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Where in the world are condensed counterions? 

Qishun Tang a and Michael Rubinstein *b,c 

A scaling model of the concentration profiles of both condensed and free counterions is presented for solutions of spherical 

and cylindrical charged nanoparticles of different charge valences, nanoparticle sizes, and salt concentrations. The 

distribution of counterions for both spherical and cylindrical charged particles in salt-free solutions is determined by the 

condensation parameter γ0 defined as the ratio of nanoparticle valence Z0 to the number of Bjerrum lengths lB = e2/(εkT) 

per nanoparticle size (γ0 = Z0lB/(2r0) for spherical nanoparticles with radii r0 or γ0 = Z0lB/L for cylindrical particles with 

length L), where ε is solution dielectric permittivity, e is elementary charge and kT is thermal energy. Depending on the 

magnitudes of the condensation parameter γ0 and nanoparticle volume fraction ϕ, we find three qualitatively different 

regimes for the counterion distribution near charged particles: (i) weakly charged particles with no condensed counterions, 

(ii) particles with weak counterion condensation with less than half of the counterions condensed, and (iii) regime of strong 

counterion condensation with the majority of counterions condensed. The magnitude of electrostatic energy of a condensed 

counterion with respect to solution locations with zero electric field is larger than thermal energy kT, and the fraction of 

condensed counterions increases from less than half in the weak condensation regime to the majority of all counterions in 

the strong condensation regime. The condensed counterions are not bound to the nanoparticle surface but instead are 

localized within the condensed counterion zone near the charged particle. The thickness of the condensed counterion zone 

varies with the condensation parameter γ0, the nanoparticle shape and volume fraction ϕ, and the salt concentration and 

can be as narrow as Bjerrum length (~nm) or as large as the particle size (~L the length of charged cylinder).

Introduction 

Electrostatic stabilization is one of the main methods of 

preparing homogeneous solutions of colloids and polymers in 

polar solvents such as water. Stabilization of these solutions 

takes place both due to the entropy of counterions and due to 

the electrostatic repulsion between charged objects. Increasing 

the bare charge of nanoparticles or polymers does not 

necessarily lead to improved solution stability. Counterions to 

this additional charge may not be able to escape the strong 

electrostatic attraction and are instead localized near these 

highly charged surfaces reducing their effective charge.  

The motion of the counterions and charged particles due to the 

action of the external electric field or fluid flow is also affected 

by the electrostatic interactions between the charged particles 

and their counterions. The electrophoretic mobility of charged 

particles or polymers is reduced by the drag imposed by the 

counterions pulled in the opposite direction by the external 

electric field. The viscosity of dilute solutions of polyelectrolytes 

and charged particles depends on the way counterions that are 

strongly electrostatically coupled to these solutes modify the 

solvent flow around these solutes. In all of these examples, it is 

essential to know the distribution of counterions around 

charged particles of different charge valences, shapes, sizes, 

and concentrations in solution as well as the strength of 

electrostatic interactions between these particles and their 

counterions.  

The distribution of counterions at charged surfaces with 

different symmetries – planes, cylinders, and spheres has been 

extensively studied. In the present paper, we summarize and 

connect these classical results on counterion distribution and 

condensation at surfaces with different symmetries into a 

comprehensive scaling picture. The Gouy-Chapman theory1,2 

presents the analytical solution of counterion distribution near 

a charged plane3,4, which will be reviewed in the introduction 

below for the salt-free case and used throughout the paper. The 

classical results5,6 of counterion distribution near charged 

cylinders were obtained within the cylindrical cell model 

applicable to semidilute solutions containing cylinders much 

longer than the distance between them. This cell model was 

extended to dilute solutions of charged cylinders7 with the 

analytical solution of the counterion distribution inside the non-

electroneutral cylindrical cell. The counterion condensation on 

spherical particles was studied theoretically for salt-free and 

added-salt cases8–12. In the present paper, we address the 

following questions: 1) What simple physical concepts can be 

used to describe counterion condensation based on general 

symmetry principles? 2) How does the counterion condensation 

around the cylinders and spheres and the corresponding 
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osmotic pressure change with the concentration and charge of 

particles? To address these questions, we will analyze the 

interplay of counterion entropy and electrostatic attraction in 

fields with different symmetries. In Appendix D we will address 

the effect of electrostatic screening by added salt on the 

counterion distribution. 

The ability of a charged surface to attract counterions depends 

on both the charge density and the shape of this surface (Fig. 

1(a)). The relative interplay of entropic and electrostatic parts 

of the counterion free energy at charged surfaces with different 

symmetries can be qualitatively understood based on the 

dependence of the electrostatic potential on the distance from 

the surface in the absence of counterions.  

The electrostatic potential Δψ1  (energy of a unit probe charge) 

in the absence of counterions (that in real solutions modify this 

potential) increases linearly with distance x from a planar 

charged surface (eqn (1a)), logarithmically with distance r from 

the symmetry axis of a charged cylinder (eqn (1b)), and as -1/r 

– reciprocally with distance r from the center of a charged 

spherical nanoparticle (eqn (1c)) - see dashed lines in Fig. 1(a). 

 1 ,0 ~ for charged planex x  (1a) 

   1 0 0, ~ ln for charged cylinderr r r r  (1b) 

 1 , ~ 1 / for charged spherer r    (1c) 

 The function Δψ1(r, r′) is defined as the electrostatic potential 

difference between radii locations r′ and r for cylindrical (r′ =

r0 in eqn (1b)) and spherical (r′ = ∞ in eqn (1c)) particles, while 

for planar surfaces Δψ1(x, 0)  is defined as the potential 

difference between points with coordinate x (distance x away 

from the surface) and the charged surface at x = 0. The single 

counterion entropic free energy (assuming no other 

counterions present) decreases logarithmically with increasing 

exploration volume (see dotted lines in Fig. 1(a)) for all three 

symmetries of charged surfaces 

1 ~ ln ~ lnT S kT V DkT r     (2) 

where r is the linear size of volume V this single counterion is 

allowed to explore, and D is the dimensionality related to the 

symmetry of the electric field (D=1 for planar, D=2 for 

cylindrical, and D=3 for spherical symmetry). By comparing the 

variation of electrostatic eΔψ1  (eqn (1)) and entropic −TΔS1 

(eqn (2)) parts of the single counterion free energy ΔF1  with 

distance from the charged surface in the absence of other 

counterions, 

1 1 1-F e T S     (3) 

We observe that for planar symmetries the linear increase of 

the electrostatic potential with the distance from the charged 

surface (eqn (1a)) is stronger than the logarithmic decrease of 

the entropic part of free energy (eqn (2)). This implies that a 

counterion will condense towards a large enough charged 

planar surface with the minimum of the single counterion free 

energy ΔF1  near the surface (see Fig. 2(a)). For cylindrical 

symmetries, both functional dependences (eqns (1b) and (2)) 

are logarithmic and one needs to compare the coefficients in 

front of these logarithms to determine whether electrostatic or 

 

Fig. 1 (a) Electrostatic (dashed lines) and entropic (dotted line) parts of free energy of a 

single counterion in the electric field with (i) planar symmetry (red), (ii) cylindrical 

symmetry (blue), and (iii) spherical symmetry (green). Distance from the planar surface 

is x, while the distance from the axis of the cylinder or the center of the sphere is r. (b) 

Single counterion free energy (solid line) with its electrostatic (dashed line) and 

entropic (dotted line) parts in the electric field with spherical symmetry. A single 

counterion escapes from a charged particle upon sufficient dilution indicated by lower 

values of ΔF1(r, rref) at large r. 

 

Fig. 2 (a) The single counterion free energy difference ΔF1(x, 0) as a function of 

distance x from the charged planar surface (in the absence of other counterions). (b) 

The effective mean-field free energy difference ΔFeff(x, 0) per counterion as a function 

of distance x from the charged planar surface in the multi-counterion case. (c) The 

effective surface charge number density σ(x) and (d) the counterion concentration 

profile c(x) as a function of distance x from the charged planar surface with bare 

surface charge number density σ0 for a larger (red) and a smaller (green) value of σ0. 

The effective charge and counterion concentration profile are independent of the 

surface charge density at distances from the charged planar surface larger than Gouy-

Chapman length. 
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entropic part of the free energy dominates. For spherical 

symmetries, the logarithmic decrease of the entropic part (eqn 

(2)) is stronger than the increase of the electrostatic part (eqn 

(1c)) at a large distance from the charged surface. This implies 

that a counterion will be able to escape from the charged 

surface with a spherically symmetric electric field upon 

sufficient dilution of charged spherical particles (Fig. 1(b)). 

These three qualitatively different conclusions for the interplay 

of entropic and electrostatic parts of the single counterion free 

energies for the three different symmetries of the electric field 

are the main concepts extended below to the physically 

relevant case of more than one counterion and used for the 

scaling description of the counterion distribution and 

condensation. 

In the unphysical case of a single counterion at a charged planar 

surface with the bare surface charge number density σ0, its free 

energy ΔF1(x, 0) (Fig. 2(a)) has a minimum at length scale on 

the order of the Gouy-Chapman length 

 
1

0GC Bl l


  (4) 

where the counterion electrostatic energy difference between 

the surface (x=0) and distance lGC  away from the surface is 

eΔψ1(lGC , 0) ≈ kT . Here and below the approximately equal 

sign “≈” denotes scaling equality up to a numerical coefficient. k 

is the Boltzmann constant, T is the absolute temperature, and 

lB is the Bjerrum length: 
2

B

e
l

kT
  (5) 

defined as the distance at which the electrostatic interaction 

energy between two elementary charges in a medium with 

dielectric permittivity ε is equal to thermal energy kT, where e 

is the elementary charge.  

In a much more realistic multi-counterion case, the electrostatic 

part of effective mean-field single counterion free energy 

ΔFeff(x, xref)  is modified by other counterions (see eqn (7) 

below for the precise definition). For a charged planar surface, 

the effective charge valence is reduced by the counterions 

(assumed monovalent) located between the surface and the 

plane at a distance x from it (Fig. 2(c)) 

   0
0

' '
x

x c x dx     (6) 

The effective single counterion mean-field free energy 

difference ΔFeff(x, xref) (see Fig. 2(b)) accounts for the actual 

electrostatic potential difference Δψ(x, xref), where xref is the 

reference location with respect to which the electrostatic 

potential difference Δψ is measured.  

   

   

1, ,

, ln /

eff ref ref

ref ref

F x x e x x T S

e x x DkT x x





    

  
 (7) 

The entropic part −TΔS1 of the effective single counterion 

mean-field free energy changes logarithmically with exploration 

volume xD  with D-dimensional symmetry ~ − DkTlnx  on 

length scale x. Since the electrostatic potential is reduced by the 

other counterions, the effective single counterion mean-field 

free energy ΔFeff(x, 0)  increases logarithmically (Fig. 2(b)) 

rather than linearly (Fig. 2(a)) at distance x > lGC  from the 

planar charged surface. Note that the effective single 

counterion mean-field free energy ΔFeff(x, xref)  is different 

from the counterion chemical potential Δμ (see Table 1). For 

the chemical potential Δμ, the entropy of all counterions (rather 

than of a single counterion) is accounted for, so the entropic 

part of the chemical potential changes logarithmically with the 

counterion concentration c(x)  (instead of the exploration 

volume xD ). The counterion chemical potential is a constant 

independent of the location x as described by the Boltzmann 

equation (eqn (20)):  

 

      

,

, ln / 0

ref

ref ref

e x x T S

e x x kT c x c x

 



    

   
 

(8) 

The different types of free energies are compared in Table 1. 

The effective single counterion mean-field free energy 

ΔFeff(x, xref)  is used throughout the paper to quantify the 

counterion population at different length scales from the 

charged surface, as the exponential of −ΔFeff(x, xref)/kT  is 

related to the probability P(x) for a counterion (equivalent to 

counterion population) to be located within dx of distance x 

from the nanoparticle surface: 
1( ) ( ) ( ) ln

exp( ( , ) / ) ln

D D

eff ref

P x dx c x x dx c x x d x

F x x kT d x

 

 
 

(9) 

The last part of eqn (9) used Boltzmann relation between 

counterion concentration c(x) and electrostatic potential 

Δψ(x, xref) (see eqns (7) and (20)). 

The Gouy-Chapman solution1,2 for counterion condensation 

near a charged planar surface in the absence of added salt is 

one of the main concepts underlying all counterion 

condensation cases. The total number of the counterions per 

unit area within the Gouy-Chapman length lGC  (eqn (4)) from 

the surface is on the order of the bare surface charge number 

density σ0 (in order to reduce the effective charge value by a 

factor of 2; see eqn (11)). This implies that the counterion 

number density within the Gouy-Chapman length from the 

surface is  

 
1

2

0 /GC GC B GCc l l l


   (10) 

where we used σ0 ≈ (lGClB)−1 from eqn (4). The main feature 

of the strong counterion condensation is that both the effective 

surface charge number density σ(x)  (Fig. 2(c)) and the 

counterion number density (concentration) profile c(x)  (Fig. 

2(d)) are independent of the bare surface charge number 

density σ0  at distances from the surface larger than lGC . The 

effective charge number density at any distance x > lGC  from 

the surface is reduced in a self-similar way so that distance x 

corresponds to the new Gouy-Chapman length of that effective 

surface charge number density at that distance, σ(x) ≈ (xlB)−1 

 

Table 1 Different types of counterion free energies with their corresponding 

electrostatic and entropic parts. 
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(see the overlap of green and red lines at green lGC in Fig. 2(c)). 

The counterion number density profile c(x)  at distances x >

lGC  with c(x) ≈ σ(x)/x ≈ (lBx2)−1  (see Fig. 2(d)) can be 

obtained from the counterion number density at Gouy-

Chapman length cGC = c(lGC) ≈ σ0/lGC ≈ (lBlGC
2 )

−1
(eqn (10)) 

by replacing lGC with x and σ0 with the corresponding effective 

charge number density σ(x). The scaling form of the analytical 

salt-free Gouy-Chapman solution for both effective charge 

number density σ(x) and counterion concentration profile c(x) 

in the salt-free case is: 

 
 

0

1

for 1 1

for 

GC

B GC B GC

x l
x

l x l l x x l


 


  

 

 (11) 

 
 

   

2

0

12 2

for 1 1

for 

B GC

GC B B GCGC

l x lx
c x

x l l l x x lx l




 
   

  

 (12) 

The salt-free Gouy-Chapman solution describes the distribution 

of counterions that are strongly attracted but not bound to the 

oppositely charged surface with fixed and uniformly distributed 

charge. Note that if the nanoparticles and solvent have different 

dielectric constants, one could use image charges to describe 

the boundary conditions for electric field at the particle 

surface13. These image charges would have an additional effect 

on the counterion distribution near the surface. For simplicity, 

we do not consider this effect by assuming the same dielectric 

constant of particles and solvent without any image charges. In 

some cases, there could be a layer of counterions bound (either 

chemisorbed or strongly physisorbed) to the surface, called the 

Stern layer14 and the extent of binding could depend on the 

counterion concentration15,16. In addition, the Gouy-Chapman 

model makes the mean-field approximation and ignores the 

repulsion between neighboring counterions. Therefore, the 

model is valid if the average distance between counterions near 

the charged surface is larger than Bjerrum length lB and the 

repulsion energy between two neighboring counterions is less 

than kT. This condition restricts the surface charge number 

density to σ0 < 2πlB
−2 . At higher surface charge density one 

expects the formation of the Wigner layer17–20 of counterions 

that are strongly attracted to the surface (with energy ≫ kT per 

counterion) and are strongly repelled from each other with a 2D 

lattice structure. For the Wigner layer to exist, the surface 

charge needs to be continuous, as a strong attraction to discrete 

surface charges would lead to counterion binding. In the 

present paper, we do not consider either Stern or Wigner layers 

and assume that the bare surface charge density σ0 < 2πlB
−2 is 

already reduced from the original surface charge density by the 

charge density of the counterions in Stern and/or Wigner layers 

if these layers exist. Outside of these layers, there could still be 

condensed counterions with the electrostatic energy difference 

between locations close to and far from charged objects larger 

than thermal energy kT. One of the objectives of the present 

paper is to describe the distribution of these condensed 

counterions as well as that of the “free” counterions that 

dominate the osmotic pressure of these solutions. The 

understanding of the distribution of counterions that are 

condensed but not bound to the charged surface is important 

for electrophoretic mobility of charged particles and polymers, 

viscosity of their solutions as well for understanding of the ion 

exchange membranes21. 

The counterion condensation is also affected by the presence of 

salt. In a solution containing added salt, the electrostatic field is 

not only reduced by the condensed counterions but is also 

screened by salt ions on length scales larger than the Debye 

length22:  

 
1/2

D B sr l c


  (13) 

Most of the counterions dissociated from the nanoparticles and 

extra salt ions with the sign opposite to the nanoparticle charge 

are localized within the Debye length rD  and significantly 

compensate the nanoparticle charge. Outside the Debye length 

rD, the electrostatic field decays exponentially with distance x 

from the charged surface ~exp(−x/rD). In this paper, we focus 

on the low salt solutions with the average distance between 

solute particles smaller than the Debye length. The effect of salt 

on counterion distribution is discussed in Appendix D. The 

solutions of charged spherical nanoparticles (NPs) are analyzed 

in Section 2, while counterion distribution in solutions of 

cylindrical nanoparticles is presented in Section 3. The 

nanoparticle concentration and the condensation parameter 

dependence of osmotic pressure in solutions of charged 

particles is discussed in Section 4. The main ideas of the paper 

including the length scales important for counterion 

distribution are summarized in Section 5. 

2. Solutions of charged spherical nanoparticles 

In this section, we describe the counterion distributions around 

spherical nanoparticles. We consider spherical particles with 

bare charge valence Z0  and radius r0  (see Fig. 3). The bare 

surface charge number density is: 

0
0 2

0

spherical NPs
4

Z

r



  (14) 

We define the normalized charge line number density - called 

the condensation parameter  γ0 : the number of elementary 

charges times the Bjerrum length lB  and divided by the largest 

dimension of the nanoparticle (2r0 for spheres). 

0
0 0 0

0

2 spherical NPs
2

B
B

Z l
r l

r
    (15) 

Charged nanoparticles are dissolved in a polar solvent at a dilute 

concentration corresponding to the average distance of 2rcm 

between centers of neighboring particles. The volume fraction 

is defined as the ratio of the physical volume occupied by all 

particles to the total volume of the solution. The volume 

fraction is the product of the physical volume and the number 

density of nanoparticles. The physical volume of a spherical 

particle is ~r0
3, while their number density is ~rcm

−3 . Therefore 

volume fraction ϕ of spherical nanoparticles is: 
3 3

0 / spherical NPscmr r   (16) 

The electric field E⃗⃗ (r)  around a charged nanoparticle can be 

calculated using Gauss's law: 

 
 eZ r

E r dAs 
   (17) 
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where Z(r)  is the effective valence of the nanoparticle as 

viewed from distance r (that includes the nanoparticle valence 

and all counterions up to distance r). Based on Gauss's law, the 

electric field strength decreases with increasing distance r away 

from the charged nanoparticle not only due to a larger surface 

enclosing the particle but also because of the increasing number 

of enclosed counterions compensating the bare charge and 

decreasing the effective valence Z(r) of the particles. 

The electric field near a charged nanoparticle can be 

approximated by planar symmetry very close to the smooth 

nanoparticle surface (0 < x = r − r0 ≪ r0, Fig. 3(a)) 

 
 

   0
0

0 0

,  ' '

planar symmetry zone: -

xe x
E x x c x dx

r r r


 


     (18) 

Electric field far away from particles in dilute solution has 

spherical symmetry at distances larger than the nanoparticle 

size (for spherical nanoparticle the field is spherical everywhere, 

but we define spherical zone to be generalizable to particles of 

other shapes as: r0 < x = r − r0 < rcm, Fig. 3(b)).  

 
 

   
0

2

02

0 0

, 4 ' ' '

spherical symmetry zone: -

r

r

cm

eZ r
E r Z r Z c r r dr

r

r r r r




  

 

  (19) 

The electric field E(r) is the rate of change of the electrostatic 

potential Δψ(r, rcm)  that controls the counterion 

concentration profile c(r)  through Boltzmann distribution 

assuming positive monovalent counterions: 

   
 ,

exp
cm

cm

e r r
c r c r

kT

  
  

 
 (20) 

Note that the electrostatic potential in solutions with many 

counterions between particles differs from the simple 

expressions presented in eqn (1) and sketched in Fig. 1(a) for 

the case of no other counterions in solution, as counterions 

surrounding charged particles modify the electric field profile 

(see eqns (18) and (19)). Nevertheless, the qualitative analysis 

can be performed in a similar way, but with electrostatic 

potential accounting for all ions in the solution. The probability 

for a counterion to be at location x is controlled by the effective 

Fig. 5 Schematic diagram of the counterion regimes for charged spherical particles. 

Regime I: weakly charged particles (no counterion condensation); regime II: weak 

counterion condensation; regime III: strong counterion condensation. Condensation 

parameter for spherical nanoparticles γ0 = Z0lB/(2r0) is the nanoparticle valence Z0 

normalized by the number of Bjerrum lengths lB per nanoparticle size.  

Fig. 3 Solution of negatively charged spherical particles. The interaction between the 

charged surface and counterions can be approximately described within two different 

symmetry zones: (a) planar symmetry zone for x = r − r0 < r0; (b) spherical symmetry 

zone for r0 < x < rcm. 

Fig. 4 The three regimes of the dependence of the effective single counterion mean-field 

free energy on the distance from the spherical nanoparticle surface: I. Weakly charged 

(green line); II. Weak counterion condensation (blue line); and III. Strong counterion 

condensation (red line). 
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single counterion mean-field free energy ΔFeff(x, rcm) (eqns (7) 

and (9)). Depending on the fraction of condensed counterions 

(see Fig. 4), we define three different regimes for the counterion 

distribution: 

I. Weakly charged particles with no condensed counterions: the 

magnitude of electrostatic energy of all counterions with 

respect to locations with zero electric field (outer boundary of 

the spherical zone r ≈ rcm) is less than thermal energy kT. The 

effective single counterion potential ΔFeff(x, rcm)  for weakly 

charged nanoparticles is monotonically decreasing with 

distance x from the particle surface (green line in Fig. 4). This 

effective potential has only one minimum at large distances 

x~rcm corresponding to free counterions. 

II. Weak counterion condensation with less than half of all 

counterions condensed at condensation parameter γ0 > 1 (see 

eqn (15) for the definition of the condensation parameter) and 

high dilution – low volume fraction ϕ . The effective single 

counterion potential ΔFeff(x, rcm) has two minima (blue line in 

Fig. 4). The majority of counterions are free and are far from the 

charged particle surface with the entropic part of their free 

energy dominating ΔFeff(x, rcm) . The smaller fraction of 

counterions are condensed in the shallower minimum of 

ΔFeff(x, rcm) near the charged surface. The magnitude of the 

electrostatic energy of these condensed counterions is larger 

than thermal energy |eΔψ(x, rcm)| > kT.  

III. Strong counterion condensation. At higher condensation 

parameter γ0  and volume fraction ϕ , the majority of the 

counterions are condensed in the minimum of ΔFeff(x, rcm) at 

small x~lGC  near the nanoparticle surface (red line in Fig. 4).  

The three different counterion condensation regimes are 

shown in the diagrams of states for solutions of charged 

spherical particles (Fig. 5) characterized by two dimensionless 

parameters: the condensation parameter γ0  - the normalized 

charge line number density of the particles (eqn (15)) and the 

volume fraction ϕ of nanoparticles (eqn (16)). The examples of 

parameters for each regime are shown in Appendix A. 

Below we discuss the counterion distribution of the 

corresponding regimes of spherical charged particles (Fig. 5). 

Regime I. Weakly charged particles (𝛄𝟎 < 𝟏). In this regime, the 

majority of counterions are far from the weakly charged 

nanoparticle surface. The bare charge valence of weakly 

charged particles is not significantly compensated by the 

counterions at any length scale up to the distance between 

nanoparticles. This means that the effective charge valence 

does not change much with distance Z(r) ≈ Z0  up to length 

scales r~rcm  (see the horizontal part of the green line in Fig. 

6(a)) and the electrostatic potential can be approximated by 

that due to the bare charge valence Z0  (see Fig. 1(aiii)). The 

counterion concentration does not significantly vary with 

distance x = r − r0 from the nanoparticle surface in the planar 

zone because the Gouy-Chapman length is larger than the 

thickness of the planar zone (lGC ≈ (σ0lB)−1 ≈ r0/γ0 > r0). In 

the spherical zone, almost all counterions are free and 

distributed almost uniformly, because the difference of 

counterion electrostatic energy between inner and outer 

boundaries of the spherical zone is smaller than kT 

(|eΔψ(r0, rcm)| = γ0kT < kT ). The counterion concentration 

changes by less than the factor of e ≅ 2.7 since Z0lB/r < γ0 <

1 in the spherical zone (see green line for x > r0 in Fig. 6(b)):  

  0 0 0 0

3 3
exp 1B B

cm cm

Z Z l Z Z l
c r

r r r r

   
     

   
  

in the spherical zone (r > 2r0) in regime I 
(21) 

We define the free zone as the region of space with the 

magnitude of counterion electrostatic energy less than kT so 

that the magnitude of the electrostatic energy of a counterion 

at the inner boundary of the free zone rkT  with respect to the 

outer boundary rcm  is equal to the thermal energy 

(|eΔψ(rkT , rcm)| = kT). Here and below the magnitude of the 

electrostatic potential means the absolute value of the 

electrostatic potential relative to that at the boundary between 

neighboring particles – location with zero electric field. Thus, 

the entire solution in regime I is the free zone with no 

condensed counterions.  

Regime II. Weak counterion condensation regime (𝟏 < 𝛄𝟎 <

𝛄𝐟𝐫𝐞𝐞
∗ (𝛟) ). In this regime, the variation of the counterion 

electrostatic energy across the spherical zone is larger than kT 

( |eΔψ(r0, rcm)| ≈ γ0kT > kT ). The strong electrostrostaic 

attraction to the particle causes localization (condensation) of 

some counterions near the charged surface. In regime II, the 

volume fraction of nanoparticles ϕ is still low enough resulting 

in the majority of counterions being free to explore solution 

volume far from the particle surface (see blue line in Fig. 4). The 

counterion concentration near the nanoparticle surface c(r0) is 

still lower than the Gouy-Chapman concentration cGC ≈ σ0
2lB ≈

γ0
2 (lBr0

2)⁄  (eqns (10) and (15)). More than half of all counterions 

are in the free zone - further away from the nanoparticle than 

rkT (Zfree > Z0 2⁄ ) with the free charge valence Zfree defined as 

the charge valence not compensated by the condensed 

counterions. Correspondingly, less than half of all counterions 

are condensed (localized near the nanoparticle surface) 

Zcond = Z0 − Zfree < Z0/2 . Therefore, this regime is called 

“weak counterion condensation”. The electrostatic energy of a 

counterion at location r in regime II can be estimated (similar to 

regime I) by the electrostatic potential of the bare nanoparticle 

charge |eΔψ(r, rcm)|/kT ≈ ZfreelB/r ≈ Z0lB/r (eqn (1c) in the 

spherical zone) because this charge is reduced by condensed 

counterions by less than a factor of two in the weak counterion 

Fig. 6 Scaling description of counterion distribution profiles for charged spheres: 

(a) Effective charge valence Z(x) as a function of the distance from the 

nanoparticle surface x = r − r0. (b) Counterion concentration c(x) as a function of 

the distance from the surface x = r − r0. Weakly charged particles regime I 

(green), weak counterion condensation regime II (blue), and strong counterion 

condensation regime III (red). All axes are logarithmic. The scaling dependence is 

compared to the numerical solution from the nonlinear Poisson Boltzmann (eqn 

(19) and (20)) in Appendix B. 
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condensation regime. The free counterions are almost 

uniformly distributed in the free zone x > rkT with the location 

of the inner boundary of the free zone at rkT ≈ ZfreelB ≈ Z0lB 

and the effective charge valence of a nanoparticle is 

approximately equal to its bare valence Z(r) > Z0/2 for almost 

all distance r on logarithmic scale except very close to the outer 

boundary of the spherical zone rcm  where Z(r) decays to zero 

(see blue line in Fig. 6(a)). The condensed counterions are 

localized within a narrow zone of thickness lc near the charged 

surface, called the condensed counterion zone. In the weak 

counterion condensation regime, the thickness of the 

condensed counterion zone lc  is the Gouy-Chapman length 

lGC ≈ (σ0lB)−1 ≈ r0/γ0  (eqns (4) and (15)). The difference of 

the counterion electrostatic energy between any point within 

the condensed counterion zone and the nanoparticle surface is 

less than thermal energy kT in this weak condensation regime. 

Between the condensed counterion zone and the free zone 

( lc < x < rkT ), there is a zone with a large counterion 

concentration variation but a small fraction of counterions 

located there. Such spatial regions are called “empty” zones. 

The empty zone in regime II is between lc ≈ lGC and rkT ≈ Z0lB 

characterized by the almost constant effective charge Z(r) 

(blue line in Fig. 6(a)) but strongly varying counterion 

concentration c(r) (blue line in Fig. 6(b)). The strong variation 

of the counterion concentration is due to the sharp decrease of 

the magnitude of electrostatic potential |eΔψ(r, rcm)| ≈

kTZ0lB/(r0 + x)  with distance x  from the particle surface in 

this empty zone (eqn (20)). The change of the electrostatic 

potential dominates over the change of entropic part of free 

energy in the empty zone leading to the higher value of effective 

single counterion mean-field free energy ΔFeff(x, rcm), which 

forms the free energy barrier between the two minima (see 

lGC < x < rkT part of the blue line in Fig. 4). The higher value of 

effective single counterion mean-field free energy ΔFeff(x, rcm) 

prevents counterions from being located in the empty zone. The 

electrostatic potential gradually saturates in the free zone, (x >

rkT ≈ Z0lB ) resulting in the almost constant counterion 

concentration there c(r) ≈ cfree ≈ Z0/rcm
3  (varies by less than 

factor e). The effective single counterion mean-field free energy 

is dominated in the free zone by the change of the entropic part 

of free energy, which decreases logarithmically with distance 

from the particle ΔFeff(x, rcm)~ − 3kTln (x/rcm) (see x > rkT 

part of blue line in Fig. 4). The resulting relatively low value of 

the effective single counterion mean-field free energy with the 

minimum at rcm traps the majority of the counterions. Thus in 

the weak condensation regime, the majority of counterions are 

free in the free zone ( rkT < x < rcm ), a small fraction of 

counterions are condensed in the condensed counterion zone 

(x < lGC ) and almost no counterions are in the empty zone 

(lGC < x < rkT).  

    

  
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 (22) 

The number of condensed counterions can be estimated as the 

concentration at the nanoparticle surface c(r0) (eqn (20)) with 

surface potential Δψ(r0, rcm) ≈ −kTγ0/e times the volume of 

a layer with the thickness of Gouy-Chapman length lGC around 

the nanoparticle (NP). 

 
4

2 0
0 0 03

( ) exp   spherical NPs, regime IIcond GC

cm B

r
Z c r l r

r l
   (23) 

At the upper boundary of the weak counterion condensation 

regime, the concentration of condensed counterions at the 

nanoparticle surface c(r0)  reaches the Gouy-Chapman 

concentration cGC ≈ γ0
2 (lBr0

2)⁄  (eqns (10) and (15)). At this 

crossover between weak and strong condensation regimes (see 

the boundary between regimes II and III in Fig. 5), the Gouy-

Chapman layer at the nanoparticle surface with the thickness 

lGC becomes fully populated by counterions. The condensation 

parameter γ0  reaches the crossover value γfree
∗ (ϕ)  at the 

corresponding volume fraction ϕ , calculated from eqn (23) 

using eqn (16) for the relation between rcm  and volume fraction 

ϕ: 

       * *ln ln ln spherical NPs free free         (24) 

The last approximation in eqn (24) was obtained by ignoring the 

term ln(γfree
∗ )  since ln(γfree

∗ ) ≪ γfree
∗  for γfree

∗ ≫ 1 . Upon 

further increase of the bare charge valence Z0  and the 

corresponding increase of condensation parameter γ0  at a 

constant volume fraction ϕ  of NPs one enters the strong 

counterion condensation regime III with the normalized free 

charge valence saturating at γfree
∗ (ϕ) . The “free line” is the 

boundary between weak and strong condensation regimes (II 

and III) for a given condensation parameter γ0 (red line in Fig. 

5). This boundary is at the volume fraction of nanoparticles 

ϕfree(γ0) obtained from the expression in eqn (24): 

   0 0 0exp spherical NPsfree      (25) 

The fraction of condensed counterions (eqn (23)) in solutions of 

spherical nanoparticles in the weak condensation regime II is 

given by the exponential value of the relative horizontal 

distance between the point (lnϕ , γ0) in the diagram presented 

in Fig. 5 (point A) and the corresponding point (lnϕfree , γ0) on 

the “free” line – the boundary between regimes II and III at the 

same condensation parameter γ0 in Fig. 5 (point B).  

 
 0

0 0 0

exp   I spherical N  regime IPs,cond

free

Z

Z

 


  
   (26) 

Regime III: Strong counterion condensation regime ( 𝛄𝟎 >

𝛄𝐟𝐫𝐞𝐞 
∗ (𝛟)). The strong electrostatic attraction to the particle 

forces the majority of counterions to condense near the particle 

surface (x < lc , where lc  is the thickness of the condensed 

counterion zone) in the first minimum of the effective single 

counterion mean-field free energy ΔFeff(x, rcm)(red line in Fig. 

4). A small fraction of counterions are free exploring the second 

free energy local minimum of ΔFeff(x, rcm) at rcm formed due 

to the lower entropic part of free energy there. The condensed 

counterions compensate the bare charge in a self-similar way. 

The counterion profile close to the surface (within this 

condensed counterion zone x < lc) follows the Gouy-Chapman 

solution (eqns (11) and (12)). The effective valence at distances 

from the surface larger than the Gouy-Chapman length (for x =

r − r0 > lGC) is almost independent of the bare valence of the 

nanoparticle. The effective surface charge number density σ(r) 
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in the condensed counterion zone near the nanoparticle surface 

in regime III is described by the Gouy-Chapman salt-free theory 

(eqn (11)):  

 
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1
for l1 /
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  


  (27) 

The effective surface charge number density σ(r)  is almost 

constant and equal to the bare charge number density σ0  at 

distance from the surface smaller than Gouy-Chapman length 

(for x = r − r0 < lGC ), but becomes independent of bare 

nanoparticle charge at distances from the surface larger than 

the Gouy-Chapman length (for lGC < x = r − r0 < lc ) and 

decreases reciprocally with x  (eqn (27)). The counterion 

concentration follows the self-similar profile at these length 

scales (eqn (12)): 
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 (28) 

The essence of the strong counterion condensation is that it 

reduces the effective charge number density from the bare 

value σ0  to the “universal” effective value on the order of 

(lBx)−1 in the condensed counterion zone independent of the 

bare charge (see the red line with slope -1 for lGC < x < lc in 

Fig. 6(a)). At distances from the nanoparticle surface larger than 

the thickness of the condensed counterion zone lc , the 

counterion concentration dependence changes from inversely 

proportional to the square of the distance (see the red line with 

slope -2 for lGC < x < lc in Fig. 6(b)) to exponentially decreasing 

with reciprocal distance from the spherical nanoparticle 

~exp (−Zfree/r) (see the red line for lc < x < rkT  in Fig. 6(b)) 

The effective charge valence is almost constant Z(r) ≈ Zfree 

(see the horizontal part of red line for x > lc  in Fig. 6(a)), as 

there are not enough counterions in this empty zone to further 

reduce the effective charge. Most of the counterions outside 

the condensed counterion zone are free and located at x > rkT. 

The bare condensation parameter γ0 is reduced to the effective 

condensation parameter corresponding to the charge of free 

counterions γfree ≡ ZfreelB (2r0)⁄  at the outer boundary r =

r0 + lc  of the condensed counterion zone with γfree =

2πr0lBσ(r0 + lc)  (eqn (15)). This effective condensation 

parameter γfree  of the nanoparticles in regime III at volume 

fraction ϕ (point C in Fig. 5) is almost the same as γfree
∗  (eqn 

(24)) at the boundary between weak and strong counterion 

condensation regimes at the same volume fraction ϕ (point B in 

Fig. 5), which is independent of the bare nanoparticle charge 

valence γ0 > γfree
∗ , and dependent only on volume fraction ϕ 

within regime III. The reason for this saturation of γfree at γfree
∗  

is that the electrochemical potential in the condensed 

counterion zone does not change with the bare charge valence 

Z0 due to the strong counterion condensation but only changes 

upon variation of volume fraction ϕ . The fraction of free 

counterions can be expressed by the relative vertical distance 

between point C in the diagram Fig. 5 ( lnϕ , γ0 ) and the 

corresponding point B at the same volume fraction ϕ of NPs on 

the “free” line (eqn (24)) – the boundary between strong and 

weak counterion condensation regimes (II and III) in Fig. 5 

(lnϕ , γfree
∗ (ϕ)).  

   *
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  
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    (29) 

3. Solutions of charged cylindrical nanoparticles  

In this section, we describe the counterion distributions around 

cylindrical nanoparticles. We consider cylindrical nanoparticles 

with bare charge valence Z0, radius r0 and length L with L ≫ r0 

(see Fig. 7). The bare surface charge number densities for 

cylindrical particles are (ignoring the upper and lower circular 

faces of the cylindrical particles): 

Fig. 7 (i) Dilute and (ii) semidilute solutions of negatively charged cylindrical nanorods. 

The symmetry of the electric field and the counterion distribution can be approximately 

divided into up to three zones: (a) planar symmetry zone for x = r − r0 < r0; 

cylindrical symmetry zone of (bi) dilute cylindrical particles for 2r0 < r < L/2 and (bii) 

semidilute cylindrical particles for 2r0 < r < R as the cylindrical zones pervade the 

solution shown in (bii’); (ci) spherical symmetry zone of dilute cylindrical particles for 

L/2 < r < rcm. 
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The bare normalized charge line number density γ0  (the 

condensation parameter) for the cylindrical particles is: 

0
0 0 02 cylindrical NPsB

B

Z l
r l

L
    (31) 

Note that the condensation parameters γ0  for both spherical 

(eqn (15)) and cylindrical (eqn (31)) nanoparticles are the 

number of elementary charges per area 2πr0lB. Similar to the 

spherical particles, the volume fraction is the product of 

physical volume and number density of nanoparticles. The 

physical volume of a cylindrical nanoparticle is ~r0
2L and the 

expression for the number density of cylindrical particles 

depends on whether the solution is dilute or semidilute, which 

is controlled by the relative magnitude of particle length L and 

average separation rcm  between the centers of neighboring 

nanoparticles. The solution is dilute if the particles on average 

are further apart from each other than their length rcm > L 

with number density ~rcm
−3  as for spherical particles (Fig. 7(ci)). 

The major qualitative difference between solutions of spherical 

and cylindrical particles is the existence of the semidilute 

solution regime with the average distance between the centers 

of neighboring nanorods less than their length rcm < L  (Fig. 

7(bii’)). For semidilute solutions, the center-of-mass distance 

rcm between two neighboring cylindrical particles is larger than 

the average closest distance between them (Fig. 7(bii’)), called 

the correlation length23 and denoted by 2R in this paper. This 

correlation length 2R is equivalent to the cell diameter in the 

cylindrical cell model24,7,25 and the number density of cylindrical 

particles in semidilute solutions is proportional to ~(R2L)−1 . 

The volume fractions of cylindrical particles in dilute and 

semidilute regimes are: are further apart from each other than 

their length rcm > L with number density ~rcm
−3  as for spherical 

particles (Fig. 7(ci)).  
2 2
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 (32) 

where the overlap volume fraction ϕ∗ is the crossover between 

dilute and semidilute regimes. Similar to the spherical 

nanoparticles, the electric field can be approximated by planar 

symmetry very close to the smooth nanoparticle surface (r −

r0 < r0, see Fig. 7(a)) and approximated by spherical symmetry 

in dilute solutions at distances larger than the nanoparticle size 

(r − r0 > L, see Fig. 7(ci)). Besides the semidilute concentration 

regime (second line in eqn (32)), the difference between the 

spherical and cylindrical nanoparticles is the existence of the 

cylindrical symmetry zone (Fig. 7(b)) on length scales r0 < x =

r − r0 < L  for dilute and r0 < x = r − r0 < R  for semidilute 

concentration regimes. The electric field in cylindrical zone is 

Fig. 8 Schematic diagram of the counterion regimes for charged cylindrical particles. 

Regime I: weakly charged particles (no counterion condensation); regime II: weak 

counterion condensation; regime III: strong counterion condensation. In regime III, 

there are two subregimes: subregime IIIa: strong counterion condensation with 

condensed counterions in cylindrical zone and regime IIIb: strong counterion 

condensation with empty cylindrical zone. Condensation parameter γ0 = Z0lB/L is the 

nanoparticle valence normalized by the number of Bjerrum lengths lB per nanoparticle 

size (see eqn (31)) and ϕ∗ ≈ (𝑟0 𝐿⁄ )2 is the overlap concentration with the distances 

between the neighboring particles on the order of the cylindrical particle length L.  

Fig. 9 Scaling dependence of the effective single counterion mean-field free energy 

(eqn (7)) on the distance x = r − r0 from the surface of the charged cylindrical particles 

in (a) dilute and (b) semidilute solutions for three regimes: (I) weakly charged particles 

(green), (II) weak counterion condensation (blue), (III) strong counterion condensation: 

subregime IIIa with condensed counterions in cylindrical zone (red) and subregime IIIb 

with empty cylindrical zone (brown).  

Page 9 of 19 Soft Matter



ARTICLE Journal Name 

10 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 
 

   
0

0, 2 ' ' '

cylindrical symmetry zone: 

r

r

e r
E r r c r r dr

r

r L


  


  



  (33) 

where γ(r) is the normalized effective line charge density (see 

eqn (31) for γ0 ≡ γ(r0) ). Similar to the spherical charged 

particles, there are three different counterion condensation 

regimes for cylindrical particles characterized by the 

condensation parameter γ0 (eqn (31)) and the volume fraction 

ϕ (eqn (32)) – see Fig. 8: regime I of weakly charged particles 

(γ0 < −1/ln (ϕ∗) for dilute cylindrical particles and γ0 < −1/

ln (ϕ)  for semidilute cylindrical particles), regime II of weak 

counterion condensation (−1/ln (ϕ∗) < γ0 < ln (ϕ)/ln (ϕ∗) for 

dilute cylindrical particles and −1/ln (ϕ) < γ0 < 1  for 

semidilute cylindrical particles), and regime III of strong 

counterion condensation ( γ0 > ln (ϕ)/ln (ϕ∗)  for dilute 

cylindrical particles and γ0 > 1  for semidilute cylindrical 

particles). Note that there are two subregimes of regime III 

depending on whether there are condensed counterions 

located in the cylindrical zone (subregime IIIa in Fig. 8) or the 

cylindrical zone is empty (subregime IIIb in Fig. 8). For strong 

counterion condensation in semidilute solutions, there are 

always condensed counterions in cylindrical zone 

corresponding to subregime IIIa. At the crossover between 

subregimes IIIa and IIIb in dilute nanorod solutions (vertical 

dashed line in Fig. 8), there is one counterion per Bjerrum length 

condensed in the cylindrical zone (see red and brown lines in 

Fig. 10(a)). Typical parameters for each regime are listed in 

Appendix A. 

Below we discuss the counterion distribution of the 

corresponding regimes of charged cylindrical particles (Fig. 8). 

 

Regime I. Weakly charged particles:  

𝛄𝟎 < −𝟏/𝐥𝐧 (𝛟∗)  for dilute cylindrical particles and 𝛄𝟎 <

−𝟏/𝐥𝐧 (𝛟) for semidilute cylindrical particles.  

Similar to the spherical particle regime I, the majority of 

counterions are far away from the weakly charged nanoparticle 

surface and are almost uniformly distributed throughout the 

whole solution. The effective charge valence does not vary 

significantly with distance r from the nanocylinders Z(r) ≈ Z0 

up to length scales on the order of separation between particles 

( r~rcm  for dilute cylindrical particles or r~R  for semidilute 

cylindrical particles) indicated by the horizontal part of the 

green lines in Fig. 10. The electrostatic potential can be 

approximated by the potential due to the bare charge valence 

Z0 which is almost uncompensated up to length scales on the 

order of separation between particles. The electrostatic 

potential in the cylindrical zone varies logarithmically with the 

distance from the nanocylinder axis (eqn (1b)): 

   0, ' 2 ln / '

uncompensated cylindrical zone

e r r kT r r  
  (34) 

The condition for the counterion electrostatic energy difference 

between particle surface and average distance between 

particles to be smaller than kT is for dilute cylindrical particles: 

|eΔψ(r0, rcm)| ≈ |eΔψ(r0, L)| ≈ 2γ0kTln(L/r0) ≈

−γ0kTln(ϕ∗) < kT  and for semidilute cylindrical particles 

|eΔψ(r0, R)| ≈ 2γ0kTln(R/r0) ≈ −γ0kTln(ϕ) < kT  (eqn 

(32)). Thus the entire solution is the free zone with the variation 

of counterion concentration by less than a factor of e (see 

horizontal green lines in Fig. 11) and there is no counterion 

condensation in regime I. 

Regime II. Weak counterion condensation:  

−𝟏/𝐥𝐧 (𝛟∗) < 𝛄𝟎 < 𝐥𝐧 (𝛟)/𝐥𝐧 (𝛟∗)  for dilute nanocylinders 

and −𝟏/𝐥𝐧 (𝛟) < 𝛄𝟎 < 𝟏 for semidilute nanocylinders.  

In this regime, the variation of the counterion electrostatic 

energy is larger than kT (for dilute cylindrical particles: 

|eΔψ(r0, rcm)| > |eΔψ(r0, L)| > kT  and for semidilute 

cylindrical particles |eΔψ(r0, R)| > kT) and less than half of all 

counterions are condensed in the weak counterion 

condensation regime. Due to the low volume fraction ϕ, the 

majority of counterions are still far away from the particle 

surface attracted by the free energy minimum of ΔFeff(x, rcm) 

at x ≈ rcm or R dominated by counterion entropy (see the blue 

lines in Fig. 9). The counterion concentration profile in the 

cylindrical zone is a power law with exponent −2γ0 , as 

expected from the Boltzmann factor (eqns (20) and (34)) of the 

logarithmically varying electrostatic potential: 

  02
~ exp ~

uncompensated cylindrical zone

e
c r r

kT

  
 
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The counterion distribution in the cylindrical zone is determined 

by the integral of the counterion concentration:  
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The integral is either dominated by the lower limit of the 

integral (at r0 ) or by the upper limit of the integral (at L for 

dilute nanocylinders or R for semidilute cylinders) depending 

Fig. 11 Counterion concentration c(x) in (a) dilute and (b) semidilute charged 

cylindrical particle solution as functions of the distance from the nanorod surface x =

r − r0. Weakly charged particles regime I (green), weak counterion condensation 

subregime II (blue), strong counterion condensation subregime IIIa (red), and 

subregime IIIb (brown). All axes are logarithmic. 

Fig. 10 (a) Effective charge valence Z(x) of dilute cylindrical particles and (b) effective 

charge line density γ(x) of semidilute cylindrical particles as functions of the distance 

from the nanorod surface x = r − r0. Weakly charged particles regime I (green), weak 

counterion condensation regime II (blue), strong counterion condensation subregime 

IIIa (red), and subregime IIIb (brown). All axes are logarithmic. 
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on whether γ0  is bigger or smaller than 1 (eqn (36)). In the 

entire semidilute weak counterion condensation regime II and 

the lower part of dilute weak counterion condensation regime 

II of nanocylinders with γ0 < 1, the integral of the counterion 

concentration (eqn (36)) is dominated by the upper limit. The 

majority of condensed counterions are located in the cylindrical 

zone on the length scale of lc from the charged nanocylinder. In 

this regime, there is no empty zone and the outer boundary of 

condensed counterion zone lc  coincides with the inner 

boundary of free zone rkT: 

0

0

0

1
exp dilute cylindrical NPs, 

2

1
exp semidilute cylindrical NPs

2

<1 in regime II

c kT

L

l r

R







  
  

  
  

 
 
 

 (37) 

The electrostatic energy of these weakly condensed 

counterions with respect to regions in the solution with zero 

field is on the order of, but larger than, thermal energy kT. For 

semidilute nanocylinders with very large aspect ratio  ln (R/

r0) ≫ 1  in regime II with 1 ln(ϕ)⁄ < γ0 < 1 , the asymptotic 

analytical solution24,7,25 for the fraction of condensed 

counterions Zcond Z0⁄  is found to be half of the condensation 

parameter γ0:  

0

0

semidilute cylindrical NPs, regime II
2

condZ

Z


   (38) 

In the upper part of dilute weak counterion condensation 

regime II of nanocylinders with γ0 > 1 , the integral of 

counterion concentration (eqn (36)) is dominated by the lower 

limit at r0 . In this case, the Gouy-Chapman length is smaller 

than the radius of the cylindrical charged particles lGC ≈

r0/γ0 < r0. The majority of condensed counterions are within 

the Gouy-Chapman length in the planar zone x < lGC . The 

number of condensed counterions in this case can be estimated 

by the counterion concentration at the nanoparticle surface  

c(r0)~Z0/rcm
3 exp (−eΔψ(r0, rcm)/kT) (eqn (20)) times the 

volume of a layer with the thickness of Gouy-Chapman length 

lGC~r0/γ0 (eqn (4)) around the nanocylinders. 

 
 

 
0

0 0 0
*

exp

regime II, dilute cylindrical NPs

cond GC

B

L
Z c r l r L

l






 

  (39) 

Compared to the similar regime II for spherical NPs with the 

same condensation parameter γ0 > 1 (eqn (23)), the number 

of condensed counterions for cylindrical NPs is larger by the 

factor (ϕ∗)−γ0 . This extra factor is due to the logarithmic 

variation of electrostatic potential in the cylindrical zone 

|eΔψ(r0, L)| ≈ 2γ0kTln(L/r0) ≈ −γ0kTln(ϕ∗) . This extra 

factor leads to a higher counterion concentration at the surface 

c(r0) of cylindrical particles with a large aspect ratio L ≫ r0. At 

the upper boundary of the weak counterion condensation 

regime, the concentration of condensed counterions at the 

nanoparticle surface c(r0)  reaches the Gouy-Chapman 

concentration cGC ≈ γ0
2 (lBr0

2)⁄  (eqns (10) and (31)). At this 

crossover between weak and strong condensation regimes for 

dilute cylindrical particles with γ0 > 1  (see point B at the 

boundary between regimes II and III in Fig. 8), the Gouy-

Chapman layer at the nanoparticle surface with the thickness 

lGC becomes fully populated by counterions. The condensation 

parameter γ0  reaches the crossover value γfree
∗ (ϕ)  at the 

corresponding volume fraction ϕ (red line in Fig. 8), calculated 

from eqn (39) using eqns (31) and (32) for the relation between 

rcm and volume fraction ϕ: 

 
   

 
 

 

*

*

* *

ln ln ln

ln ln

dilute cylindrical NPs

free

free

  
 

 


 

  (40) 

Upon increase of the bare charge valence Z0  and the 

corresponding increase of condensation parameter γ0  at a 

constant volume fraction ϕ  of NPs in the strong counterion 

condensation regime III, the normalized free charge valence 

saturates at γfree
∗ (ϕ) . The corresponding volume fraction 

ϕfree(γ0)  at the boundary between regime II and III is 

estimated from eqn (40): 

    0*

0 0 0exp( ) dilute cylindrical NPsfree



       (41) 

The fraction of condensed counterions (eqn (39)) in solutions of 

dilute cylindrical nanoparticles in the weak condensation 

regime II is given by the exponential value of the relative 

horizontal distance between the point (lnϕ , γ0) in the diagram 

(point A in Fig. 8) and the corresponding point (lnϕfree , γ0) on 

the “free” line – the boundary between regimes II and III at the 

same condensation parameter γ0 (point B in Fig. 8).  

 
  0*

0

0 0 0

in regime II

exp( )

cylindrical NPs 

cond

free

Z

Z

 
 

  



 
 (42) 

Regime III. Strong counterion condensation:  

𝛄𝟎 > 𝐥𝐧 (𝛟)/𝐥𝐧 (𝛟∗)  for dilute and 𝛄𝟎 > 𝟏  for semidilute 

cylindrical particles.  

Similar to the strong counterion condensation regime III for 

solutions of spherical charges, more than half of counterions are 

condensed. However, the difference between counterion 

profiles of regime III for cylindrical and spherical particles is that 

a fraction of condensed counterions can be located in the 

cylindrical zone. There are two subregimes: subregime IIIa with 

condensed counterions in cylindrical zone and subregime IIIb 

with empty cylindrical zone. Below we separately discuss 

semidilute subregime IIIa, dilute subregime IIIa, and dilute 

subregime IIIb. 

Subregime IIIa. semidilute cylindrical particles (𝛄𝟎 > 𝟏,𝛟 >

𝛟∗) 

In Regime I, the entire planar zone and cylindrical zone are free 

zones as there are no condensed counterions (see green line in 

Fig. 10(b)). In semidilute Regime II, the counterions start to 

condense. Both the fraction of the condensed counterions 

Zcond/Z0  (eqn (38)) and the outer boundary of condensed 

counterion zone lc  (eqn (37)) increase with γ0 . As the 

condensation parameter γ0  increases from γ0 = −1/ln (ϕ) to 

γ0 = 1 in semidilute Regime II, the condensed counterions fill in 

the outer part of the cylindrical zone further away from the 

surface of nanocylinders. At the boundary γ0 = 1  between 

semidilute Regime II and Regime IIIa, ½ counterion per Bjerrum 

length is condensed in the outer part of cylindrical zone 

(er0R)1/2 < x < R/e (see blue line in Fig. 10 at γ0 = 1) and the 
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other ½ counterion per Bjerrum length is free between R/e <

x < R (see green line in Fig. 12 at γ0 = 1).  

In Regime IIIa, the condensation parameter γ0 > 1  and 

counterions start to fill the planar and the inner half of 

cylindrical zone 0 < x = r − r0 < (er0R)1/2, as the integral of 

counterion concentration (eqn (36)) becomes dominated by 

the lower limit r = r0. The number of counterions in the outer 

half of cylindrical zone (on logarithmic scales) saturates with 1 

counterion per Bjerrum length (½ condensed counterion at 

distance (er0R)1/2 < x < R/e shown by blue line in Fig. 12 and 

½ free counterion at distance R/e < x < R shown by green line 

in Fig. 12). For 1 < γ0 < 2, the remaining γ0 − 1 counterions 

per Bjerrum length condense in the planar zone and the inner 

half of cylindrical zone 0 < x < (er0R)1/2. About half of these 

γ0 − 1  counterions are located in the planar zone 0 < x <

(e − 1)r0  and the other half of γ0 − 1  counterions are 

distributed in the inner part of cylindrical zone (e − 1)r0 < x <

(er0R)1/2.  

Above γ0 = 2, the number of counterions in the inner half of 

the cylindrical zone ( (e − 1)r0 < x < (er0R)1/2 ) further 

increases and saturates at 1 for γ0 ≫ 1  (red line in Fig. 12) 

while the other γ0 − 2 counterions are distributed in the planar 

zone. The equal number of counterions (one counterion per 

Bjerrum length) for γ0 ≫ 1 distributed close to the inner (r =

er0) and close to the outer (r = R) boundaries of the cylindrical 

zone can be approximated by the zero free-energy difference 

between these regions ΔFeff(er0, R) = 0 (red line in Fig. 9(b)) 

and described by  

     

 

0 0 0

2 2

0 0

2

, 2 ln / ,

( )
ln 0

semidilute cylindrical NPs, regime III

effF er R kT er R e er R

e r c er
kT

R c R

    

 
    

 

 

(43) 

(see eqn (7) and (63)) with asymptotic dependence of 

2πr2lBc(x) for γ0 ≫ 1 presented by the dashed line in Fig. 13. 

The minimum of r2c(r) (see Fig. 13) corresponds to the free 

energy maximum at r = (eRr0)
1/2  with ΔFeff((eRr0)

1/2, R) ≈

2kTln[ln(eR/r0) /π] (red line in Fig. 9(b)). 

The spatial distribution of γ0 − 2 counterions in planar zone is 

well described by the Gouy-Chapman solution. The counterion 

profile converges towards the asymptotic analytical solution 

presented in Appendix C with effective line charge density (see 

also eqn (61)): 
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 (44) 

and counterion concentration distribution function (see eqn 

(60)): 
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 (45) 

The approximations at different length scales in eqns (44) and 

(45) are obtained by the Taylor expansion of trigonometric and 

logarithmic functions. The analytical solutions in the planar 

zone (eqns (44a) and (45a)) are similar to the Gouy-Chapman 

solution (eqns (11) and (12)). Note that with the mean-field 

approximation discussed in the introduction, eqns (44) and (45) 

only work for σ0 < 2πlB
−2  or γ0 < r0/lB  (eqn (31)), which 

determines the lower boundary of eqns (44a) and (45a). 

Fig. 12 The effective line charge densities γ(r) for semidilute cylindrical particles at 

four different distances r = er0 (red line), r = e2r0 (brown line), r = (er0L)
1/2 (blue 

line), and r = R/e (green line) from the nanocylinder axis as functions of condensation 

parameter γ0. At γ0 = 1, the effective line charge density γ(R/e) (green curve) 

saturates at 0.5 and the effective line charge density γ((er0R)1/2) (blue curve) 

converges to 1. At γ0 ≫ 1, the effective line charge density at the inner boundary of 

the cylindrical zone γ(er0) (red curve) approaches 2 and γ(e2r0) (brown curve) 

approaches 1.5.  

Fig. 13 Numerical solution of normalized counterion concentration profile for different 

values of bare linear charge density (green: γ0 = 1, blue: γ0 = 2, red: γ0 = 5, and 

purple: γ0 = 10 with R = 105r0 and γR = 0). The solution gradually converges to the 

asymptotic solution (dashed line) with increasing condensation parameter 𝛾0. The 

deviation of 2πr2lBc(r) for the dashed line from 1 is described by eqn (63). 
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Subregime IIIa. dilute cylindrical particles with counterions 

condensed in cylindrical zone (𝛟∗/[𝐥𝐧(𝛟∗)]𝟐 < 𝛟 < 𝛟∗) 

Upon dilution of cylindrical particles (increasing rcm L⁄ ), the 

counterions start to escape into the spherical zone as the 

effective single counterion free energy difference across the 

spherical zone increases, ΔFeff(L, rcm)~3kTln (rcm/L) (see red 

line in Fig. 9(a)). The counterions initially escape from the outer 

part of cylindrical zone (see Fig. 14). Recall that with the 

increasing γ0  at higher volume fractions this outer part of 

cylindrical zone gets filled with counterions first before 

counterions condense into inner sections of cylindrical zone. 

The magnitude of electrostatic energy of counterions in the 

outer part of cylindrical zone is the lowest as the strength of 

their electrostatic attraction to the charged nanocylinder is the 

weakest. This is the reason the counterions located there are 

the first to escape into spherical zone with decreasing volume 

fraction ϕ  and increasing entropy of free counterions in 

spherical zone. The outer part of cylindrical zone ((er0L)
1/2 <

x < L) becomes empty when the one counterion per Bjerrum 

length escapes to the spherical zone and the effective line 

charge density at the outer boundaries of the cylindrical zone 

approaches unity γ((er0L)
1/2) ≈ γ(L) ≈ 1 with lc = (eLr0)

1/2 

(see Fig. 14). The escape of one counterion per Bjerrum length 

determines the regime boundary between subregimes IIIa and 

IIIb as it corresponds to half of the counterions of the cylindrical 

zone leaving it for spherical zone. It is also the phase boundary 

of the analytical solutions between the saturated condensation 

and the unsaturated condensation7. The particle volume 

fraction corresponding to one counterion per Bjerrum length 

escaping from the cylindrical zone and becoming free in 

spherical zone can be estimated by balancing the effective free 

energies at the outer boundary of spherical zone, rcm, and the 

inner boundary of cylindrical zone ΔFeff(er0, rcm) ≈

2kTln[ln(eL/r0)] − 3kTln (rcm/L) ≈ 0  estimated from eqns 

(7) and (43) as the counterion free energy in the inner part of 

the cylindrical zone is not affected by the escaping counterions. 

This free energy balance gives the boundary ϕ(γ(L) ≈ 1 ) ≈

ϕ∗/[ln(ϕ∗)]2  separating subregimes IIIa and IIIb (see the 

vertical dashed line in Fig. 8 and red vertical dashed line in Fig. 

14). For example, for nanorods with an aspect ratio of L/r0 =

100, the volume fraction at the crossover between subregime 

IIIa and IIIb is ϕ(γ(L) ≈ 1 ) ≈ ϕ∗/85  two decades below the 

overlap concentration ϕ∗ ≈ 10−4 . At higher volume fractions 

ϕ > ϕ∗/[ln(ϕ∗)]2 corresponding to subregime IIIa (to the right 

of dashed line in Fig. 8), there is more than one condensed 

counterion per Bjerrum length in the cylindrical zone 

corresponding to the saturated condensation in the Deshkovski 

cell model7 with γ(L) ≤ 1. The counterion distribution in the 

inner part of cylindrical zone (see er0 < r < (eLr0)
1/2  part of 

red line in Fig. 10(a)) in subregime IIIa is similar to that in 

semidilute solution (see er0 < r < (eLr0)
1/2 part of red line in 

Fig. 10(b)). However, as more counterions escape from the 

cylindrical zone, the thickness of condensed counterion layer lc 

decreases from L/e in semidilute regime IIIa, opening up the 

empty zone lc < x < rkT  in the outer shell of the cylindrical 

zone ( (eLr0)
1/2 < lc < L ). At the boundary between 

subregimes IIIa and IIIb for dilute cylindrical particles, the outer 

boundary of the condensed counterion zone is lc ≈ (eLr0)
1/2, 

while the inner boundary of the free counterion zone is rkT ≈ L 

and thus the empty zone is the outer part of cylindrical zone 

(eLr0)
1/2 < r < L. 

Subregime IIIb. dilute cylindrical particles with empty 

cylindrical zone (𝛟 < 𝛟∗/[𝐥𝐧(𝛟∗)]𝟐) 

At lower volume fractions ϕ < ϕ∗/[ln(ϕ∗)]2 in the subregime 

IIIb (to the left of dashed line in Fig. 8), there is less than one 

counterion per Bjerrum length in the cylindrical zone (er0 < r <

(er0L)
1/2) and more than half of the cylindrical zone on the 

logarithmic scale is empty (see the horizontal part of the brown 

line in Fig. 10(a)). This empty zone with almost no counterions 

is located at distances between lc < x < rkT  from nanorod 

surface with the outer boundary of the empty zone 

rkT~γfreeL > L (eqn (46)) in the spherical zone and the inner 

Fig. 15 The osmotic coefficient φosm of dilute charged rod-like particles (a) as a function 

of condensation parameter γ0 = 𝑍0𝑙𝐵 𝐿⁄  at volume fractions ϕ/ϕ∗ = 0.07, 0.14, 0.36 

with ϕ∗ = 1.4 × 10−4; (b) as a function of polymer volume fraction ϕ at condensation 

parameter γ0=0.5, 1, 1.5 and 3. Filled circles are simulation data of Liao et al.27 and 

solid lines are obtained from the crossover function eqn (51) between the osmotic 

coefficient of unity in regime I and eqn (50) in regime III for cylindrical particles, with 

the fitting parameters 𝑐1 = 0.72 and c2 = 2.56. 

Fig. 14 The effective line charge density γ(r) ) for dilute cylindrical particles with γ0 =

10 and ϕ∗ = 10−10 at four different distances r = er0 (red line), r = e2r0 (brown 

line), r = (er0L)
1/2 (blue line), and r = L (green line) from the nanocylinder axis. Upon 

dilution, the counterions from the outer part of cylindrical zone escape to the spherical 

zone – see the sharp increase of the left part of the green line as it approaches the 

blue line. At ϕ ≈ ϕ∗/[ln(ϕ∗)]2 (red vertical dotted line), the outer cylindrical zone 

becomes almost empty as the effective line charge density γ(L) (green curve) 

approaches the value of γ((er0L)
1/2) (blue curve). At ϕ ≈ ϕ∗2 (blue vertical dotted 

line), the counterions starts to escape from the planar zone as the effective line charge 

density at the inner boundary of the cylindrical zone γ(er0) (red curve) becomes larger 

than 2 and the fraction of counterions in the inner cylindrical zone also decrease as 

γ((er0L)
1/2) (blue curve) approaches the values of γ(er0) (red curve) and γ(e2r0) 

(brown curve). 
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boundary of the empty zone (outer boundary of the condensed 

counterion zone) lc becoming smaller than (er0L)
1/2. 

At higher dilution, more counterions escape from the cylindrical 

zone and the cylindrical zone becomes almost completely 

empty when γ(L) > 2 at a volume fraction ϕ < ϕ∗2 calculated 

from the balance of the chemical potentials26 (see blue vertical 

dashed line in Fig. 14). The thickness lc  of the condensed 

counterion layer becomes smaller than the radius r0  of the 

cylindrical particles (see the brown line in Fig. 10(a)). This 

narrow condensed counterion layer is well-described by the 

Gouy-Chapman solution for the strong counterion 

condensation in the planar zone. Similar to the spherical 

particles, the normalized free charge valence is independent of 

bare charge valence in regime IIIb (point C in Fig. 8) and is 

determined by the value γfree
∗ (ϕ)  on the “free line” of the 

diagram (point B in Fig. 8) at the same nanoparticle volume 

fraction ϕ . The fraction of free counterions can then be 

expressed by the relative vertical distance between point C 

( lnϕ , γ0 ) on the diagram and the corresponding point B 

(lnϕ , γfree
∗ (ϕ)) on the “free” line (eqn (40)) – the boundary 

between strong and weak counterion condensation regimes (II 

and IIIb) at the same volume fraction φ of NPs.  
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4. Osmotic pressure in solutions of charged 
particles 

The osmotic pressure of charged particles in the salt-free 

regime is dominated by the counterion contribution as there 

are many free counterions per charged particle. The osmotic 

pressure due to the counterions is determined by the 

counterion concentration at locations equidistant to 

neighboring particles, cfree = c(rcm)  for spherical and dilute 

cylindrical particles or cfree = c(R)  for semidilute cylindrical 

particles, where the electric field is almost zero due to the 

compensation of the nanoparticle charge by counterions. 

Therefore, osmotic pressure can be estimated as the pressure 

of an "ideal gas" of “free” counterions. 
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 (47) 

The osmotic coefficient φosm is defined as the ratio of osmotic 

pressure Π to the ideal gas pressure of all counterions if they 

were all free. The osmotic coefficient is therefore equal to the 

fraction of free counterions by assuming that free counterions 

are uniformly distributed over the whole solution: 
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For spherical and dilute cylindrical particles, the osmotic 

coefficient is almost unity in regime I (γ0 < 1  for spherical 

particles and γ0 < −1/ ln(ϕ∗)  for dilute cylindrical particles) 

and on the order of unity (between ½ and 1) in regime II (γ0 <

γfree
∗ , eqns (24) and (40)) with most of the counterions far away 

from the charged particles  

0 0
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 (49) 

In regime III (γ0 > 1 with ϕ > ϕfree
∗ , eqns (25) and (41)), the 

osmotic coefficient Zfree/Z0 = γfree/γ0  is inversely 

proportional to the condensation parameter γ0  due to the 

saturation of the effective charge valence at γfree(ϕ) (see eqns 

(29) and (46)): 
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We compare the scaling prediction for the dependences of the 

osmotic coefficient φosm  (eqn (50)) on the condensation 

parameter γ0 (Fig. 15 (a)) and the volume fraction ϕ (Fig. 15(b)) 

with the results of the molecular dynamic simulation of Liao et 

al.27 for dilute charged rod-like nanoparticles. The simulation 

data are fitted to the expression approximating the crossover 

between eqn (49) for regime I with φosm ≅ 1 and eqn (50) for 

regime III with hyperbolic dependence on condensation 

parameter γ0 and logarithmic dependence on volume fraction 

ϕ: 
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The two adjustable parameters c1 = 0.72 and c2 = 2.56 allow 

simultaneous fit of data in both Fig. 15(a) and Fig. 15(b). The 

osmotic coefficient decreases from φosm ≅ 1 in regime I to 

1/2 < φosm < 1 in regime II (eqn (49)) and to φosm < 1/2 in 

regime III (eqn (50)). Fig. 15(a) demonstrates that the osmotic 

coefficient is inversely proportional to the condensation 

Fig. 16 The theoretical prediction of the dependence of osmotic coefficient on the 

condensation parameter γ0 = Z0lB L⁄  for the semidilute cylindrical nanoparticles (solid 

lines – eqn (52)) and the experimental data24,34,35 for the semidilute flexible 

polyelectrolytes (solid points). The weak counterion condensation regime I for φosm >

1/2 is shown by green points while strong counterion condensation regime III for 

φosm < 1/2 is shown by red points. Both axes are logarithmic.
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parameter γ0 in regime III at constant volume fraction ϕ (eqn 

(50)). Fig. 15(b) shows that the in regime III (γ0 = 1.5 and 3), 

osmotic coefficient φosm  decreases logarithmically with the 

increasing volume fraction ϕ  at a constant condensation 

parameter γ0 (eqn (50)). 

The scaling prediction of the osmotic coefficient for semidilute 

cylindrical particles is calculated from eqn (38) in regime II and 

eqn (44c) with γ(lc = R/e) = 1/2 in regime III using eqn (48): 

0

0

1 semidilute cylindrical NPs regime II
2

1
semidilute cylindrical NPs regime III

2

osm











 



 (52) 

The scaling prediction of the osmotic coefficient for the 

semidilute cylindrical charges (eqn (52)) is sketched in Fig. 16 

with green line for φosm > 1/2  in regime I and red line for 

φosm < 1/2  in regime III. The experimental data for the 

osmotic coefficient of flexible polyelectrolytes (solid points in 

Fig. 16) is in reasonable agreement with the theoretical 

prediction for semidilute nanorod solution (eqn (52)). The 

relative horizontal shift of the experimental data with respect 

to theoretical prediction is related in part to the way the 

condensation parameter γ0  is calculated for flexible 

polyelectrolytes. The condensation parameter was estimated 

by dividing the product of total valence and Bjerrum length by 

the fully stretched size of the flexible chain. This underestimates 

the actual bare condensation parameter, as the fully stretched 

size of the chain is never achieved even for strongly charged 

flexible polyelectrolytes. This approximation becomes 

progressively worse with decreasing condensation parameter 

by the factor of relative chain extension decreasing from ~2/3 

to below ½ of its fully extended size. 

5. Summary 

We present a scaling model of counterion distribution in low-

salt solutions of spherical or cylindrical charged particles. We 

identify three different regimes depending on particle volume 

fraction ϕ and the condensation parameter γ0  defined as the 

ratio of particle charge valence Z0  to the number of Bjerrum 

lengths lB  per particle size ( γ0 = Z0lB/2r0  for spherical 

particles with radii r0  defined in eqn (15) or γ0 = Z0lB/L  for 

cylindrical particles with length L defined in eqn (31)). Volume 

fraction ϕ  is defined as the ratio of the physical volume 

occupied by particles to the total solution volume (ϕ ≈ r0
3/rcm

3  

for spherical nanoparticles, ϕ ≈ r0
2L/rcm

3  for dilute cylindrical 

particles and ϕ ≈ r0
2/R2  for semidilute cylindrical particles, 

where 2rcm is the average distance between centers of mass of 

neighboring particles, while 2R is the average distance between 

axes of symmetry of neighboring nanorods in semidilute 

solution).  

Regime I. Weakly charged particles with no condensed 

counterions corresponding to condensation parameter 𝛄𝟎 < 𝟏 

for spherical particles,  𝛄𝟎 < −𝟏/𝐥𝐧 (𝛟∗) for dilute cylindrical 

particles, and 𝛄𝟎 < −𝟏/𝐥𝐧 (𝛟)  for semidilute cylindrical 

particles. In this regime the Gouy-Chapman length lGC is larger 

than the particle radius r0. The electrostatic potential energy is 

smaller than kT and the counterions are free and almost 

uniformly distributed in solution (see Regime I in Fig. 17).  

Regime II. Weak counterion condensation regime with less 

than half of all counterions condensed corresponding to 

condensation parameter 𝟏 < 𝛄𝟎 < −𝐥𝐧 (𝛟)  for spherical 

particles, −𝟏/𝐥𝐧 (𝛟∗) < 𝛄𝟎 < 𝐥𝐧 (𝛟)/𝐥𝐧 (𝛟∗)  for dilute 

cylindrical particles and −𝟏/𝐥𝐧 (𝛟) < 𝛄𝟎 < 𝟏  for semidilute 

cylindrical particles. We identify three zones around charged 

particles with qualitatively different counterion distribution 

profiles (see Regime II in Fig. 17): (1) Condensed counterion 

zone near the surface of the particles (x < lc). (2) Empty zone 

(exist for spherical and dilute cylindrical nanoparticles with 

γ0 > 1) with high counterion electrostatic energy (larger than 

kT) with respect to regions in solution with zero electric field, 

but with a small fraction of counterions in this zone (see lc <

x < rkT  in Fig. 17(a), (b) and (c)). Since the effective charge 

valence of particles does not vary significantly throughout this 

empty zone, the spatial dependence of electrostatic potential in 

this zone is the same as for charged objects of the same 

symmetry in the absence of counterions (Fig. 1). (3) Free 

counterion zone is further away from the particles (see x > rkT 

in Fig. 17). The magnitude of the electrostatic energy of 

counterions (with respect to regions in solution with zero 

electric field) in the free zone is smaller than kT.  

At γ0 = 1, there is no empty zone and lc = rkT for spherical and 

dilute cylindrical particles (see Fig. 17). The thickness of the 

empty zone for the spherical and dilute cylindrical particles 

increases with the condensation parameter γ0  as lc decreases 

inversely proportional to the condensation parameter γ0 (eqns 

(27) and (44)):  

 
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 (53) 

and rkT increases proportional to the condensation parameter 

γ0 (eqn (1c)): 
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 (54) 

Note that there is no empty zone for semidilute cylindrical 

particles due to the absence of the spherical symmetry zone, 

which would attract a significant fraction of counterions upon 

sufficient dilution.  

Regime III. Strong counterion condensation regime with most 

of the counterions condensed corresponding to condensation 

parameter 𝛄𝟎 > −𝐥𝐧 (𝛟)  for spherical particles, 𝛄𝟎 > 𝐥𝐧 (𝛟)/

𝐥𝐧 (𝛟∗)  for dilute cylindrical particles and 𝛄𝟎 > 𝟏  for 

semidilute cylindrical particles. There are two counterion 

populations for the strong counterion condensation regime III: 

condensed counterions at distances from particle surface x =

r − r0 < lc (see eqn (53) for lc) and free counterions far away 

from particles in the free counterion zone at distances rkT <

x < rcm  (eqn (54) for rkT ). There are more condensed 

counterions in regime III than free counterions due to the 

deeper mean-field single counterion free energy well near the 

particle (red lines in Fig. 4 and Fig. 9). In spherical particle regime 
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III and cylindrical particle regime IIIb, the thickness of the 

condensation layer lc is larger than Gouy-Chapman length lGC 

but smaller than the size of the planar zone (see the blue lines 

in Fig. 17(a) and (b)). The condensed counterions reside in the 

planar zone described by the Gouy-Chapman solution (eqns (11) 

and (12)). The inner boundary of free counterion zone rkT  in 

these regimes is larger than r0 (see the green lines in Fig. 17(a) 

and (b)) and there is an empty zone with almost no counterions 

and strongly varying electrostatic potential at distances from 

the charged surface lc < x < rkT.  

In contrast, in semidilute solutions and dilute solutions of 

cylindrical particles in regime IIIa, the thickness of condensed 

counterion layer lc  increases with the increasing particle 

concentration and becomes larger than nanocylinder radius 

lc > (e − 1)r0  (see the blue lines in Fig. 17(c) and (d)) as the 

condensed counterions also reside in the cylindrical zone 

described by the analytical solution7 (eqns (44) and (45)). The 

presence of condensed counterions in the cylindrical zone for 

regime IIIa is due to the detailed balance of the logarithmic 

entropic and energetic part of free energy there. For the 

semidilute cylindrical particles, the condensed counterions 

occupy almost the entire cylindrical zone with the thickness of 

the condensed counterion zone lc ≅ R e⁄  . 

The results of this paper could be used to understand the 

distribution of counterions on different length scales from 

nanoparticles and its dependence on various physical 

parameters including particle size and shape, concentration, 

and valence, and predict the osmotic pressure of the solution 

based on the free counterion concentration. The results 

presented in the main part of the paper are for the low salt 

solutions with the average distance between solute particles 

smaller than the Debye length. The effect of the added salt is 

discussed in Appendix D. The distribution of counterions is 

important for the theories of colloidal stability28,29, 

electrophoretic mobility30, conductivity31, and viscosity32,33 of 

charged particles. This paper primarily focuses on rigid particles 

and the extension of this work to flexible polymers will be 

presented in future publications.  
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Fig. 17 Length scales of the boundaries between three counterion distribution zones: 

condensed counterion zone closer to the nanoparticle surface, free counterion zone 

further away from the nanoparticles, and empty zone in between for (a) spherical 

nanoparticles , (b) dilute cylindrical nanoparticles with empty cylindrical zone (ϕ <

ϕ∗/[ln(ϕ∗)]2), (c) dilute cylindrical nanoparticles with condensed counterions in 

cylindrical zone (ϕ∗/[ln(ϕ∗)]2 < ϕ < ϕ∗) and (d) semidilute cylindrical nanoparticles 

(ϕ > ϕ∗). Blue lines: the thickness of the condensed counterion zone lc. Green lines: 

the inner boundary of free counterion zone rkT. The different symmetry zones are 

separated by the thick dashed lines. All axes are logarithmic.
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Appendix A: Examples of parameters for the 
nanoparticles in different regimes 

Appendix B: Comparison of the scaling and 
numerical solutions of the spherical particles 

The comparisons of the effective charge valence and counterion 

concentration between the numerical solution of the nonlinear 

Poisson-Boltzmann equation (eqns (19) and (20)) and the 

scaling solutions (eqns (27), (28), and (29)) for spherical 

particles in different regimes are shown in Fig. 18(a) and (b) 

respectively. The scaling estimates (dashed lines in Fig. 18) 

agree well with the numerical solution of the Poisson-

Boltzmann equation (solid lines in Fig. 18). 

Appendix C: Semidilute solutions of nanorods 
with strong counterion condensation: asymptotic 
limit 

The analytical solution of counterion concentration and effective 
line charge number density is given as7 

    
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

 
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where r is the axial distance from the center of the cylindrical 

nanoparticles (see Fig. 7) and β  and ζ  are the variables 

determined by the following boundary conditions at the inner 

(r = r0 ) and the outer (r = R ) boundaries of the cylindrical 

zone: 
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where γR  is the effective line charge density at the outer 

boundary of the cylindrical zone. Note that β can be imaginary 

if γ0 ≪ 1 or γR ≫ 1. Here we only focus on the solutions with 

real β > 0 , ζ > 0  and 0 < βln (r0/ζ) < βln (R/ζ) < π  without 

loss of generality for the trigonometric functions. In the limit of 

large ln(R/r0) ≫ π, γ0 ≫ 1, and γR ≪ 1, we have βln(r0/ζ) ≪

π , π − βln (R/ζ) ≪ π , and β = π/ln (eR/r0) ≪ π , and can 

approximate the tangent function in eqns (57) and (58) by the 

value of its argument to get: 
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(59) 

The counterion concentration and the effective charge line 

number density are then expressed as: 
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As shown in Fig. 13 and eqn (60), the counterion distribution 

converges to the asymptotic profile independent of γ0 at high 

γ0: 
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The counterion concentration c(r) is roughly proportional to 

1/(2πr2lB), but eqn (62) indicates that c(r) deviates from this 

simple power-law scaling by the r-dependent factor: 
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This asymptotic deviation from the power law is plotted in Fig. 

13 by the dashed line. The analytical solution of 2πr2lBc(r) 

(derived from eqn (60)) approaches this asymptotic “correction 

factor” with increasing condensation parameter γ0 . At the 

geometric mean between the inner (r = er0) and the outer (r =

R ) boundaries of the cylindrical zone, sin(π/2)=1 and the 

deviation from the reciprocal square power-law dependence of 

the asymptotic c(r) reaches the maximum factor of π2/

[ln(e R r0⁄ )]2. 

Fig. 18 The comparison of the numerical solutions of the Poisson-Boltzmann equation 

(solid lines) and the scaling approximations eqns (27) – (29) (dotted lines) for weakly 

charged spherical particles (Z0 = 5, green), spherical particles with weak counterion 

condensation (Z0 = 100, blue), and spherical particles with strong counterion 

condensation (Z0 = 1000, red) with r0 = 1, lB = 1, rcm = 500, and Zfree =

3r0/lBln(rcm/r0) (eqn (29)) for (a) effective charge valence and (b) counterion 

concentration. All axes are logarithmic.

Table 2 Examples of parameters and length scales of spherical and cylindrical 

nanoparticles in different regimes. 
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Since the effective mean-field single counterion free energy 

difference in the cylindrical zone is ΔFeff(r, R) = −2kT ln(r/

R) + eΔψ(r, R) ≈ −kTln (c(r)/c(R)) , the numerical solution 

shows that the free energy difference ΔFeff(r, R)  becomes 

independent of γ0  for R ≫ r > er0  and γ0 ≫  1  and this 

effective single counterion mean-field free energy ΔFeff(r0, R) 

near the surface decreases with the increasing linear charge 

density γ0 , resulting in an increasing number of condensed 

counterions in this potential well (see Fig. 13). The asymptotic 

effective line charge number density is obtained from eqn (61). 
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 (64) 

Appendix D: Effect of added salt on counterion 
distribution in solutions of nanoparticles with 
strong counterion condensation 

In this section, we present a scaling description of counterion 

distributions in solutions of spherical and cylindrical 

nanoparticles in strong counterion condensation regime with 

added salt. These solutions contain both monovalent co-ions 

with the same sign of charge as nanoparticles and monovalent 

counterions with the opposite sign of charge. We do not 

distinguish between counterions and salt ions with the same 

sign of charge. The addition of salt to the solution of charged 

nanoparticles has two effects on the distribution of 

counterions: on one hand, the salt ions screen the electrostatic 

interaction beyond the Debye length rD (see eqn (13)): both the 

effective charge valence and the electric field decay 

exponentially at distance from nanoparticles larger than the 

Debye length rD . On the other hand, the entropic part of 

chemical potential at rD (eqn (8)) varies logarithmically with salt 

concentration (eqn (13)). The increase of salt concentration has 

a qualitatively similar effect on counterion distribution at x <

rD  to the increase of the counterion concentration with 

decreasing separation between the particles (2rcm  in the dilute 

case or 2R in the semidilute nanorod case) in salt-free solutions 

(eqn (8)). Both of these ways of increasing counterion 

concentration result in the increase of the entropic part of the 

counterion free energy at the solution location with zero 

electric field. The electrostatic interactions are unscreened on 

length scales shorter than Debye length and counterion 

distribution for x < rD  in solutions with added salt can be 

approximated by the salt-free counterion distribution with the 

separation between the particles (rcm  or R ) replaced by rD . 

Depending on the magnitude of Debye length rD relative to the 

separation between particles (rcm  or R) and particle size (2r0 

and L), we identify the following salt regimes: (i) low salt regime 

with rD > rcm for spherical and dilute cylindrical particles and 

rD > R for semidilute cylindrical particles; (ii) intermediate salt 

regime with screening in the spherical zone (r0 < rD < rcm  for 

spherical charged particles and L < rD < rcm  for dilute 

cylindrical particles); (iii) high salt regime with screening in the 

cylindrical zone (r0 < rD < L for dilute cylindrical particles and 

r0 < rD < R for semidilute cylindrical particles); and (iv) ultra-

high salt regime with screening in the planar zone (rD < r0). The 

dependences of the effective charge valence Z(x) and the 

counterion concentration c+(x)  on the distance x from the 

particle surface in solutions of spherical and cylindrical particles 

of different ionic strength corresponding to the above salt 

regimes are sketched in Fig. 19 and Fig. 20 respectively. These 

dependences on length scales shorter than Debye length were 

obtained from the corresponding salt-free cases.   

Fig. 19 Effective charge valence Z(x) for (a) spherical particles and (b) dilute cylindrical 

particles in strong counterion condensation regime III at different salt concentration 

regimes: (i) low salt regime with rD > rcm (green lines) for dilute solutions; (ii) 

intermediate salt regime with r0 < rD < rcm for dilute spherical and L < rD < rcm for 

dilute cylindrical particles (blue lines). (iii) high salt regime for cylindrical particles with 

r0 < rD < R (purple lines) and (iv) ultra-high salt regime with rD < r0 (red lines). The 

effective charge valence Z(x) in low salt regime (i) was approximated by the effective 

charge valence in the dilute salt-free case (red line in Fig. 6(a) and Fig. 10(a)). The 

effective charge valence Z(x) for x < rD in the intermediate salt regime (ii) was 

estimated by the effective charge valence in the dilute salt-free solutions by replacing 

the separation between particles rcm by the Debye length rD (red line in Fig. 6(a) and 

red or brown line in Fig. 10(a) depending on value of rD). The effective line charge 

number density γ(x) in the high salt regime (iii) was approximated by γ(x) in the 

semidilute salt-free solutions by substituting R with rD (red line in Fig. 10(b)). The 

effective charge valence Z(x) for x < rD in ultra-high salt regime (iv) with screening in 

the planar zone was approximated by the salt-free Gouy-Chapman solution (Fig. 2(c)) 

with the full Gouy-Chapman analytical solution for the counterion distribution near a 

charged plane in the presence of salt presented in the literature1,2,3. All axes are 

logarithmic. 

Fig. 20 Counterion concentration c+(x) (solid lines) and co-ion concentration c−(x) 

(dashed lines) for (a) spherical particles and (b) dilute cylindrical particles in strong 

counterion condensation regime III with different regimes of salt concentrations: (i) low 

salt regime with rD > rcm (green lines). (ii) intermediate salt regime (blue lines), and 

(iii) high salt regime (purple lines), and (iv) ultra-high salt regime (red lines). The 

counterion concentration in the low salt regime (i) was approximated by the counterion 

concentration in dilute salt-free case (red line in Fig. 6(b) and Fig. 11(a)). The counterion 

concentration for x<rD in the intermediate salt regimes (ii) can be approximated by the 

counterion concentration profile in the dilute salt-free solution by replacing the 

separation between particles rcm by the Debye length rD (red line in Fig. 6(b) and red 

or brown line in Fig. 11(a) depending on value of rD). The counterion concentration for 

x<rD in the high salt regime (iii) was estimated by c(x) in the semidilute salt-free case by 

replacing R with rD (red line in Fig. 11(b)). The counterion concentration for x<rD in the 

ultra-high salt regime (iv) can be approximated by the salt-free Gouy-Chapman solution 

(Fig. 2(d)) with the full analytical solution presented in the literature1,2,3. The co-ion 

concentration c−(x) is inversely proportional to the counterion concentration c+(x) 

with c+(x)c−(x) = cs
2. All axes are logarithmic.
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