. 
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