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The Nanocaterpillar’s Random Walk: Diffusion With
Ligand-Receptor Contacts†

Sophie Marbach,∗a,b Jeana Aojie Zheng,c and Miranda Holmes-Cerfona

Particles with ligand-receptor contacts bind and unbind fluctuating “legs" to surfaces, whose fluc-
tuations cause the particle to diffuse. Quantifying the diffusion of such “nanoscale caterpillars" is
a challenge, since binding events often occur on very short time and length scales. Here we derive
an analytical formula, validated by simulations, for the long time translational diffusion coefficient
of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that
the effective diffusion coefficient, which depends on the microscopic parameters governing the legs,
can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies
rapidly with temperature, and reproduces the striking variations seen in existing data and our own
measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism
of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg
is always linked to the surface, and when does it prefer to move by hopping, which requires all legs
to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood
cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated
colloids) and present guidelines to control the mode of motion for materials design.

Particles with ligand-receptor contacts – or nanocaterpillars – har-
vest binding and unbinding dynamics of their fluctuating legs at
the nanoscale to move, target, stick, or assemble into large struc-
tures1–4. Nanocaterpillars are found across multiple scales, span-
ning a great variety of systems in biology and biomimetic assays –
see Fig. 1-A. To name but a few, microscale white blood cells with
protein linkers stick and roll on blood vessel walls until they reach
a healing target5–7. Microscale droplets with protein linkers are
used to study cellular-like adhesion8–10. Microscale to nanoscale
colloids coated with complementary deoxyribonucleic acid (DNA)
strands self-assemble into macroscopic crystals4,11,12 with novel
optical or selectivity properties13–16. Nanoscale viruses tran-
siently adhere with spike proteins to the respiratory mucus to find
vulnerable host cells1,17–19. At even smaller scales, protein car-
gos bind to receptors in the nuclear pore complex for selective
transport to a cell’s nucleus20,21.

For all these systems to function, a nanocaterpillar must move
relative to the surface to which its legs are attracted. An impor-
tant question therefore is to characterize how it moves, over scales
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Fig. 1 Overview of nanocaterpillars. (A) Multivalent ligand-receptor
systems span the micro to nanoscales. White blood cells stick to vessel
walls through selectin mediated bonds (inspired from Ref. 7); DNA-
coated colloids self-assemble through hybridization of complementary
DNA strands; Protein cargos translocate through the polymer mesh of
the nuclear pore complex (inspired from Ref. 22). (B) Ligand-receptor
systems are modeled here with an arbitrary number of legs N (ligands)
and/or arms (receptors). The stochastic model includes binding and un-
binding rates qon and qoff, spring constant k, and leg friction γ (all fast, in
blue); and the bare friction coefficient Γ of the nanocaterpillar (slow, in
black). We seek the long-time effective longitudinal diffusion coefficient
Deff.
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much larger than individual legs. Since legs constantly bind and
unbind to the surface, imparting force each time they do so, the
particle’s macroscopic mobility depends on the microscopic de-
tails of its legs. For example, leg flexibility and bond lifetimes con-
trol the average mobility of the particle19,23,24, and differences in
both parameters can be harvested to detect infected cells25–27 or
prevent viral infections28. As another example, leg density affects
how DNA-coated colloids nucleate and grow into crystals29,30

and governs the long-range alignment of crystals31–33. Overall,
microscopic details underlie a variety of large-scale modes of mo-
tion, such as hopping3,17,34,35, cohesive motion including rolling
and crawling17,36, and also transient or firm arrest3,5,37, result-
ing in large differences in macroscopic mobility.

Investigating how microscopic binding details lead to macro-
scopic mobility is challenging, as it requires probing time and
length scales that can often be quite different19,38 – legs can
be much smaller than the nanocaterpillar they are attached to,
while leg dynamics can be orders of magnitude faster than the
timescales of macroscopic motion. Furthermore, many systems
have a valency of thousands of leg contacts31,38,39, too many
degrees of freedom to resolve experimentally or computation-
ally22,40. To make progress, numerical and analytical models
often rely on simplified assumptions, e.g. excluding stochastic re-
laxation of the legs41,42, limiting the analysis to a small number
of legs41,43,44, or assuming small perturbations22. Such mod-
els have given insight into a variety of phenomena, such as how
specific parameters could favor rolling over sliding7,41,43,45,46 or
how specific mechanisms could increase overall mobility (with
coupling effects such as binding dynamics depending on bond
number47–49 or when numerous adhesive sites are available for a
single ligand22,50,51). Nevertheless, such modeling assumptions
are not always justified; for example stochasticity plays a critical
role for mobility, facilitating rolling37, targeted arrest40, or other
walking modes52. Furthermore, such models can also not repro-
duce the order of magnitude decrease of diffusion of DNA-coated
colloids 31,39. Hence, a systematic derivation of macroscopic mo-
bility from microscopic details that is valid under a broad range
of parameters is needed.

In this paper we derive an analytical expression for the effec-
tive mobility of a nanocaterpillar in an overdamped system, by
systematically coarse-graining over the microscopic details of its
legs. Starting from a model that includes the detailed spatial fluc-
tuations of the legs, we use homogenization techniques22,53,54 to
average over these fluctuations. We obtain an analytical expres-
sion for the effective long-time translational diffusion coefficient
of the particle, Deff(N,Γ,γ,k,qoff,qon), as a function of the micro-
scopic parameters governing the legs (Eq. (15); see also Fig. 1-B
and Sec. 1.) The expression depends in a non-trivial way on the
friction coefficients of the individual components of the system
(legs and particle), with the frictions either adding up arithmeti-
cally (like springs in parallel) or harmonically (like springs in se-
ries) according to the mechanistic details. We validate our ana-
lytical calculations with numerical simulations, which show the
expression is accurate over a wide range of parameter values.

Our model gives insight into the mechanism of nanocaterpil-
lar motion, as it allows us to distinguish between two long term

modes of motion: sliding, where at least one bond is always at-
tached to the surface, and hopping, where the particle detaches
completely, moves in free space and reattaches. These regimes
are controlled by physical properties of the legs, such as stiff-
ness and adhesive strength, allowing us to investigate existing
biological and biomimetic systems in a so-called Ashby chart for
nanocaterpillars (Sec. 2). We identify how critical design parame-
ters (such as the coating density for DNA-coated colloids) controls
the preferential mode of motion and reconcile disparate experi-
mental observations on similar systems31,39.

Importantly, the effective diffusion can sometimes be orders
of magnitude smaller than the background diffusion coefficient,
showing the critical effect of the legs on the particle’s mobility.
This analytical prediction of a dramatically decreased diffusivity
is borne out with experimental measurements of the diffusion
of DNA-coated colloids, both from existing data31,39 and addi-
tionally measured in this study. Our model agrees with the data
within experimental accuracy over a range of temperatures and
for different DNA coating densities on the colloids (Sec. 2).

Finally, we derive the effective diffusion coefficient for several
variations of the model with varying assumptions, and show that
our model incorporates these assumptions as special limits22,54,
but is accurate over a broader range of parameters and system de-
signs (Sec. 3). In particular, previous approaches can not describe
the observed orders of magnitude decrease in diffusion22. Over-
all, our results lay the ground to tune mobility features in artificial
designs, and provide methodological tools to study more complex
motion mediated through ligand-receptors, including rolling or
self-avoiding walks due to active cutting of bonds.

1 Deriving an analytical formula for the ef-
fective diffusion coefficient

In Sections 1.1-1.3 we illustrate our homogenization technique
pedagogically by considering a 1-legged caterpillar. Our main re-
sult for the effective diffusion coefficient of an N-legged caterpil-
lar, Eq. (15), is presented in Section 1.4.

1.1 1-legged caterpillar: constitutive equations

We begin with the simplest possible model: a nanocaterpillar with
a single leg (Fig. 2). The leg is permanently fixed to the caterpil-
lar while its other end is mobile, and can attach anywhere on the
binding surface. We consider for now a one-dimensional model,
where leg fluctuations and particle motion occur on a line, longi-
tudinal to the surface.

The dynamics of the particle position x(t) and leg length l(t)
occur over nano to microscales, mostly in dense fluids such as
water. In this context, dynamics are well captured by over-
damped Langevin equations55, where inertia plays a negligible
role. This is in contrast to previous modeling efforts which used
the Langevin equation (with inertia)54, a point we return to in
Sec. 3, where we show that the two approaches can give predic-
tions that are orders of magnitude different in certain parameter
regimes.
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Fig. 2 1-legged nanocaterpillar model. (A) The longitudinal extension
of the single leg (l) is monitored and feeds back into the longitudinal
position (x) of the particle. (B) Simulation trace of the position of a
1-legged particle with time. (inset) The effective long time diffusion Deff
is half the slope of the mean squared displacement over long times.

When the legs are unbound they evolve as

dl
dt

=− k
γ
(l(t)− l0)+

√
2kBT

γ
ηl(t) . (1)

Here k is a spring constant describing the recoil force of the leg
material, γ is its friction coefficient, l0 its rest length, kB is Boltz-
mann’s constant, T is temperature and ηl is a Gaussian white
noise satisfying ηl(t) = 0 and ηl(t)ηl(t ′) = δ (t− t ′) where · is the
average over realizations of the noise. In most systems we con-
sider, legs are made of polymers or proteins, where small leg de-
formations around equilibrium are well captured by a constant
spring constant k 56–58.

The particle’s position x when the leg is unbound obeys

dx
dt

=

√
2kBT

Γ
ηx(t) (2)

where Γ is the friction coefficient of the particle and ηx(t) is a
Gaussian white noise uncorrelated with ηl(t). The diffusion coef-
ficient for the unbound particle is D0 =

kBT
Γ

.
We consider for now that the surface is uniformly coated with

receptors. The leg can thus bind at any location on the surface
with a constant binding rate qon and constant unbinding rate qoff.
Detailed balance requires qon

qoff
= πb

πu
where πb/u is the equilibrium

probability of the system to be bound or unbound. Typically πb
πu

=

e−β∆G, where β−1 = kBT and ∆G < 0 is the free energy change
when the leg binds to the surface38,59.

We now seek to describe motion of the system when the leg is
bound. In this case, variables are constrained as x(t)+ l(t)−xr = 0
where xr is the location of the receptor where the leg tip is at-
tached, which is constant until the leg detaches and reattaches to
another location. The stochastic dynamics Eqns. (1) and (2) must
be projected32,60 onto the constraint surface, see Appendix A. We
obtain

dx
dt

=−dl
dt

=
k

Γ+ γ
(l(t)− l0)+

√
2kBT
Γ+ γ

η(t) (3)

where η(t) is a Gaussian white noise. Here we see that the pro-
jected dynamics have a natural expression where the effective
friction in the bound state is the arithmetic sum of the friction
coefficients in the unbound states, Γ+γ. Note that this projection
is a crucial step that is often ignored in such derivations22,32,54,
and modifies the dynamics in non trivial ways especially with a

large number of legs.
The dynamics are now specified through the set of Eqns. (1)-

(3), together with the binding and unbinding dynamics. To see
what happens over long times, we simulate trajectories for 1 leg
– see Fig. 2-B (and simulation details in Appendix B). Over long
times, the particle’s mean-squared displacement grows linearly
with time, and we may extract an effective long time diffusion
coefficient Deff – see inset of Fig. 2-B.

1.2 Homogenization to coarse-grain the fast dynamics

The computational cost of simulating Eqns. (1)-(3) is high, since
small time steps are required to resolve the fast relaxation and
binding events. We therefore seek an analytical method to coarse-
grain over these fast timescales. To apply this method we identify
a non-dimensional separation of scales, which is novel compared
to other approaches22,51,54 and will allow us to find a result valid
over a broad range of parameters. We use homogenization theory
to average over the fast scales, eventually obtaining an effective
diffusion equation, Eq. (10), with effective diffusivity (Eq. (11))
and related effective friction (Eq. (12)), which is one of the main
results of this paper for the special case of a 1-legged caterpillar.
A reader interested in the results and physical implications may
skip to Section 1.3.

1.2.1 Set up: partial differential equations to be coarse-
grained

The set of stochastic Eqns. (1)-(3) defines a Markov process that
is conveniently studied via the Fokker-Planck equation and its
adjoint, the Kolmogorov backward equation53,61. Let p(x, l, t) =
(pu(x, l, t), pb(x, l, t))

T be the probability density function of find-
ing the system at time t and positions x, l in the unbound or bound
states. We obtain from Eqns. (1)-(3) the Fokker-Plank equation

∂t p = L ?p , (4)

with L ? = V ?+Q? where

V ? = diag

 ∂l

(
k
γ
(l− l0)+

kBT
γ

∂l

)
+ kBT

Γ
∂xx

(∂l −∂x)
(

k
Γ+γ

(l− l0)+
kBT
Γ+γ

(∂l −∂x)
) ,

Q? =

(
−qon qoff

qon −qoff

)
,

with an appropriate initial condition. Additionally we require the
flux in either state to vanish at infinity, to conserve total probabil-

ity. The stationary solution of Eq. (4) is π = e−βk(l−l0)
2/2

Z (qoff,qon)
T

where Z is a normalization constant. This is therefore the equi-
librium probability density of the system; it satisfies detailed bal-
ance.

While probability densities have an intuitive physical mean-
ing, in the following it will be easier – and mathematically bet-
ter posed – to consider the adjoint of the Fokker-Planck equa-
tion and the corresponding dual functions. These are func-
tions f (x, l, t) =

∫
p(x′, l′, t|x, l)g(x′, l′)dl′dx′ that give the expecta-

tion of any scalar function g(x(t), l(t)), given an initial condition
x(0) = x, l(0) = l. Once we know how such functions f evolve,
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we may calculate any statistic g of our stochastic process. Writ-
ing f (x, l, t) = ( fu(x, l, t), fb(x, l, t))

T , we have that f satisfies the
Kolmogorov backward equation61

∂t f = L f , f (x, l,0) = g(x, l) . (5)

Here L is the adjoint operator of L ?, defined by the operator
that satisfies 〈 f ,L ?p〉= 〈L f , p〉 for any probability density p and
statistic f , where 〈 f , p〉= ∫∫ ( fu pu+ fb pb)dldx is the inner product.

1.2.2 Non-dimensionalization and assumptions on scales.

We now seek to coarse-grain the fast dynamics, by applying ho-
mogenization techniques to the backward equation, Eq. (5). To
start, we non-dimensionalize the equation using

x→ Lxx̃, l− l0→ Ll̃, t→ τ t̃,

where L =
√

kBT/k is the reference length of the leg fluctuations,
Lx is the scale for the long-time average motion of x, and τ is
the timescale associated with this average motion. The latter two
scales are not determined a priori by any intrinsic scales in the sys-
tem, but rather are chosen large enough that averaging will be ap-
propriate over such scales; hence we choose Lx = L/ε where ε� 1
is a small non-dimensional number. We are interested in long
time scales corresponding to the diffusion of the particle, hence
we expect τ = L2

x/D0, which corresponds to τ = 1
ε2

Γ

k . Importantly,
and in contrast with other works22,51, here ε does not measure
the value of physical parameters, but rather, it measures the large
observation time scale over which the coarse-grained model is
valid. Such long observation times are quite likely in experi-
ments, as typical binding rates and leg dynamics occur at most
over 1 ms−1 s while observation (or other biophysical processes
such as internalisation for viruses17) happens over the course of
10 min at least38. This non-dimensionalization step is crucial as it
will allow us to find order of magnitude changes in the diffusion
coefficient according to the physical parameters, something that
was not captured by previous perturbative approaches22,51.

We now assume that the observation time scale is long enough,
such that binding and unbinding events, as well as relaxation dy-
namics, will both occur on comparably short time scales. We can
therefore write q̃i = qiΓ/k = Oε (1) and γ/Γ = Oε (1). In Sec. 3 we
will see that taking different limits for these physical parameters
(such as γ/Γ� 1) yields the same result as applying these lim-
its to the final result. Our choices of scalings are therefore quite
general and can be easily adapted to more detailed systems.

Using non-dimensional variables (and dropping the .̃ for sim-
plicity) we obtain from the backward equation Eq. (5) a separa-
tion in orders of ε as

∂t f = L f =
(

1
ε2 L0 +

1
ε
L1 +L2

)
f (6)

where

L0 =

(
−qon +

Γ

γ
(−l∂l +∂ll) qon

qoff −qoff +
Γ

Γ+γ
(−l∂l +∂ll)

)
,

L1 = diag
(

0,
Γ

Γ+ γ
(l∂x−2∂lx)

)
,

L2 = diag
(

∂xx,
Γ

Γ+ γ
∂xx

)
.

1.2.3 Homogenization method.

We seek a solution to Eq. (6) of the form f = f0 + ε f1 + ε2 f2 + ....
We obtain a hierarchy of equations at different orders in ε:

Oε

(
1
ε2

)
: L0 f0 = 0, (7)

Oε

( 1
ε

)
: L0 f1 =−L1 f0, (8)

Oε (1) : L0 f2 = ∂t f0−L1 f1−L2 f0, (9)

...
...

and we solve these iteratively for f at each order in ε. At lowest
order we obtain from Eq. (7) and the vanishing flux at bound-

aries, f0 = a(x, t)

(
1
1

)
, where a(x, t) is an unknown function of

the slow variable x, whose dynamics we seek to determine. The
associated equilibrium distribution at lowest order, L ?

0 π0 = 0 is
simply the full one π0 = π.

At the next order, one can check that

f1 =

(
γqon

Γ+ γqon

)
l∂xa

Γ(1+qoff)+ γ(qon +qoff)

is a particular integral of Eq. (8), and is the unique solution since
we impose that f1 does not contain terms in the nullspace of L0.

Finally Eq. (9) possesses a solution if and only if it satisfies the
Fredholm alternative53

〈(∂t f0−L1 f1−L2 f0),π0〉= 0.

Standard algebra yields an effective long time diffusion equation
for a (in dimensional variables)

∂ta = Deff∂xxa, (10)

where
Deff =

kBT
Γeff

, (11)

with

1
Γeff

=
p0

Γ0
+

p1

Γ1
, with Γ0 = Γ, Γ1 = Γ+ γeff

and γeff = γ + k
(

1
qoff

+
γ

k
qon

qoff

)
.

(12)

In the above expressions, p0 =
qoff

qoff+qon
is the equilibrium probabil-

ity to have no bond, and p1 = 1− p0 the equilibrium probability
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to have one bond. Γ0 = Γ is the friction in the unbound state and
Γ1 is the effective friction contributing to the bound state.

Eq. (10), which is the backward equation for the particle+leg
over long times, is one of the main results of this paper, in the
case of a 1-legged caterpillar. It is the backward equation for a
particle that evolves as

dx
dt

=
√

2Deffηx(t). (13)

That is, the particle diffuses, with effective diffusion coefficient
Deff and effective friction Γeff. The effective diffusivity and friction
have the usual interpretation. In particular, if a potential U (x)
were added to the particle Eqns. (2) and (3), one would recover
in Eq. (13), following the same coarse-graining procedure, a term
− 1

Γeff
∂xU .

In Fig. 3 we compare the analytical result obtained in
Eq. (12) (gray line) to numerical simulations of the full stochas-
tic Eqns. (1)-(3) (gray dots). We show the results for a number
of system parameters and find perfect agreement over several or-
ders of magnitude of physical parameters. We also predict order
of magnitude changes in the diffusion coefficient as the micro-
scopic parameters change.

1.3 Microscopic parameters determine long term diffusion

How shall we interpret the expressions for the effective diffu-
sivity Eq. (11) and the effective friction Eq. (12)? The effec-
tive diffusivity is a weighted sum of the diffusivity in each state,
Deff = p0D0 + p1D1 where the weights correspond to the proba-
bility to be in either state, and Di = kBT/Γi. The effective friction,
on the other hand, is a harmonic weighted sum of the friction
coefficients. That the diffusivity averages arithmetically is to be
expected, since the mean squared displacement is an extensive
quantity in a system with multiple states. Over a time t we can
write

x2(t) = 2Defft = 2D0 p0t +2D1 p1t

= 2D0t0 +2D1t1 = x2(t)|0 + x2(t)|1,

where t0 and t1 refer to the time spent in either state. The novelty
here is that the diffusivity in the bound state,

D1 = kBT (Γ+ γeff)
−1 6= kBT (Γ+ γ)−1,

is obtained not just from the friction in the bound state, see
Eq. (12), but is modified by spring resistance during binding
events by an additional term γeff− γ.

We can interpret this additional term by writing it as

γeff− γ = kτeff, where τeff = τb + τ
relax
u

is the typical time over which the leg’s spring resistance acts,
with τb = 1/qoff representing the average bound time, and τ relax

u =
γ

k
qon
qoff

= γ

k
τb
τu

representing the bare relaxation time γ/k increased by
the ratio of average bound time to average unbound time. This
is coherent as the leg fluctuations may only relax in the unbound
state. The interpretation of τeff is comparable to that in Ref. 54

although the results of Ref. 54 were obtained from underdamped
dynamics.

longer legs stronger bondBA

Fig. 3 Effective diffusion Deff of a 1-legged particle. Simulation and
analytical result Eq. (12) for a 1D system with 1 leg, with respect to
(A) friction ratio γ/Γ and (B) unbinding rate qoff. (A) and (B) share
the same y-axis. The other numerical parameters are qonΓ/k = 1.0, and
for (A) qoffΓ/k = 0.8 while for (B) γ/Γ = 0.1. Error bars represent one
standard deviation for 100 independent runs.

Fig. 3 shows how the effective diffusion coefficient depends on
microscopic parameters such as the leg friction and binding rates.
As the leg friction γ increases, the effective diffusion of the parti-
cle decreases (Fig. 3-A). When the leg friction γ is large compared
to all other contributions to friction, diffusion in the bound state
is frozen D1 = 0, and the effective diffusion corresponds only to
mobility in the unbound state Deff = p0D0 (p0 = 0.8/1.8 ' 0.44
in Fig. 3-A). As leg friction is typically proportional to the size of
the legs, it is thus expected that the bigger the legs, the slower
the particle. As the unbinding rate qoff decreases, Deff decreases
to arbitrarily small values (Fig. 3-B). This slow down is due to
spring recoil forces acting over longer times, eventually freez-
ing the particle in a given location. Note that similar qualitative
dependencies of the diffusion coefficient on the unbinding rate
(Deff ∼ kBT qoff/k) were noted in a numerical model of multiva-
lent transport on discrete sites44, in a scaling law investigation of
sticky reptation in polymers62, and experimentally in Influenza A
viruses19.

As a test of modeling choice, the analytical expression may also
be plotted against numerical simulations of the non-dimensional
equations with any value of ε. We find perfect agreement up to
ε . 10 (Supplementary Fig. S1), regardless of the choice of phys-
ical parameters. This highlights that the natural choice ε = L/Lx

for coarse-graining purposes, corresponding to bound leg length
scales versus unbound particle long range motion, is especially
well suited for these types of problems. In the following ε is not
incorporated in numerical simulations.

1.4 Diffusion of N-legged caterpillar spans orders of magni-
tude

We extend our framework to probe nanocaterpillar dynamics with
an arbitrary number of legs N (see Fig. 4-A). Eq. (1) is repeated
for each unbound leg, and each leg binds to the surface with rates
qon,qoff independently. Eq. (2) gives the particle dynamics when
no legs are bound. When n legs are bound, indexed by i = 1, . . . ,n,
the dynamics of the particle and bound legs are constrained as
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(Supplementary 1.2)

dx
dt

=−dli
dt

=
k

Γ+nγ

n

∑
i=1

(li− l0)+

√
2kBT
Γ+nγ

η . (14)

Note here that the projection step yields a friction coefficient scal-
ing linearly with the number of bonds n, and hence is not a per-
turbative effect22. The set of stochastic equations is now fully
determined and can be simulated for any N, see Fig. 4-B.

x
N = 5

n(t) = Nbn = 2

A

B

Fig. 4 N-legged nanocaterpillar model. (A) The longitudinal extension
of N legs are monitored (here N = 5) with binding and unbinding. The
number of bonds n(t) changes in time, here n(t) = 2. The average number
of bonds n(t) = Nb depends on the binding and unbinding rates. (B)
Simulations and analytical results of the effective diffusion coefficient for
N-legs according to the binding rate qonΓ/k. “Nb average" corresponds to
Eq. (16) and “full solution" to Eq. (15). The other numerical parameters
are γ/Γ = 0.1 and qoff = 0.8qon.

Similarly as in Sec. 1.2, coarse-graining predicts a long time
effective diffusion with N legs as (Supplementary 1.2)

DN legs
eff =

kBT

Γ
N legs
eff

= kBT
N

∑
n=0

pn

Γn
(15)

where pn =
(N

n
) qN−n

off qn
on

(qoff+qon)N is the equilibrium probability to have n
bonds and Γn is the friction coefficient in a state with n bonds.
The frictions {Γn} solve a linear system of equations that does
not have a simple analytical solution (see Eqns. (S1.20-22)), but
can be solved using numerical linear algebra for given parameters
as reported in Supplementary 1.2.

Eq. (15) is one of the main results of this paper. It predicts
the long-term diffusion coefficient of a nanocaterpillar, as a non-
trivial function of the microscopic parameters of the legs. We
compare the numerically solved Eq. (15) (full lines) to numeri-
cal stochastic simulations with N legs (dots) in Fig. 4-B and find
excellent agreement.

The coefficients Γn contributing to each bound state can be fur-
ther investigated to yield an analytical approximation for Γ

N legs
eff .

When a large number of legs N is involved in the process, the
dominant term in the sum of Eq. (15) corresponds to the average
number of bonds Nb = ∑

N
n=0 npn =

qon
qoff+qon

N. Furthermore, one ex-
pects that the coefficients vary weakly around n = Nb, simplifying

the linear system for the {Γn}, yielding

1

Γ
N legs
eff

'
N�1

1
ΓNb

=
1

Γ+Nbγeff
. (16)

The right hand side of Eq. (16) is valid regardless of parameter
values (Fig. S3) and provides a good approximation for Γ

N legs
eff

for large values of N (Fig. S2). For example, close agreement
with Eq. (15) is obtained as early as N = 20, while good qualita-
tive agreement is obtained for N = 5 (see Fig. 4-B, dotted line).
Eq. (16) shows that the effective friction with N legs decays lin-
early with the average number of bonds Nb. For systems with a
large number of legs (and hence potentially a large average num-
ber of bonds)31,38,39, we therefore expect a strong diffusion de-
crease, covering potentially several orders of magnitude, due to
enhanced friction with the surface.

2 Do nanocaterpillars hop or slide?

Our model and analytical formula Eq. (15) are useful not only
for quantitatively predicting the diffusion coefficients of exist-
ing nanocaterpillar systems, but also to obtain insight into the
mechanism by which particles diffuse. Different experiments with
DNA-coated colloids made puzzling and seemingly contradictory
observations, whereby similar systems appear to diffuse in dif-
ferent ways. For example, some DNA-coated colloids appear to
diffuse through a succession of uncohesive moves, namely hops
above the surface39, while others move cohesively along the sur-
face31. The difference between cohesive and uncohesive modes
of motion has been noted in a variety of other systems, rang-
ing from virus mobility on surfaces17,19 to sticky polymer repta-
tion62. Yet the parameters that characterize and quantify these
different modes of motion remain to be elucidated. Our model
gives insight into this question – do nanocaterpillars prefer to dif-
fuse by “sliding” along the surface, or by “hopping” along it (see
Fig. 5-A)?

2.1 What are hopping and sliding?

We start by quantifying the diffusion associated with either hop-
ping or sliding. The mean squared displacement of a particle
whose diffusion coefficient is determined from Eq. (15) can be
split into two contributions, as

〈x2〉= 2Defft = 2p0
kBT
Γ0

t +2
N

∑
n=1

pn
kBT
Γn

t

≡ 2Dhopt +2Dslidet.

We identify (a) a hopping mode (in accordance with Refs. 34 and
39) where the particle detaches all bonds with the surface and
moves in free space (see Fig. 5-A), until it forms another bond. In
this hopping mode

Dhop = p0
kBT

Γ
=

(
qoff

qoff +qon

)N kBT
Γ

. (17)

We also isolate (b) a sliding mode (see Fig. 5-A) where the particle
keeps at least one bond with the surface, a form of walking with
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no preferred direction,

Dslide =
N

∑
n=1

pn

Γn
' kBT

ΓNb

=
kBT

Γ+N qon
qoff+qon

γeff
. (18)

The total mean-squared displacement can be broken up into
the sum of the mean-squared displacement when hopping, and
the mean-squared displacement when sliding, as 〈x2〉 = 2Dhopt +
2Dslidet = 〈x2〉hop + 〈x2〉slide.

B

Potentially Hopping

Sliding Only

A

Hopping

Sliding

Nc = 1

Nc � 10

Fig. 5 Nanocaterpillar diffusion modes with N legs. (A) Typical
modes of motion with N bonds: the nanocaterpillar may either slide
(at least one bond remains attached to the surface) or hop (all bonds
detach for the particle to move). (B) Critical number of legs Nc required
for sliding to be more effective than hopping as a function of stickiness
qon/qoff and unbinding rate.

An important observation is that Dslide decays with the num-
ber of legs roughly as 1/N, while Dhop decays exponentially with
N, i.e. much faster. As soon as a few legs are involved, we may
therefore expect that sliding dominates hopping. This interpreta-
tion is natural, since when a system has just a few legs (N ' 1−2),
the odds that the legs all detach at once are quite high, therefore
favoring hopping. In contrast, in a system with a large number
of legs, the odds that all legs simultaneously detach are simply
too small, and the system walks randomly, remaining close to the
surface. In a sense, nanocaterpillars truly are caterpillars walk-
ing with nanoscale legs. The scaling quantifying both modes of
motion is another essential analytical result of our work.

In general, the critical number of legs Nc(qon,qoff,k,γ,Γ) re-
quired to favor sliding (N ≥ Nc) over hopping (N ≤ Nc) satisfies

〈x2〉hop

〈x2〉slide
=

Dhop

Dslide
=

(
qoff

qoff +qon

)Nc
(

1+Nc
qon

qoff +qon

γeff

Γ

)
= 1.

(19)
The critical number of legs is controlled by the ratio qon/qoff,
termed henceforth stickiness, and by the magnitude of the effec-
tive friction in the bound states γeff, itself dominated in most sys-
tems by the unbinding rate qoff. We can therefore investigate Nc

as a function of stickiness qon/qoff and unbinding rate qoff (Fig. 5-
B). Overall, a system with say N = 10 legs is typically dominated
by sliding motion. Yet hopping may still occur e.g. with large

unbinding rate qoff. In fact qoff increases the friction γeff in the
bound states and reduces Dslide. The number of legs is thus a crit-
ical parameter for nanocaterpillar diffusion: controlling both the
magnitude of the diffusion decrease and the mode of motion.

2.2 Distinguishing the diversity of biophysical nanocaterpil-
lars

Whether a nanocaterpillar slides or hops, as predicted by Eq. (19),
depends on numerous system parameters. Existing biological and
biomimetic systems cover a broad range of parameters that we
now explore, to ask which systems prefer to move by sliding and
which by hopping, within the framework of our model.

Our model relies on 6 physical parameters k,γ,qoff,qon,Γ,N that
can be estimated from the literature for many systems : viruses,
molecular motors, white blood cells, protein cargos in the nu-
clear pore complex, bacteria such as Escherichia coli, and DNA-
coated colloids (Supplementary 3). Typically, stickiness values
are similar across systems with qon/qoff ∼ 0.05− 0.8 ≥ 1 – when
the system is not thermally manipulated as will be explored in
Sec. 2.3. Therefore we consider qon/qoff ' 0.1. Additionally, as
legs are generally small compared to particles, γ/Γ' 10−3−10−1

and therefore the dominant factor in γeff/Γ is usually controlled
by spring recoil force and unbinding times, as k/Γqoff. We find
k/Γqoff ' 10−2− 108 in the range of systems studied, confirming
that this is a critical factor to discriminate nanocaterpillars. Addi-
tionally, as systems have a varied number of legs N, we define an
effective relaxation rate

k(N)

Γ
=

k
Γ

N
qon

qoff +qon

[(
qoff +qon

qoff

)N
−1

]−1

that will allow us to predict either sliding or hopping.
We sort systems in a so-to-speak Ashby chart, according to the

effective relaxation rate k(N)/Γ and unbinding rate qoff (Fig. 6).
This chart summarizes parameter ranges for different systems,
and predicts which systems move by sliding and which move by
hopping, within the assumptions of our model. If k(N)/Γqoff ≤ 1,
according to Eq. (19), sliding (orange region) is favored over hop-
ping (blue region). While other modes of motion could occur for
such complex systems, our aim here is to observe these systems
in the “projected” sub-space where only sliding and hopping is
considered. Interestingly, we find that different groups of systems
emerge according to this classification, that we review below.

2.2.1 Sticky hoppers

We predict that viruses, white blood cells, and molecular motors
cannot slide. These systems show very long bond lifetimes, with
τoff = q−1

off ' 1− 100 s. This is characteristic of strong bonds, for
which the interaction energy |∆G| � kBT . Since for the protein
ligands in these systems, k ' 10−4 N/m and Γ ' 10−9 N.s/m for
1µm particles, we expect k/Γ' 105� qoff and γeff� Γ. Therefore
such systems simply can not slide. Sliding is even more disfavored
for coronaviruses (Sars CoV 1 and 2), since the legs are made of
very rigid proteins, with k' 0.5 N/m63,64. Hopping is therefore a
probable mode of motion for these systems.

These predictions are qualitatively consistent with experimen-
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Viruses
Molecular motor
White blood cells
Nuclear pore complex
DNA coated colloids
Escherichia Coli

Sars CoV 1
Sars CoV 2

Influenza A

P selectin L selectin

high 
coverage

low 
coverage

Hopping

Sliding

Stronger bond

Longer 
legs

nanoparticles

Viruses
Molecular motor
White blood cells

Nuclear pore complex
DNA coated colloids
Escherichia Coli

Fig. 6 Sorting biophysical systems. Expected regimes of sliding or
hopping according to the effective relaxation rate k(N)/Γ and unbinding
rate qoff. The gray line corresponds to k(N)/Γ = qoff and separates the
sliding and the hopping regions. Circles represent the range of values
found in the literature for parameters of each system. Systems are color
coded according to their category in the legend. When multiple sys-
tems belong to a category, details are indicated next to the circles. Low
and high coverage DNA-coated colloids refer to 1 µm size colloids and
nanoparticles to 15 nm size.

tal measurements. The diffusion coefficient of an influenza A
virus on protein-coated surfaces was measured as D0/Deff '
4− 19017,19. Estimating the typical number of available legs
N ' 1065,66 and the bound probability qon/(qon + qoff) = 20%66

yields D0/Dhop = [qoff/(qon +qoff)]
N ' 10, in the range of mea-

sured values. Our model predicts that hopping is therefore more
probable than sliding for influenza A, at least when considering its
translational motion under passive binding and unbinding. This is
consistent with Ref. 17, which observed infrequent yet very long
spatial steps, termed gliding moves. We note that the influenza
A virus has also been observed to move via cohesive short spatial
steps, that have been attributed to rolling motion5,17,19,41, which
may be due in this context to active bond cleaving17,19,41 that is
beyond the scope of passive binding as presented here.

Turning to DNA-coated colloids, while the binding kinetics are
roughly independent of colloid size, the effective relaxation rate
can vary strongly. Nanometre-sized DNA-coated colloids (yellow
nanoparticles) have fast relaxation rates as they are small (and
therefore Γ is smaller), and are thus sticky hoppers. In contrast,
micronscale colloids have slower relaxation rates k(N)/Γ, all the
more as usually a great number of bonds N ' 100 are involved in
the binding process, and thus are prone to slide. We will turn in
more detail to DNA-coated colloids in Sec. 2.3.

2.2.2 Slippery sliders

Reciprocally, we predict that systems with weak adhesion (equiv-
alent to short bond lifetimes, i.e. large qoff) may move by sliding.
Such systems include proteins translocating through the nuclear
pore complex, or white blood cells adhering through L-selectin

linkers, which are notably weaker than P-selectin23. Sliding may
also be accessible to systems with short effective relaxation rate,
for which the sticky friction mediated by k/Γ is low. This cor-
responds to large particles with long legs, as is the case for Es-
cherichia Coli57 (dark green). DNA-coated colloids with high
DNA coverage are prone to slide due to their large number of
legs.

2.3 DNA-coated colloids hop and slide, with order of magni-
tude decrease in their diffusion coefficient

We now turn to probe in more detail the predicted modes of mo-
tion and strong decrease in diffusion of DNA-coated colloids by
comparing our model’s predictions with experimental measure-
ments of DNA-coated colloids. DNA-coated colloids provide a
well-controlled model system for testing our analytical results,
especially their dependence on N, since the number of DNA legs
involved in the sticking process may be easily tuned by changing
the temperature38. Our aim here is not to build a detailed model
to describe all the possible modes of motion of DNA-coated col-
loids. Rather, we seek potential key parameters that control the
magnitude of the diffusion and the mode of motion. To do so,
we test whether the predicted strong decrease is coherent with
experimental observations over a range of temperatures and for
three different experimental designs.

2.3.1 Model parameters can be directly established from ex-
perimental data.

We predict the diffusion coefficients Deff (and Dslide and Dhop) for
three different experimental systems, by determining the parame-
ters involved in Eq. (15) from the literature or from independent
measurements, with no fitting parameters (apart from calibrat-
ing to the melting temperature, as discussed below). The diffu-
sion coefficients for DNA-coated colloids on flat DNA-coated sur-
faces have been measured in two different experimental systems
reported in the literature31,39. These studies report only very
few data points around the melting temperature where motion is
diffusive, since in these experimental systems diffusive motion is
only observed in a narrow range of temperatures, so the studies
focused mainly on the low temperature regime where motion is
subdiffusive. We complemented the scarce existing data by per-
forming our own experiments, using recently-developed fabrica-
tion38 and acquisition techniques31,39, and we observe diffusive
motion over a wider range of temperatures (Supplementary 2).
For each of the three experimental datasets, we map reported ex-
perimental parameters to the parameters of the model, and detail
our process below.

Some parameters are easily estimated using standard results,
see Table 2. The friction coefficient Γ is taken as the hindered
lateral hydrodynamic friction near a wall67; γ and k correspond to
hydrodynamic friction and spring resistance of the polymer linker
(that links the surface and the complementary DNA strand) and
are directly established from polymer dynamics56. The binding
rate qon depends on the exact – known – DNA sequence used
for the complementary stickers and the density of coated DNA
strands on surfaces70.

Other parameters, such as N and Nb (or equivalently N and the
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Table 1 Method used to calculate model parameters for the DNA-coated colloids studied experimentally in this work. Parameter values are reported
only at the melting temperature Tm. Their dependence on temperature is indicated in the “Comments and References” column.

Parameter Formula used Value at Tm Comments and References
Γ Γ = 2×6πη(T )R 1.6×10−8 N.s/m hydrodynamic friction near a surface 67; colloid radius R = 500 nm; η(T ) water

viscosity with temperature.
γ γ = 6πη(T )h 1.8×10−10 N.s/m with brush height h ' 22 nm, calculated with Milner-Witten-Cates theory 68, and

accounting for increased brush density due to Pluronic F127 (see Ref. 38).
k k = 3kBT/2L` 0.16 mN/m spring constant for polymers 56; extended brush length L ' 84 nm (6500 g/mol

PEO + 20 single stranded DNA (ssDNA) bases); persistence length ` = 0.5 nm
(average of PEO + ssDNA at 140 mM salt concentration 69)

qon qon = konσ̄/hNA 4 kHz where kon = 1.6× 106 M−1.s−1 from Ref. 70, using the exact sequence as in our
experiments; σ̄ =

√
σσg where σ = 1/(3.27 nm)2 is the particle coating density

and σg = 1/(10.8 nm)2 is the glass substrate coating density; Avogadro’s number
NA; Independent of T .

qoff qoff = qon
N(T )−Nb(T )

Nb(T )
18 kHz Nb average number of bound legs and N total number of legs available for binding

in the interaction region; Dependent on T .

ratio qon/qoff) require more extensive modeling of the detailed
leg-arm interactions to be evaluated. Recently Refs. 38 and 59
have shown how to establish N and Nb with no fitting parameters,
taking as input parameters the DNA sequence used, the coating
densities, and the properties of the DNA linker (see Fig. S5), and
we employ the method we have developed in Ref. 38.

Finally, since measurements include colloid vertical motion be-
yond the binding range*, we further include vertical motion and
hence particle buoyancy through a 2×1D model. Such vertical
motion is generally slow and only affects the effective probabili-
ties pn, not the friction coefficients Γn. Motion in two lateral di-
mensions can be straightforwardly extended from our 1D model
(see Supplementary 2 for more details).

All parameters are thus readily expressed from detailed exper-
imental system design. The diffusion coefficient Deff is decreased
by orders of magnitude at low temperatures. It progressively in-
creases to its “bare” value – corresponding to non-sticky DNA – at
high temperatures, with a sharp transition. This sharp transition
from the bound to unbound state occurs at a melting tempera-
ture Tm specific to each experimental design. The predicted Tm

is always close to the experimentally measured Tm (less than 1◦C
difference) with no fitting parameters.

Nonetheless, intrinsic variations remain in experimental pa-
rameters. In particular, different e.g. humidity conditions can
affect the coating process and exact coating density obtained,
and hence the experimental Tm, over about 2◦C. To investigate
data over the relevant short temperature range where diffusion
can be measured, one option could be to fit e.g. the value of the
coating density on colloids, to obtain the exact experimental Tm

– effectively fitting the location of the sharp transition. Instead,
we choose to align all data (theoretical or experimental) with re-
spect to its own melting point Tm (predicted or measured). This
has the advantage of avoiding fitting and allowing us to easily
compare similar experimental systems with slightly different Tm

(Supplementary 2).

* The binding range is about 20 nm, but this is not optically removable as the vertical
resolution is about 200 nm

A

B

C

very high coating density

high coating density

low coating density

no fitting

no fitting

no fitting

Fig. 7 Diffusion coefficients of DNA-coated colloids. Comparison
between experimentally measured diffusion coefficients of DNA-coated
colloids on DNA-coated surfaces and analytical predictions of Deff, Dslide,
and Dhop (Eqns. (15), (18) and (17)). The DNA-coated colloids have (A)
highly dense coatings (1 DNA per 10 nm2, Supplementary 2) (B) dense
coatings (1 DNA per 27 nm2) from Ref. 31 and (C) sparse coatings (1
DNA per 144 nm2) from Ref. 39. In (A) the gray region corresponds to
uncertainties on the coating density of the substrate, and the different
symbols correspond to repeated experiments repeated. The hydrody-
namic diffusion D0 = kBT/12πηR corresponds to lateral diffusion near a
flat rigid wall, where R is the radius of the colloid and η the solution
viscosity. Horizontal error bars correspond to uncertainties on imposed
temperature and vertical error bars correspond to uncertainties in deter-
mining the diffusion coefficient from data (Supplementary 2).
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2.3.2 The coating density controls the mode of motion and
the magnitude of the diffusion coefficient decrease.

The number of legs implied in the sticking process N changes sig-
nificantly with temperature. At low temperatures N & 100; the
colloids are strongly bound. With increasing temperatures N de-
creases until the particles are completely unbound and N = 0 (see
Fig. S5), with a sharp transition at the melting temperature Tm.
Importantly, the number of legs is the parameter that changes the
most with temperature and controls therefore the magnitude of
the long time diffusion Deff.

The three experimental systems differ mainly in the DNA coat-
ing density, which implicitly controls the number of legs N in-
volved in the binding process. For densely coated colloids (Fig. 7,
A and B), we find excellent agreement between our model calcu-
lation for Deff and experimental data, predicting a fast diffusion
decrease over 2 orders of magnitude in barely a few temperature
degrees. Further, we predict that sliding, or some form of cohe-
sive motion with the surface, is the dominant mode of motion
below the melting temperature Tm. In fact the high number of
available legs, N ' 100, due to high coverage, prevents hopping
below the melting temperature and colloids primarily slide, con-
sistent with the observed cohesive motion31. Hopping emerges
as a favorable mode above the melting point, where the average
number of available and bound legs significantly decreases due
to particle lift-off from the surface. This prediction is consistent
with our qualitative observations above the melting point: parti-
cles perform long moves over short time intervals, accompanied
by more frequent and longer excursions far from the surface. The
transition between motion modes occurs for about N = 40 legs in
contact (Fig. S5).

For DNA-coated colloids with low coverage densities, as in Ref.
39 (Fig. 7 C), our model predicts a diffusion coefficient that is far
too large. Yet, Dhop is in remarkable agreement with experimen-
tal data. In fact, Deff contains sliding motion yet the spacing be-
tween legs in Ref. 39 is too large and geometrically prevents slid-
ing. Hence only hopping, or uncohesive motion with the surface,
is possible. In fact, for such systems only hopping is observed,
resulting in a much stronger slow down of diffusion with decreas-
ing temperature39. The DNA coating density therefore appears
to be a significant factor in determining how DNA-coated colloids
move, allowing it to vary from sliding to hopping.

2.3.3 Other possible modes of motion.

There are other ways that DNA-coated colloids could move in spe-
cific experimental regimes, that could be probed with the analyt-
ical tools set forth here, yet that we have not yet explored. At
lower temperatures, particles don’t diffuse, they rather subdif-
fuse31,39, potentially due to inhomogeneities in the coated sur-
faces31,39,42. Such spatial dependencies are not accounted for
in our model but could be studied through spatially dependent
attachment rates qon(x) or leg number N(x).

Particles may also move by rolling instead of by sliding31, a
motion that could also be investigated with homogenization tech-
niques. Rolling may have a higher mobility at some tempera-
tures33,54, since the strands closest to the contact point on the
surface do not resist rolling, for geometrical reasons. Yet when

a large number of bonds are implied in the binding process, nu-
merous bonds are actually far from the contact point and hence
resist rolling. It is possible that rolling is thus favorable only over
a small range of temperatures.

Although our model lacks these more complex ingredients and
geometries, it is in surprisingly good agreement with our exper-
imental measurements. This suggests we have identified some
critical parameters controlling the observed effective diffusion,
precisely the coating density and working temperature as they set
the number of legs N. Even in a more complex model, containing
e.g. inhomogeneous coating density, or rotational degrees of free-
dom, we therefore expect these parameters to play an important
role in mobility.

2.4 Design rules for sliding versus hopping

Herewith we can draw simple design rules for sliding or hopping.
Numerous, long wobbly legs with weak adhesive bonds are well
adapted for sliding. Short and stiff legs with strong adhesive
bonds facilitate hopping. DNA-coated colloids offer various de-
sign features to control their mobility: for example, larger particle
size, higher DNA coverage, and lower temperature all favor slid-
ing. Further control can be achieved by tuning the microscopic
features of the legs, such as their spring constants k, for example
by choosing the length of the ligand leg38. However, such con-
trol is especially hard to achieve experimentally without changing
other experimental features at the same time. For example, cur-
rent coating processes generally result in less dense coatings for
longer legs38.

Overall, these design rules allow one to tune artificial systems
to control their mobility. This could have consequences in par-
ticular in the field of self-assembly of artificial structures, where
facilitated cohesive motion is believed to be essential for long-
range alignment31–33.

3 Coarse-graining under different models
and assumptions

In the physical and biological systems we explored, the range of
physical parameters was quite broad, suggesting that other scal-
ing ansätze might be appropriate to study long term dynamics.
We review alternative approximations and modeling assumptions
and compare them to the predictions of the model presented in
Section 1. We find that our model is the most general, encap-
sulating perturbative results obtained with other approximations,
and that it is naturally modified to account for additional features
(such as arms as well as legs). To make the argument simpler, we
mainly focus on a 1-legged caterpillar; the comparisons should
be similar for a multi-legged caterpillar. Detailed coarse-graining
steps are reported in Supplementary 4. All results are summa-
rized in Table 2 (displayed in the Appendix) and compared in
Fig. 8.

3.1 Dynamics with inertia

One may include particle inertia with a small yet finite mass
m 6= 0, by starting with the underdamped Langevin equations for
the particle (rather than the overdamped as we have done) – see
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Ref. 54. To understand the scales associated with mass, one can
compare the correlation time of the particle’s velocity when spring
recoil forces are at play, τv ' m(Lx/τ)

Lk , to the time scale of obser-
vation τ 54. Coarse-grained dynamics require τv

τ
= mLx

Lkτ2 = O(ε),
which is apparently coherent with a small mass.

Coarse-graining steps (Supplementary 4.1) lead to an effective
friction

Γ
m
eff = p0Γ0 + p1Γ1. (20)

Notice that the effective friction is the arithmetic sum of the fric-
tions in each state – not the harmonic sum obtained in Eq. (12)
†. Eq. (20) is equivalent to Eq. (12) in the limit where the friction
correction is small, γeff� Γ – see Fig. 8-B (yellow).

However, differences arise beyond this regime. For stiff legs
(γ/Γ� 1, k/qoffΓ� 1) one finds Γm

eff ∼ 0 while Γeff ∼ Γ. This
stark difference has an intuitive explanation: the particle may not
move when it is attached with the stiff leg, but it can still move
when it is unbound, and therefore the effective friction should
remain finite. This is true unless the particle has significant in-
ertia and therefore does not have the time to accelerate within
the unbound periods. In fact, in the non-dimensionalization we
implicitely assumed that m/Γ = εLkτ2/ΓLx = Γ/kε2, such that the
inertial relaxation time was in fact assumed to be large compared
to the time scale of velocity fluctuations.

This drives the general question of how to account for inertia in
such systems, and whether inertia plays a role in the macroscopic
diffusion of nanocaterpillars. We will address this question thor-
oughly in another paper71, in which we reconcile Eq. (20) and
Eq. (12).

CB

qon qoff
Leg Arm

lbond

A

Fig. 8 Comparing with other coarse-grained models and assump-
tions. (A) Schematic for arm and leg dynamics considered in this work.
(B) Effective diffusion with respect to friction ratio γ/Γ: calculated with
Eq. (12) (“This work”), Eq. (20) (“underdamped”), Eq. (21) (“scaling
ε = γ/Γ”) and Eq. (22) (“k/γ � qon,qoff”). (C) Effective diffusion with
respect to binding and unbinding rates (keeping qon/qoff constant), for
a particle with 1 leg facing M = 1− 50 arms: calculated with Eq. (25)
(“This work”) and Eq. (22) (“k/γ � qon,qoff”), taking p0 = 0 and p1 = 1
to match the limits in M→∞. Ref. 51 corresponds both to k/γ� qon,qoff
and γ/Γ = ε and was plotted for consistency. For (A) and (B), shared
numerical parameters are qonΓ/k = 1.0, qoffΓ/k = 0.8 and γ/Γ = 0.1.

† Eq. (20) corresponds to the result derived in Ref. 54, with in addition projected
dynamics for the bound state, and base friction of the particle (Γ 6= 0)

3.2 Choice of time-scale hierarchy

There are other choices for the ordering of time scales. We re-
view these below: we describe their experimental relevance, then
briefly examine the effective friction under these different approx-
imations and compare it to our main result Eq. (12).

3.2.1 Fast leg dynamics compared to particle dynamics

One common approximation is to assume rapid leg dynamics
compared to particle dynamics, with ε = γ/Γ51. Such an ap-
proximation is consistent with numerous experiments, as legs are
typically short, hence fast because of Stokes relation, compared
to the large particles investigated (such as white blood cells7 or
DNA-coated colloids72).

With this assumption one typically relaxes the restriction on
lengthscales, as L∼ Lx. The observation time-scale is τ = L2/D0 =

Γ/k and binding and unbinding are taken to be fast compared
to this time scale, qon ∼ qoff ∼ 1/τε. One obtains (Supplemen-
tary 4.2.1)

1

Γ
ε=γ/Γ

eff

=
p0

Γ
+

p1

Γ

(
1− γeff

Γ

)
. (21)

Eq. (21) results in a small correction to the effective friction, of
order ε. It is equivalent to Eq. (12) in the limit where γeff � Γ

is small. The assumption ε = γ/Γ appears thus quite restrictive
as it implicitly also requires to observe the system at long time
scales compared to the other time scales in the system. Further-
more, contrary to Eq. (12) where the small parameter ε disap-
pears, here 1/Γ

ε=γ/Γ

eff is a first order expansion in ε ∼ γeff/Γ. We
present Eq. (21) against Eq. (12) in Fig. 8-B (purple vs black) and
find that Eq. (21) is indeed only valid for small values of γ/Γ. Our
choice of scaling ε = L/Lx can thus account for a broad range of
bare friction values. Additionally, such an approach can only ac-
count for small perturbations to the background mobility, while
we find perturbations over several orders of magnitude.

3.2.2 Fast leg dynamics compared to binding dynamics

Another approximation assumes fast leg relaxation dynamics
compared to binding dynamics, k/γ � qon,qoff (and both are fast
compared to particle dynamics). In this case leg lengths are sam-
pled from their equilibrium distribution when they bind, corre-
sponding to a “pre-averaging" approximation. Leg lengths are not
tracked when they are unbound, allowing to speed up simula-
tions22,33,51,73. This limit is relevant to describe stiff legs, e.g.
rigid polymers such as double stranded DNA – see Table S1.

Coarse-graining gives (Supplementary 4.2.2)

1

Γ
k/γ�q
eff

=
p0

Γ
+

p1

Γ+ γ + k
qoff

. (22)

The pre-averaged result Eq. (22) is comparable to Eq. (12), yet
misses the relaxation term involving τ relax

u in γeff. This confirms
that τ relax

u originates from unbound relaxation dynamics. This dif-
ference results in some differences in Deff, depending on the mi-
croscopic parameters (Fig. 8-B). Additionally, the pre-averaged
limit may be viewed as the limit regime for a nanocaterpillar
with a large number of legs, say N � 1, where on average 1
or 0 leg is bound to the surface, Nb . 1. This typically requires
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qon � qoff � k/γ, and indeed Eq. (15) converges to the pre-
averaged result in that limit (Supplementary Fig S4).

The validity of pre-averaging is limited to the domain qon,qoff�
k/γ. In systems such as DNA-coated colloids, binding rates qon

and qoff may be manipulated over orders of magnitude74, by
choosing the DNA sequence or by adjusting temperature, poten-
tially accessing qon � qoff � k/γ at low temperatures. In this
regime, Eq. (12) predicts that the nanocaterpillar is frozen in the
bound state, while pre-averaged dynamics still predict a non zero
mobility. In these situations pre-averaged dynamics are therefore
not suitable. We show later however that introducing numerous
arms – more generally a lot of binding partners – can extend the
validity range of pre-averaging.

3.2.3 Fast binding dynamics compared to leg dynamics

Finally, one can consider fast binding dynamics compared to leg
dynamics, qon,qoff � k/γ. Although this limit is not often con-
sidered in simulations, it is relevant for dense arrangements of
receptor sites72. In fact as the binding rate qon scales linearly
with the concentration of receptors, it can increase by orders of
magnitude for a leg potentially in contact with a dense array of
arms – see Table S1.

Coarse-graining yields (Supplementary 4.2.3)

1

Γ
q fast
eff

=
p0

Γ
+

p1

Γ+ γ + k
(

γ

k
qon
qoff

) (23)

which is exactly what is expected in the limit qon,qoff � k/γ in
Eq. (12). Again, this highlights the physical mechanisms yielding
the different contributions in γeff. Here the average bound time
of the leg is small, τb� γ/k, and therefore does not contribute to
γeff.

3.3 Arms and/or legs

The diversity of nanocaterpillars resides also in their geometry:
some particles have legs that attach to a surface75, some have no
legs (or infinitesimally small legs), with binding sites directly on
the particle that attach to outstretched receptors on the surface
that we refer to as arms22,51 (1 arm case in Table 2) and some
have both outstretched legs connecting to outstretched arms33

(arms and legs in Table 2).

3.3.1 Arms or legs

A particle with a leg or a bare particle attaching to an arm (1-
legged and 1-armed respectively, see Table 2) have nearly equiv-
alent effective dynamics. The only difference resides in the inter-
pretation of Γ in the unbound leg dynamics Eq. (2) – see Supple-
mentary 4.3.1. For the 1-legged case, if the leg’s center of mass
corresponds to the point grafted to the particle, the unbound fric-
tion coefficient is simply increased by the leg as Γ→ Γ+ γ, where
Γ is the bare particle friction coefficient and γ the leg’s. If the leg’s
center of mass is offset from the grafting point on the surface, mi-
nor modifications have to be made to Eq. (2) yet lead to very
similar dynamics overall. For the 1-armed case, we simply have
the unbound friction coefficient Γ to be the bare friction coeffi-
cient of the particle. This justifies our approach in Sec. I, where

we ignore the details of the leg or arm location and simply treat
them as mathematically equivalent.

3.3.2 Arm and leg

A 1-legged particle attaching to 1 arm has slightly more interest-
ing dynamics. To investigate this case, we simplify the problem
and consider that the leg can bind to the arm regardless of their
relative location, with a rigid rod of length lbond that bridges the
gap between the sticky points (see Fig. 8-A). In the bound state
the constraint is thus x+ lleg− larm = lbond. The relative distance
lbond is unimportant and can be assumed to be zero, and therefore
this model effectively creates an arm with the correct length each
time the leg binds.

Although the model is simplistic, it is realistic in the presence
of a dense periodic array of arms and allows us to compare the
mechanical properties of this geometry compared to a single leg
or arm. We find using similar coarse-graining techniques (Sup-
plementary 4.3.2)

1

Γ
leg+arm
eff

=
p0

Γ
+

p1

Γ+ γeff,1(1,1)
where γeff,1(1,1) =

γeff

2
. (24)

The added friction in the bound state is only half that with a sin-
gle leg or a single arm: friction is distributed harmonically, like
the effective spring constant of two springs in series ‡. Slightly im-
proved mobility is therefore achieved with both an arm and a leg,
while the qualitative behavior of the original model is preserved.

3.3.3 Leg facing numerous arms

We now consider a leg that can bind to multiple arms at the same
time. As in the previous section, the M arms do not have partic-
ular locations but rather appear with the correct lengths when
needed. In that case, the binding rate depends on the num-
ber of bound legs. For a given leg, the effective binding rate is
(M− n)qon, where n is the current number of bound legs, such
that M− n corresponds to the number of available binding sites.
The effective unbinding rate of each leg remains qoff. Following
the formalism of arm and leg dynamics detailed above (Supple-
mentary 4.3.3) one finds that with M arms,

1

Γ
leg+M arms
eff

=
pM,0

Γ
+

pM,1

Γ+ γeff,1(M,1)
(25)

where pM,0 = qoff/(qoff+Mqon) and pM,1 = 1− pM,0 are the proba-
bilities to have 0 or 1 bond. The added friction γeff,1 is a harmonic
average when M is large

1
γeff,1(M,1)

'
M�1

1
γeff,M,1

+
1

γeff,1,1
, (26)

with γeff,M,1 = k
(

1
qoff

+ γ

k
(M−1)qon+qoff

qoff

)
the effective friction due to

the leg γeff,1,1 = k
(

1
qoff

+ γ

k

)
due to arms. We see that the factors

implying the unbound relaxation time τ relax
u are modified in each

‡ Note however that attaching springs with different spring constants would not lead
to a similar harmonic sum of effective frictions, as the effective friction contains
more contributions than those originating from the spring recoil force (analytical
results not shown here).

12 | 1–17Journal Name, [year], [vol.],

Page 12 of 17Soft Matter



case. We give the following interpretation: the average unbound
time for the leg is τu = 1/(M− 1)qon, due to M− 1 other avail-
able arms to bind to. For the arms, τu = ∞ as there are no other
legs to bind to once the only leg is bound. The harmonic aver-
age in Eq. (26) highlights again that the leg-arm configuration is
mathematically similar to the effective force of springs in series.

In the limit of a large number of arms M, the leg is always
bound to the surface (p1 = 1) and the correction to the bound
state friction converges to

γeff,1(M,1)−−−→
M→∞

γeff,1(1,1) = γ +
k

qoff
, (27)

which is the correction to the effective friction for the pre-
averaged result, Eq (22).

This limit is surprising. Sec 1, Eq. (12) showed that for a leg
binding to a uniformly sticky surface, in the limit where the leg is
always bound (p1 = 1), the nanocaterpillar is frozen and Deff = 0.
When the leg is bound to a great many arms this is no longer
the case: we recover the diffusion coefficient associated with pre-
averaging. We interpret this discrepancy as follows. With many
arms binding to a leg, the particle may still move, even in a pa-
rameter regime where the leg is always bound. In fact, the leg
rapidly swaps between different arms, which have different ran-
dom lengths and hence apply different random forces, causing
the particle’s position to fluctuate. Indeed, in Eq. (27) it is appar-
ent that the remaining friction is due to arms and not to the leg.
Swapping the particle upside down, this is equivalent to a parti-
cle with a large number M of legs binding to a uniformly sticky
surface, but where on average only 0 or 1 leg is bound to the
surface at a time. Therefore, this limit is equivalent to the pre-
averaged result: each time a new arm is bound it is sampled from
its equilibrium distribution – as so many arms are within reach.

Simulations with M arms are presented in Fig. 8-C with analyti-
cal solutions Eq. (25) (green colors). They indeed converge to the
pre-averaged result (pink). For consistency, we also record the re-
sult of Ref. 51 (Eq. (2.48)) that corresponds to pre-averaging and
assumes ε = γ/Γ. It is plotted in Fig. 8-C (red) and agrees with
our result only over a limited range of parameters, corresponding
to the validity range of Ref. 51.

3.3.4 Numerous legs facing numerous arms

N legs binding to M arms induce a long time effective friction that
encapsulates the previous result for M arms and that for N legs in
Sec. 1.4 (Supplementary 4.3.4). Eq. (15) still holds with adapted
bond probabilities pn, and γeff in Eq. (16) is the harmonic average
between arm and leg contributions, (γeff,n(M,N))−1 = γ

−1
eff,M,n +

γ
−1
eff,N,n.

Overall, spanning different limits shows that our methodology
to investigate long time dynamics is robust, as it accounts for a
broad range of physical parameters and a variety of geometries.
It also justifies the use of “pre-averaging” approximations (sam-
pling leg lengths from equilibrium distributions upon binding) to
accelerate simulations in specific situations. It also highlights that
taking limits of various parameters is subtle, and care must be
taken when doing so as the limits do not commute in general.

Conclusion
When a particle is coated with ligands that bind and unbind
stochastically to receptors on a surface, the ligands impart a ran-
dom force to the particle each time they bind, causing the par-
ticle to undergo a random walk on long timescales. We con-
structed a model for the coupled dynamics of such a nanocaterpil-
lar and its leg-like ligands, and derived an analytical expression
for the nanocaterpillar’s long-term effective diffusion coefficient
as a function of the microscopic leg parameters. Our simulations
showed this expression is valid over a broad range of parameters.
Our expression predicts a dramatic decrease in the diffusion coef-
ficient, by several orders of magnitude, as temperature decreases
by a few degrees, a prediction that is borne out in our experimen-
tal measurements.

Our model allows us to distinguish between two modes of mo-
tion, sliding and hopping, and to identify parameters that govern
which mode of motion is preferred, across a wide range of bio-
physical systems. Typically, systems with a large number of legs
will slide, since the mean-squared displacement due to hopping
decreases exponentially with the number of bound legs. Hopping
is favored for systems with short, stiff legs, and/or strong bonds.
Regardless of the mode of motion, the fast binding and relaxation
dynamics at the microscale result in an overall slow diffusion of
the nanocaterpillar, sometimes many times smaller than the back-
ground hydrodynamic diffusion.

We derived the effective diffusivity for a range of other models
and scaling assumptions, which allowed us to tease out e.g. the
effect of having arms (flexible receptors) as well as legs, having
significantly more arms than legs or vice versa, having significant
inertia, etc. In particular, we explored the validity range of spe-
cific approximations used to accelerate simulations, such as that
upon binding, leg lengths are sampled from their equilibrium dis-
tributions22,33,51. We showed this approximation is valid for fast
leg dynamics γ/k � qon,qoff in 1D, or when binding to a great
number of binding partners, such as many arms, M � 1, yet its
validity should be reassessed in more complex geometries.

There are numerous ways to build upon our model to address
additional complexities within the same coarse-graining frame-
work. An important step would be to incorporate particle ro-
tational degrees of freedom, and to ask how rolling compares
to hopping and sliding. Rolling has been predicted to lead to a
low effective friction in systems with stiff legs, because it doesn’t
require stretching legs at the contact point33,54. While rolling
has been modeled in special situations, none of these account for
the full stochastic nature of the motion, nor do they systemati-
cally derive a coarse-grained equation from microscopic param-
eters41. A systematic derivation of a rolling diffusion coefficient
would involve a few additional mathematical subtleties beyond
those that occur here, such as including binding rates with spa-
tial dependencies to account for the variable separation between
surfaces76,77, but we may nevertheless expect similar parameters
(such as spring relaxation times and unbinding rates) to discrim-
inate between rolling and other modes of motion.

Going further, other effects that could be studied include the
details of binding kinetics, e.g. non-exponential kinetics in DNA
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hybridization78–80, which could also impact the long time re-
sponse42; mobility of the leg roots, corresponding to fluidity of
the bilayer10,81; and out-of-equilibrium effects, such as white
blood cells streaming in blood flow5,77, active stepping of molec-
ular motors49,82,83, or proteins that actively cleave bonds on in-
fluenza A17,36. Accounting for such effects would require adapt-
ing bond dynamics to include increased bond rigidity or bond
lifetime in flow3,84–88; binding kinetics coupled to the number
of bonds47,49; or memory effects associated with dead zones cre-
ated by cleaved bonds26,36,52. Importantly, such improvements
require carefully adapting binding rates to preserve detailed bal-
ance and physical constraints32,76.

Furthermore, detailed hydrodynamic effects may be important
to describe certain kinds of nanocaterpillar dynamics. We have ac-
counted for hydrodynamics via the bare friction coefficients (Γ,γ),
but these coefficients themselves are coarse-grained, and in real-
ity depend on the distance of a nanocaterpillar to a surface67 and
are coupled to the details of the polymer leg mesh. Indeed, elas-
ticity of the polymer mesh could modify the particle’s mobility
near the interface, as was predicted for elastic membranes89,90.
A more detailed description of the hydrodynamic flow near a
nanocaterpillar could help shed light on other systems where mo-
bility through fluid is mediated by slender legs, such as for the
Vampire amoeba91.

Beyond its biophysical details, nanocaterpillar motion res-
onates with other fields where mobility is determined through
adhesive contacts. For example, solid state sliding friction is cre-
ated by bonds breaking between atoms. Close neighbor interac-
tions between bonds, originating from mechanical interactions,
can result in dramatic avalanches of bond breaking that change
the sliding motion92,93. Similar correlations between nearby
bonds could be at play in some nanocaterpillars. For example,
in white blood cells, membrane tension mediates bond-bond in-
teractions47,48. It is therefore interesting to speculate whether
avalanches of bond unbinding could also occur for nanocater-
pillar systems. Overall, the mathematical framework of coarse-
graining is well suited to explore how microscopic features de-
termine macroscopic modes of motion for nanocaterpillars and
could facilitate predictive capacity for materials design and bio-
physical systems.
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Appendix

Appendix A: Projection of the dynamics in the bound state

To project the stochastic dynamics Eqns. (1) and (2) in the bound
case we use a formalism (and notations) similar to Ref. 32; see
also60,94. This projection consists in using stiff springs to impose
each constraint, and considering the limit where the spring con-
stants go to infinity. The resulting projected equations can be
obtained by directly pursuing the steps below (without redoing
the reasoning with stiff springs).

We start from stochastic equations in the (x, l) space and seek to
project them on the constraint manifold, defined by the constraint
q(x, l) = x+ l− xr = 0. The constraint matrix is therefore

C = (∇q)T =
(

1 1
)
. (28)

We obtain the projector

P = I−CT (CCT )−1C =
1
2

(
1 −1
−1 1

)
. (29)

Initially the dynamics of X = (x, l)T may be written as

dX
dt

=−Γ̃
−1

∇U (X)+
√

2kBT Γ̃−1ηxl(t) (30)

where the potential U (X) = kl2/2, the noise ηxl = (ηx,ηl)
T and

the friction matrix is

Γ̃ =

(
Γ 0
0 γ

)
. (31)

The projected friction and its Moore-Penrose pseudo-inverse are

ΓP = PΓ̃P = Γ+γ

4

(
1 −1
−1 1

)
, (32)

Γ
†
P = 1

Γ+γ

(
1 −1
−1 1

)
(33)

with a square root

σP =

√
Γ

†
P =

1√
Γ+ γ

(
1 0
−1 0

)
. (34)

We obtain the projected dynamics

dX
dt

= −Γ
†
P∇U (X)+

√
2kBT Γ

†
Pηxl(t) (35)

where additional terms are needed if C is not constant over the
constraint manifold60,94. One can check that this exactly yields
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Table 2 Summary of different models and their effective long time friction. The 1-leg case corresponds to a system where the leg’s center of mass is
fixed on the particle. Apart from the 1-leg case, we ignore differences between Γ and Γ̃ to simplify notations.

Model Sketch Result
Main geometries

1-arm

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1
Γeff

=
p0

Γ0
+

p1

Γ1
, Γ0 = Γ, Γ1 = Γ+ γeff, γeff = k

(
1

qoff
+ γ

k
qon
qoff

)
1-leg

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1
Γeff

=
p0

Γ0
+

p1

Γ1
, Γ0 = Γ̃, Γ1 = Γ̃+ γeff, Γ̃ = Γ+ γ

N-legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1
Γeff

=
N

∑
n=0

pn

Γn
, pn =

(N
n

) qN−n
off qn

on
(qoff+qon)N , Γn '

N�1
Γ+nγeff

Inertial dynamics

1-leg, inertia
m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

Γeff = p0Γ0 + p1Γ1 , Γ0 = Γ, Γ1 = Γ+ γeff

Limit regimes

Small legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1
Γeff

=
p0

Γ
+

p1

Γ

(
1− γeff

Γ

)
Fast legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q
1

Γeff
=

p0

Γ0
+

p1

Γ1
, Γ0 = Γ, Γ1 = γ + k

qoff

Fast binding

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1
Γeff

=
p0

Γ0
+

p1

Γ1
, Γ0 = Γ, Γ1 = γ + k

(
γ

k
qon
qoff

)
Extended geometries

1-arm, 1-leg

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1
Γeff

=
p0

Γ0
+

p1

Γ1
, Γ0 = Γ, Γ1 = Γ+ 1

2 γeff

M-arms, N-legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q


1

Γeff
=

N

∑
n=0

pn

Γn
,Γn = Γ+nγeff,n(M,N),

(γeff,n(M,N))−1 ' (γeff,M,n)
−1 +(γeff,N,n)

−1,γeff,P,n = γ + k
(

1
qoff

+ γ

k
(P−n)qon

qoff

)

the bound dynamics Eq. (3), with η = ηx (this decomposition of
the noise is not unique but this does not impact the dynamics in
a weak sense).

Appendix B: Numerical simulations

Stochastic simulations of particle and leg dynamics are conducted
using a custom made Fortran 90 routine. Fast random number
generation is performed according to a Mersenne twister algo-
rithm. Normally distributed random numbers are used for par-
ticle displacement while uniformly distributed random numbers
are used to determine binding events. Equations are simulated
in their non-dimensional form. The step dt was chosen to be
much small than all other time scales of the system. Typically
dt = 1

100 min
(

qonΓ

k , qonΓ

k , γ

Γ

)
. The system is simulated for NT = 108

time steps, and the simulation is repeated over Nruns = 100 inde-
pendent runs (with renewed random number seed).

To simulate binding and unbinding events, for each leg, at each
time step, we choose a random number R uniformly distributed
between 0 and 1 and then:

• if the leg is bound, and if R > qoffdt then the leg becomes
unbound. Otherwise it remains bound.

• if the leg is unbound, and if R > qondt then the leg becomes
bound. Otherwise it remains unbound.

This simulation routine approximates well the exponential bind-
ing dynamics expected from the continuous equations since dt�
q−1

off ,q
−1
on . To simulate all other stochastic equations we use a stan-

dard Euler-Maruyama discretization.

The particle position x is saved every 104 time steps, and
the mean squared displacement < (x(t + t0)− x(t0))2 >t0 (aver-
aged over initial times t0) is computed up to NT /100 = 106 time
steps. The effective diffusion coefficient for each run Deff,i is
obtained from the analytical least square regression of < (x(t +
t0)− x(t0))2 >t0 with time. The average value over the runs
Deff =

1
Nruns

∑i Deff,i is retained as the effective long time diffusion
coefficient. The standard deviation of Deff,i allows to draw error
bars in all simulation plots.
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