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Combing a double helix†

Thomas Bolton Plumb-Reyes,a Nicholas Charles,a and L. Mahadevanb‡

Combing hair involves brushing away the topological tangles in a collective curl, or bundle of inter-
acting filaments. Using a combination of experiment and computation, we study this problem that
naturally links topology, geometry and mechanics. Observations show that the dominant interactions
in hair are those of a two-body nature, corresponding to a braided homochiral double helix. Using
this minimal model, we study the detangling of an elastic double helix via a single stiff tine that
moves along it, with and without contact friction, leaving two untangled filaments in its wake. Our
results quantify how the mechanics of detangling correlates with the dynamics of a topological quan-
tity, the link density, that propagates ahead of the tine and flows out the free end as a link current.
This in turn provides a measure of the maximum characteristic length of a single combing stroke
in the many-body problem on a head of hair, producing an optimal combing strategy that balances
trade-offs between comfort, efficiency and speed of combing in hair curls of various geometrical and
topological complexity.

Long-haired people are familiar with a well-known strategy for
combing their hair: comb away the tangles starting close to the
free hair ends, and work steadily upward towards the scalp. This
allows for the untangling of a collective curl—a bundle of in-
teracting filaments clamped at one end, free at the other, and
braided and tangled in between—to proceed more efficiently
from the free end, minimizing pain but at the expense of time.
But how does a comb work its way through a curl? This quotid-
ian problem which lies at the intersection of mechanics, geom-
etry and topology has many cousins—the carding of textiles and
felts1,2, and the spontaneous tangling and detangling of polymers
in a flow3,4, of flux lines in superconductors5 and of magnetic
fields in solar coronae6. In the context of hair, there has been a
recent resurgence of interest in characterizing the effective prop-
erties of fiber assemblies and packings7–14, inspired by technolog-
ical applications to fields such as robotics, computer animation of
hair15,16. However, most of these studies neglect individual hair-
hair interactions, and little is known about the dynamics of detan-
gling in complex packings of fibers and hair from a mechanical,
geometrical or topological point of view.
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Minimal model of hair curl

The complexity of detangling hair physically is matched by the
difficulty of a physical and mathematical description of the comb-
ing problem. This is because of the many-body nature of inter-
acting filaments (hairs) and their potential for long-range inter-
actions; interactions at one location along the curl affect interac-
tions elsewhere by preventing the hairs from sliding relative to
each other, moving past each other etc. Indeed, this is similar
to what is seen in entangled polymer melts and other thermal
analogs that have been studied for a long time17 (note that our
use of “interaction" is similar to the concept of “entanglement" in
polymer physics), with one critical difference - polymers are sub-
ject to thermal (Brownian) fluctuations owing to their small size
while hairs are effectively at zero temperature. In Fig. 1a, we see
an example of a curl of horse-hair that is gently entangled near
the free end, tightly packed near the other end, and braided along
its bulk. To quantify the nature of these interactions, we digitally
color each strand to track their interactions with their neighbors
in a curl (Fig. 1b), segment the curl into sections, and then count
and characterize the internal interactions of each strand using the
interaction definitions exemplified in Fig. 1c. Because hair entan-
glements can be removed through the free end during each comb-
ing stroke, it is not relevant to count interactions over the whole
length of the curl. Instead it suffices to consider a scale compa-
rable to the smaller of two natural scales: the natural radius of
curvature or the length determined by the balance between elas-
ticity and gravity. In our study of naturally straight hair, we use
the gravitational length which of order O(10)cm.
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Viewing the curl by projecting it onto a plane parallel to the
main axis, we define an interaction to be where strands cross each
other, but ignoring the sign of the crossing, so that our metric acts
as an upper bound on the true number of signed interactions.
In Fig. 1d, we plot the number of N-body interactions, and see
that pair-wise interactions form a plurality of the tangle types in
our analyzed curls (while the extent to which pair-wise interac-
tions dominate depends on curl segmentation, we chose segment
lengths to match the characteristic length over which hairs curl;
see appendix for details). While this plurality would likely be
less pronounced for curlier hair, we restrict ourselves to relatively
straight curls—i.e., an individual hair’s radius of curvature is on
the same order as its length.

Experimental observations of combing
Given the dominance of two-body interactions, we first consider
a minimal model of the comb-curl system: two homochiral en-
twined helices clamped at the top end and hanging freely at the
bottom. The filaments are made of nylon (heated to force them
to conform to 3-D printed helically grooved cylinders, and then
cooled). This assembly is then pierced at the midpoint of the dou-
ble helix centerline by a single stiff rod (the tine of a comb). As
the tine moves downward quasi-statically, it detangles the down-
stream region of the curl. By connecting the tine to an Instron
5566 material testing machine, we measure the force-extension
curves of combing a double helix.∗

In Fig. 2a we show that combing the helix leads to a response
that can be associated with unwinding, kinking or both. While un-
winding, the relative rotation of one filament endpoint around the
other, is inevitably required for helix untangling, we frequently
observe kinking, resulting from shear/sliding between the two he-
lices that leads to a characteristically bent/kinked state (Fig 2a,b),
a characteristic instability associated with hair combing. As the
tine moves along, the filaments are slightly over-wound and com-
pressed ahead of it, and under-wound and extended behind the
tine. To examine the force-extension curves for different combing
parameters, we note that the double helix can be parametrized
in terms of the helix radius R, the filament radius r, tine radius
t, and helix pitch P as shown in Fig. 2b, expressed in terms of
the dimensionless ratios π1 = P/r, π2 = R/r and π3 = t/r. We
show the dependence of the curves as a function of π3 in the sup-
porting information since t appears to have little impact on the
nature of combing. Here we consider only helices of uniform ra-
dius and pitch, although in reality they may vary over the length
of the curl. Furthermore since combing is usually done slowly, we
consider only the quasi-static limit in our experiments and simu-
lations.

In Fig. 2d,e we show the scaled force on the tine f = Fl2
0/B

as a function of the dimensionless tine displacement x (scaled by
the filament radius r), where F is unscaled force, B is hair bend-
ing rigidity and l0 is a fixed reference length†. Helices of smaller

∗Similar force testing experiments were performed with real curls of hair (human
and horse) but are not included in this publication to focus on the minimal model
results.
†Note that l0 = 0.01m is a fixed reference length used to make quantities dimension-

(c)

Fig. 1 Tangles in hair. (a) Curl of horse hair. (b) Colored curl of 12
human hairs, clamped at one end. (c) Examples from (b) of N-body
interactions (N = 2-5 circled left to right, top to bottom). (d) Histogram
of N-body interactions for a sample similar to (b) with ρ = number of
interactions per unit length (in meters). We segment the curl into 20
sections, count interaction types as shown in (c) within each section and
average.

pitch and radii that are more tightly wound require larger forces
to detangle, consistent with experience and intuition. In all cases,
there is an initial rise in the force extension curve before a level-
ing off. The rise corresponds to the phenomena of overwinding
of the helix in front of the tine and underwinding behind the tine,
while the leveling off is associated with the tine jamming and then
breaking through. For loose helices, i.e. P/r > c ≈20, there is no
tine jamming or maximum in the force. To elucidate the force
patterns unique to combing, we compare the forces required to
comb with those required to stretch a single helix with the same
pitch and radius (i.e., a helix with initial angle α ∼ P/R and he-
lix radius R extended to final angle α1 and helix radius R1

18; see
appendix for details). We find that the force-extension curve for
combing is qualitatively different, showing a flattening (soften-
ing) in contrast with the divergent response for a single helix that
is straightened out. Of course, this is to be expected since the
moving tine untangles the two filaments, eventually decoupling

less and was chosen as the typical order of magnitude length over which hairs curl
at their curliest location.
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the helix strands so that the force felt by the tine eventually van-
ishes, while the force to straighten an inextensible helix becomes
very large as the end-to-end distance becomes comparable to the
arc length measured along the filament.

1 cm

tine motion

Fig. 2 Combing a double helix. (a) As the tine moves down the double
helix, it forms a kink about which the helix whirls as link flows out of the
bundle. (b) Schematic of combing a double helix with pitch P, helix radius
R (half the distance between individual filament centerlines), filament

radius r, tine radius t and helix height L. (c-d) Scaled force f = l2
0 F
B applied

by tine over scaled distance combed x = d
D , where F is unscaled force, d

is unscaled distance combed, l0 = 0.01m is a characteristic length, B is
single filament bending rigidity and D is total tine displacement required
to detangle the helices. Dashed curves show theoretical force predicted
for stretching a single helix; black curves show a single representative
combing. We scan the parameter space varying (c) π1 = P/r and (d)
π2 = R/r. See appendix for details and variation of π3 = t/r. (e) Change
in link density ∆λ normalized by initial link density λ0 as a function of
dimensionless arclength s = S/` for π1 = 18, π2 = 1, plotted for several
normalized tine locations, showing flow of link from clamped to free side
and eventually out free end by twirling of the free ends about one another.
In all experiments, r = 4.25 ·10−4 m and helix height L = 0.15 m.

The unlinking of the homochiral helices during this process can
be quantified in terms of the Calugareanu-Fuller-White (CFW)
theorem19–21 which states that Lk = Tw+Wr, where Link (Lk)
quantifies the oriented crossing number of the two filaments av-
eraged over all projection directions (or Gauss Linking integral)
and effectively counts the number of full turns one filament makes

around the other22, Twist (Tw) is the integrated rotation of one
filament around the two-filament-centerline, and Writhe (Wr) is
related to the (negative) integral of the geometric torsion of the
centerline. To quantify the topology of the double helix, we treat
the two interwoven filaments as two edges of a ribbon and com-
pute the local link and twist densities, λ (S) and τ(S), defined as
link and twist per unit length along the double helix centerline as
a function of arclength S. Since Lk is a topological invariant while
Tw is not, we wish to characterize the ribbon in terms of λ . How-
ever, since Lk is an inherently global quantity whereas Tw is the
integral of the local twist density τ(S), τ can be defined more nat-
urally than λ . Fortunately, for a relatively straight double helix,
Wr ≈ 0, allowing us to set λ (S)≈ τ(S)23.

In Fig. 2e we show the evolution of the link density λ calculated
from images of the helix taken as the tine moved. We see that
a relatively uniform λ (S) changes to a step-like λ (S) as the tine
induces a flow of link toward the free end of the curl. This leads to
overwinding in front of the tine and underwinding behind while
link flows through the helical braid from the clamped to the free
end. For tine displacements x & 0.2, the scaled jump in the link
density ∆λ/λ0 > 0 across the tine (λ0 being the initial link density)
increases faster than the rate it which is expelled from the free
end. This accumulation eventually reaches a plateau as the tine
gets closer to the free end, and then induces a flux of link at the
free end that unlinks the filaments, the end goal of combing.

We now turn to correlate the experimentally observed spatio-
temporal evolution of link density associated with the motion of
the tine to the evolution of the force on it. For a double helix that
is tightly wound initially, as the tine propagates, ahead of it λ (S)
increases, while the scaled pitch π1 = P/r decreases, concomitant
with the propagation of a localized jump in the link density‡. This
localized jump in the local link density causes the double helix to
stiffen and eventually the tine jams. Then, the filaments slide rel-
ative to another, leading to a relative shear that often leads to the
kinked configuration seen in Fig. 2a,b accompanied by a peak in
applied force before the tine breaks through, or the tine breaks
through without forming a kink. In either case, there is a simulta-
neous reduction in the force, before the same cycle repeats again.
If a kink forms, the kinked double helix twirls about the axis of
tine motion as the tine moves (see video-S1). If the double he-
lix is initially loose enough, link propagates more easily from the
tine location to the free end, and λ (S) never crosses the threshold
needed for kinking, so that the force required to comb does not
oscillate strongly (as seen for π1 ∼ 50,π2 ∼ 1). In all cases, there
is a current of link that flows out of the free end, via unwinding
of the free ends of the individual filaments, and via the whirling
rotation of the kinked portion of the double helix.

By using the local link, twist and writhe density instead of the
local curvature and torsion, we can characterize the untangling of
the double helix and conditions for kinking. This approach also
allows us to follow the flow of λ out of the free end, leading to a

‡The abrupt change in link density, termed here a link pulse, is more visible in Fig.
3e than its experimental counterpart, since link density measurements could not be
performed with as high resolution in experimental curls as in simulated ones.

Journal Name, [year], [vol.],1–9 | 3

Page 3 of 9 Soft Matter



reduction in the global Lk, and thus follow the overall detangling
of the helix using a more natural topological signature.

Numerical simulations of combing

To quantify our experiments on the nonlinear topological me-
chanics of interacting filaments, we use a numerical approach
that models each hair using the Kirchhoff-Cosserat theory24,25

and solve the equations using a recent discretization, contact-
force and numerical integration scheme et al.26 In the limit of
very thin filaments such as hair, the model naturally reduces
to the Kirchhoff-Love theory for inextensible, unshearable fila-
ments18. We define S ∈ [0, `] as the material coordinate (also
the arc length) of the rod of rest length `, r(S) as the posi-
tion vector of the center-line, and a triad of orthonormal direc-
tors d1(S),d2(S),d3(S) = ∂Sr that defines the cross-section orien-
tation. Then any body-convected vector v with lab-frame coor-
dinates v̄ may be written as v = Qv̄, where Q(s) ∈ SO(3) is a ro-
tation matrix, and the bending and twist strain vector is given
by κ = vec(∂SQT Q) (κ0 is the natural curvature of the unstressed
filament). If N(S) is the internal force resultant, fg as gravita-
tional force line density, the equilibrium equations for the fila-
ment are25,26

0 =∂SN+ fg (1)

0 =∂S (B(κ−κ0))+∂Sr×N (2)

where B is the matrix of bending and twisting rigidities, subject
to the boundary conditions of the filaments being clamped at one
end and free at the other. When performing simulations, we com-
pute equilibrium configurations by solving an overdamped ver-
sion of the corresponding dynamical system, since that is the com-
putationally most convenient method of deploying the numerical
scheme used here.

To simulate the initial state of a curl of hairs such as that de-
picted in Fig. 1b, we start with a collection of clamped filaments
hanging in a gravitational field | f g| = mAg (g ∼ 10 N/kg, m is
the filament volumetric mass density and A is the filament cross-
sectional area), resulting in a curl such as that shown in Fig 3a.
We then introduce an intrinsic curvature along the discretized fil-
ament randomly drawn from a Gaussian distribution with zero
mean and variance matching the distribution of curvatures (see
appendix for details), shown in Fig. 1b. Finally, we let the hairs
relax elastically to their new rest configurations, determined by
a competition between nonzero intrinsic curvature and gravita-
tional straightening (see appendix). After the hairs relax, we
count interactions using the same method as used in experiments,
leading to the histogram of interactions per unit length in Fig. 3b.
We find that pairwise interactions dominate in agreement with
experimental results (see appendix where we show that these in-
teractions do not change qualitatively in a 3d array).

To follow the combing of an elastic double helix as in Fig. 2,
we start with a random distribution of initial internal strains and
anneal the pair of filaments into a double helix, clamped at one
end and hanging under the influence of gravity. We then insert a
rigid rod as a tine between the two helices close to the clamped

Fig. 3 Numerical results. (a) Simulated curl of 12 hairs modeling those in
Fig. 1b. (b) Hair interactions as in Fig. 1d for simulations similar to (a),
where ρ = number of interactions per unit length (in meters). `= 0.2 m,
r = 7.5 · 10−5 m and E = 1 GPa. See appendix for 3-dimensional curl

results. (c-d) Scaled force f = l2
0 F
B applied by tine over scaled distance

combed x = d
D , where parameters are defined as in Fig. 2. Dashed curves

show theoretical force predicted for stretching single helix an equivalent
distance; black curves show single representative combing. We scan the
parameter space varying (c) π1 = P/r and (d) π2 = R/r. See appendix for
details and variation of π3 = t/r. (e) Change in link density ∆λ normalized
by initial link density λ0 as a function of dimensionless arclength s =
S/` for helix with π1 = 18, π2 = 1, plotted for several tine locations,
qualitatively reproducing experimental trends from Fig. 2e. See appendix
for simulation settings. Note that f , x and s are dimensionless.

end and move it quasi-statically towards the free end. As in ex-
periments, when the tine moves toward the free end, it detangles
the helices by pushing link out ahead of itself. In Fig. 3c-d we
show the numerically computed force applied by the tine during
combing, and see that the results are similar to our experiments
shown in Fig. 2c-d §. Comparing the evolution of the helix topol-
ogy computed using the algorithms described in Charles et al.27,
Fig. 3e shows that this also matches the experimental pattern of
overwinding and underwinding shown in Fig. 2e; the oscillations
in λ (s) on the clamped side of the tine come from slight peri-
odic shearing of the clamped side filament segments with respect

§ The high-frequency oscillations seen in the mean force curves are due to the oscilla-
tion in contact force between the tine and double helix filaments as the tine passes
by each discrete node in the double helical braid.
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to each other, a phenomenon that occurs on too fine a resolu-
tion to be seen in experiments. The small discrepancies between
the quantitative values observed in the numerical and experimen-
tal results may come from our scaling of the simulated filaments’
bending stiffness. We note that the numerical calculations ne-
glect contact friction. Including contact friction in our simulations
leads to force-displacement curves with similar shapes, indicating
that in most situations friction effects combing quantitatively but
not qualitatively.

Optimal combing strategy
Complementing our analysis of the topological mechanics of
combing a double helix, we now consider how a curl’s resistance
to combing varies with the style of combing, e.g. short strokes
versus long strokes. Noting that a single helix pitch corresponds
to one helix filament revolving once around the other helix fil-
ament, we fix R/r = 1 and P/r = 24 and vary q, the number of
pitches that initially separate the tine from the free end of the
double helix. In experiment (Fig. 4a) and simulation (Fig. 4b) we
find that significant tine jamming—as indicated by the plateaus in
the force-displacement curves—occurs only when we start comb-
ing more than q = 4-5 helix pitches away from the free end¶. The
differences between the two sets of curves is likely due to not ac-
counting for friction in the computations, and explains the larger
number of plateaus seen in the large-q experiments relative to the
more smooth force evolution seen in computations. Nevertheless,
we see that starting to comb nearer to the free end allows link
to be expelled more easily, leading to complete untangling before
the differential link density across the tine surpasses the threshold
for kink formation and jamming, consistent with experience.

To quantify this intuitive result, we define a cost C(q) for comb-
ing a double helix of length L using a strategy in which the tine is
repeatedly inserted q links upstream from the last insertion point
and pulled through to the free end, thus detangling q links of the
helix each iteration. To illustrate the trade-offs between fmax, the
maximum dimensionless force during combing, and the detan-
gling quantized in terms of the number of strokes q0/q needed
to complete the combing process (q0 = 25 is a fixed number of
pitches characteristic to the q-values used in these combing strate-
gies), we use the simplest linear cost that can interpolate between
pain and time. Writing this cost C(q) = γ fmax +(1− γ) q0

q (see ap-
pendix for details), we consider the relative cost of the two effects
by varying γ to optimize a combing strategy based on the initial
nature of the double helix. For very curly hair, choosing γ ∼ O(1)
is more sensible, while for straight hair, choosing γ ∼ 0 is better.
Using the results for the maximum force from Fig. 2-3, we calcu-
late the cost C(q) for the case of curly and straight hair. In Fig.
4c, we see that for straight hair (γ ∼ 0), the cost decreases as q in-
creases, i.e. the number of strokes decreases, while for curly hair
(γ ∼ 1), the cost is lowest for small q as it is biased to minimize the
cost associated with the maximum force. We note that, while a
detailed study of the effects of contact friction is beyond the scope

¶Quantitative differences in the shape of experimental and numerical force-
displacement curves in Fig.4 likely stem from our model’s neglect of contact friction.

of this work, several simulations showed that friction may change
combing force-displacement curves quantitatively but not quali-
tatively. Hence, lubricating hair may reduce the pain felt during
combing, effectively reducing the γ that should be used to com-
pute an optimal combing strategy for a particular curl geometry.

Conclusions
Our study has shown that a first approximation to the many-body
problem of combing a curl of relatively straight hair can be cap-
tured by considering the combing of a single double helix, a two-
body problem with complex spatially extended interactions. This
process connects topology, geometry and mechanics via a rela-
tion between flow of link driven by the tine and out of the free
end, and the time-varying force felt on the tine. Our results also
suggest that the two-body problem also has the ability to cap-
ture the correct optimal strategy of combing a tangle by balancing
the cost of many short strokes relative to longer, potentially more
painful ones. While material properties such as stiffness, friction,
pretwist and cross-sectional shape would likely quantitatively im-
pact our results, we expect the connections presented here are a
start towards understanding the mechanics of combing qualita-
tively different styles of hair. A natural next step is to account
for variations in these material properties, the strong frictional
anisotropy of hair, and their response to combing as a function of
humidity and temperature.
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Appendix
Hair curl interactions

To quantify the nature of hair-hair interactions, we segment the
experimental curls into sections, and then count and character-
ize the internal interactions of each strand using the interaction

types shown in Fig. 1c, noting that our definition of interaction
is an upper bound on the true number of interactions (note that
our use of “interaction" corresponds to “entanglement" in poly-
mer physics). We also note that, while the plurality of two-body
interactions would likely be less pronounced for curlier hair, we
restrict ourselves to relatively straight curls, leaving an investiga-
tion of how curliness affects hair-hair interactions to future work.

Even in this limit, we note that the dominance of two-body
interactions depends, to some degree, on the length of segment
used to compartmentalize the curl. Since our goal is to investigate
the local interactions making up the global tangling of the hair, we
sought a segment length that would isolate local interactions—
i.e., those that take place over a length scale comparable to the
characteristic length over which the hair curves at its curliest lo-
cations. We chose 20 segments empirically to produce a segment
length roughly equal to that characteristic length.

Other curl properties, such as volume density of hairs in the
region of space occupied by the curl, hair thickness, and average
hair curvature, may also affect the precise relative abundances of
N-body interactions. However, for this study, we limit ourselves
to dry-combing of relatively straight hair, in an attempt to reduce
the formidable complexity of the many-body problem to a more
tractable two-body problem, and leaving for future work a more
detailed investigation of the complete curl.

To understand hair-hair interactions from a computational per-
spective, leading to Fig. 3b, we simulate twelve hairs with their
top ends clamped in a planar triangular lattice. The hairs hang
freely down from their clamped tops, loosely filling the volume
below the triangular lattice. As with the two-dimensional array of
hairs considered in Fig. 3b, we then introduce intrinsic curvature
into the hairs. The random curvature at each node of each hair
is sampled from a Gaussian distribution of curvatures with zero
mean and standard deviation∼ .1m−1. This distribution was cho-
sen to match the local curvatures of the hairs used in experiment,
and was determined by sampling the local radius of curvature of
several individual hairs at evenly spaced locations along the hairs.
We employ two interaction criteria to determine the presence of
interactions, both of which lead to similar results: in Fig. A1a, we
use contact; in Fig. A1b we consider two hairs to interact within a
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single layer of the curl if the Lk between the segments of the two
hairs within that layer is greater than a fixed threshold, here set
to Lkthresh = 0.4, determined empirically to maximize intersection
classification accuracy. We again find pairwise interactions to be
the most prevalent, regardless of the definition of an interaction.

Fig. A1 Hair curl interactions in three dimensions. Histogram of hair
interaction types for simulated curls similar to those used for Fig. 3b.
Here, we clamp the top of the hairs in a planar triangular lattice, letting
all hairs hang down in the same direction, loosely filling a volume of space
below the triangular lattice. We segment the curl into 20 layers, count
interaction types defined in Fig. 1c within each layer and average over
all layers and curls. In three dimensions we can no longer use projected
intersections to define hair interactions. In (a) we define an interaction
by hairs being in contact. In (b), we use a linking number threshold
to define interactions. In particular, we segment the curl into twenty
segments; in any single segment, if Lk(A,B) > m, where A and B are
the parts of two hairs which lie in the given segment, then A and B
interact. We empirically determine that m = 0.4 is roughly the smallest
linking threshold that provides nontrivial segregation of interaction types.
Presumably, were m and segment length scaled equivalently, results would
change only as a function of segment length, not directly as a result
of changing m. Here ρ = number of interactions per unit length (in
meters), and we again find pairwise interactions to be dominant. Bar
height represents mean ρ while error bars show standard error in ρ.

The qualitative similarity between Figs. 1d and 3b suggests that
real hair curvatures are distributed similarly to the independently
randomly sampled curvatures used in simulation. The similar-
ity between simulated and experimental results (Figs. 1d and
3b) implies that for real hairs, there is significant statistical in-
dependence between the local hair curvatures at points close in
arclength along the same hair and equivalent points on nearby
hairs. Curls of hair characterized by such independence are “ther-
malized" and mimic what would be seen in a real curl.

Elasticity versus gravity in free-hanging hair

In Fig. 1b, we show a curl of hair used in studying hair inter-
actions. Upon close inspection, one can see that at the bottom of
this curl, the hairs are more coiled– i.e. the curvature of the hang-
ing hairs appears to be greatest in a small region at the bottom of
the hairs. The characteristic length lg of an individual hair (radius
r, bending rigidity B) at which gravity is balanced by elasticity is
given by lg ∼ (B/mgr2)1/3 ∼ (Er2/mg)1/3. For hair that has a nat-
ural curvature κ∗, when lgκ∗ � 1, gravity is unimportant, while
otherwise gravity does play a role; this can be seen in the varie-
gated forms of human and animal hair and fur. In the case treated
here, corresponding to relatively straight hair, the role of gravity
is limited at best to the slight splay seen at the end of the curl seen
in Fig. 1b. A more nuanced approach would require us to consider
the interactions between elasticity, gravity, natural curvature and

packing as treated in12.

Comparing single helix extension to combing a double helix

To gain insight into the effects of interfilament contact during
combing, we compare our force-displacement curves (Figs. 2-3)
to the curves obtained to stretch out a single helix using the well-
known analytic force-extension curves18. For a helical filament
described by an angle α ∼ P/R and helix radius R, and one end
clamped, the external load F and torque M applied axially to the
helix’s free endpoint to deform it to a helix along the same axis
with angle α1 and radius R1 are

F =C
cosα1

R1

(
sinα1 cosα1

R1
− sinα cosα

R

)

−B
sinα1

R1

(
cos2 α1

R1
− cos2 α

R

)
(A1)

M =C sinα1

(
sinα1 cosα1

R1
− sinα cosα

R

)

+Bcosα1

(
cos2 α1

R1
− cos2 α

R

)
(A2)

Using the geometry of the helix as a function of its end-to-end
extension, and assuming that the tine is stuck to the helix when
it is inserted into the double helix, we can estimate the force re-
quired to stretch the helix, as shown in Fig. 2 and Fig. 3, and see
that the single-helix force-extension curve vastly overestimates
the combing force for a double helix where the tine drives link
out of the system as it slides along it.

Varying tine radius

To explore the double-helix parameter space, we varied three
dimensionless ratios of length scales: π1 = P/r, π2 = R/r and
π3 = t/r. The effects of varying π1 and π2 are shown in Figs.
2-3. In Fig. A2, we show the effect of varying π3. Contrasting Fig.
A2 to Figs. 2-3, we see that the effect of tine radius on the force
required to comb the curl is much smaller than that of the helix
pitch or radius.

Cost of combing

Before discussing the cost of combing, we define the process of
combing in terms of q, the number of pitches in the double he-
lix between the tine insertion point and the free end of the dou-
ble helix, so that a length-L braid with qtot = L/P = 1000 links
must be combed through. Combing the long double helix can
be achieved via a sequence of strokes, each of which detangles
q links, or pitches, of the long double helix. For the first comb-
ing, the tine is inserted q pitches away from the free end, and is
pulled through to the free end, detangling those q links. For each
subsequent combing, the tine is inserted q pitches further away
from the free end than it was inserted for the previous combing.
Each time, it is pulled through to the free end, detangling q new
pitches. In all combings after the first one, the tine must push
the q pitches through some amount of previously-detangled helix
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Fig. A2 Force to comb a double helix under variation in tine radius t in (a) experiment and (b) simulation. We show scaled force f = l2
0 F
B applied by

tine over scaled distance combed x = d
D , where F is unscaled force, d is unscaled distance combed, l0 = 0.01m is reference length, B is single filament

bending rigidity and D is total tine displacement required to fully unlink the tangle. Dashed curves show theoretical force predicted for stretching
single helix an equivalent distance. Black curves show a single representative combing, for π3 = t/r = 1.2 in (a) and π3 = 0.6 in (b). We vary tine
radius relative to hair radius π3 = t/r, keeping helix radius R = r and pitch P = 23.5r fixed. Comparing to Figs. 2-3, t affects combing force much less
than R or P. Note that all combing experiments and simulations in main text used π3 = 0.9.

arclength. During this part of the combing, no new links build up
in front of the tine; rather, the tine causes the q links to translate
down the double helix to the free end.

Our cost function needs to incorporate a measure of the pain as-
sociated with the force exerted by the tine, and time spent comb-

ing the curl; letting fmax =Fmax

(
l2
0
B

)
be the maximum dimension-

less force felt during combing, we choose the simplest cost that
can interpolate between these two contributions:

Cost C(q) = γ fmax +(1− γ)
q0

q
(A3)

where q0 = 25 is a fixed number of pitches characteristic to the q-
values used in these combing strategies, and γ ∈ [0,1] spans pos-
sible hair geometries. In particular, as indicated by the force-
displacement curves in Figs. 2-3, combing curly hair requires
more force, hence more pain, while combing straight hair is
rather painless. Hence, setting γ = 1 selects the pain term from
the cost and corresponds to combing curly hair, while γ = 0
chooses the time term and corresponds to combing straight hair.
We note that our cost function implicitly incorporates an approx-
imate mechanical work performed in combing the length-L helix
using each combing strategy, which can be seen by considering
the square of the cost above.

Simulation settings

We model each hair using the Cosserat theory of elastic rods24,25,
and solve the governing equations using the numerical methods
described in earlier work et al.26,27. To simulate large numbers of
hairs at once, we parallelize the integration scheme within each
timestep, computing forces and torques and updating filament
positions, velocities and other quantities for all filaments simulta-
neously. To parallelize computation of contact forces, we check
each filament separately for contact with other filaments, and
only update the external forces on individual filaments, avoid-
ing multiple calls to the same memory block by different threads

at the same time.
We use the simulation and filament parameters listed in tables

1 and 2, noting that all quantities plotted in this paper are di-
mensionless, making the real values of E and r used in simulation
only representative.

radius r 7.5 ·10−5 m

hair length ` 0.2 m

E 1 GPa

Poisson ratio ν 0.5

spatial discretization δ l 0.002 m

time discretization δ t
(
0.008 s

m
)

δ l

Table 1 Parameters used for estimating real hair crossings

radius r 4.25 ·10−4 m

helix height L 0.15 m

mean E 0.27 GPa

Poisson ratio ν 0.5

spatial discretization δ l 0.014 m

time discretization δ t
(
0.08 s

m
)

δ l

Table 2 Parameters used for combing nylon double helix

Movies

Movie A1:
Experimental combing of a double helix. We mold two nylon
filaments around a helically-grooved cylinder, forming them into
two identical helices that we entwine into a single double helix.
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We clamp the double helix at one end and let the other end
hang freely. This assembly is then pierced at the midpoint of
the double helix centerline arclength by a single stiff rod which
moves downward to detangle the curl. We use an Instron 5566
material testing machine to measure the force extension curves of
a stiff rod piercing and pulling downward on the pinned, hanging
helices. Here we show the combing process and corresponding
force-displacement curve. The experiment shown is the same as
that used to generate Fig. 2e, with π1 = 18, π2 = 1.

Movie A2:
Simulated combing of a double helix. We clamp a double helix at
the top allowing it to hang free. We insert a tine halfway down
the tangle and gradually displace the tine toward the free end
at a constant rate. The simulation proceeds quasi-statically. We
show simultaneously a visualization of the combing process, the
force-displacement curve and the local change in link density as
a function of rescaled arclength s and rescaled tine displacement
x. The simulation shown corresponds to the one used to generate
Fig. 3e, with π1 = 18, π2 = 1. See Table ?? for simulation settings.
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