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Understanding Topological Defects in Fluidized Dry Active Nematics
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Dense assemblies of self-propelling rods (SPRs) may exhibit fascinating collective behaviors and
anomalous physical properties that are far away from equilibrium. Using large-scale Brownian
dynamics simulations, we investigate the dynamics of disclination defects in 2D fluidized swarming
motions of dense dry SPRs (i.e., without hydrodynamic effects) that form notable local positional
topological structures that are reminiscent of smectic order. We find the deformations of smectic-
like rod layers can create unique polar structures that lead to slow translations and rotations of
±1/2−order defects, which are fundamentally different from the fast streaming defect motions
observed in wet active matter. We measure and characterize the statistical properties of topological
defects and reveal their connections with the coherent structures. Furthermore, we construct a
bottom-up active-liquid-crystal model to analyze the instability of polar lanes, which effectively
leads to defect formation between interlocked polar lanes and serves as the origin of the large-scale
swarming motions.

1 Introduction
Collective dynamics of densely packed, self-propelling rods
(SPRs), such as swarming of bacteria1–3 and motor-driven
biopolymers4,5, can exhibit anomalous out-of-equilibrium
physical properties. Of particular interest is understanding the
so-called “active nematics” that feature fascinating orientational
orders such as motile disclination defects6–8. In addition, the
polar motions of aggregating SPRs may lead to eminent
positional orders by breaking translational symmetry9–11.
Compared to orientational orders that typically have myriad
shapes and sizes, positional orders manifest as simple layered
structures (e.g., smectic order) with a thickness of approximately
one rod length. They are seldom found in wet systems wherein
hydrodynamic effects bend and break alignment structures4,12

and suppress phase transitions towards forming positional
structures. Intriguing positional orders and structures are more
often seen in dry SPR assemblies such as gliding bacteria
colonies13–15, where the short-range driving forces arise from
friction, collision, or thermal fluctuations.

While understanding orientational orders and their
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non-equilibrium transitions have been the focus of extensive
studies, far less is known about positional orders. Quasi-steady,
smectic-like patterns were created using phenomenological (e.g.,
Vicsek-type) continuum models16–20; however, these models
cannot accurately resolve the nonlinear, anisotropic many-body
collisions that essentially drive the phase transitions. On the
other hand, direct particle simulations can reveal microscopic
details, but performing large-scale simulations often requires
scalable algorithms that simultaneously resolve collisions and
thermal fluctuations. Their high computational cost significantly
prevents particle simulations from being used in cross-scale
studies. Although several simulation studies of dense SPRs
captured the formation of various intriguing orientational and
positional orders21–25, there is a lack of physical understanding
of their formation mechanisms and their precise connections
with the emergent coherent structures.

In this work, we combine large-scale Brownian dynamics (BD)
simulations and continuum modeling to uncover the dynamics
and behaviors of topological defects in a “fluidized” state of
active nematics composed of dense SPRs that undergo persistent
swarming motions. Moreover, we capture the multiscale origin
of the unstable dynamics and their quantitative relations
between the defect dynamics. The paper is organized as follows.
Section 2 is dedicated to the discrete particle simulations of SPRs
in a periodic domain where we systematically explore the
parameter space to examine the longtime dynamics. We identify
and present typical defect dynamics, together with particle
statistics. In Section 3, we perform stability analysis for a
mean-field continuum model to illustrate the underlying
mechanisms for polar-lane break up which eventually leads to
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Fig. 1 BD simulations reveal rich topological structures (Pe = 68, φ =

78%, γ = 10). (a) Examples of curved arches and depleted zones in a
30`× 15` sub-domain. Schematics on the right: velocity distributions
around ±1/2−order defects. (b-g) Zoom-in views of a +1/2− (b-d) and
a −1/2−order (e-g) defect. (c,f) Polarity qqq (black) and velocity uuu (green)
vector fields superposed on the polar-order parameter |qqq|. (d,g) Nematic
director field nnn superposed on the orientational-order parameter.

defect formation. Finally, we summarize and draw conclusions in
Section 4.

2 BD Particle Simulation
In BD particle simulations, we consider each rod to have a
spherocylinder shape with length ` and width b, and specified
constant speed u0 in the orientation direction ppp. To characterize
the rod activity, here we define a dimensionless Péclet number
Pe =

u0η‖`
kBT (η‖ is the parallel drag coefficient). We initially

distribute a monolayer of N = 105 − 106 rods homogeneously
across across a 200` × 200` planar domain with periodic
boundary conditions. As rods start moving and interact, we solve
the normal contact forces between frictionless rod-rod collisions
at each time step using a geometrical constraint optimization
method (see details in Ref.26), without employing any
phenomenological (e.g., Lennard-Jones or
Weeks-Chandler-Andersen) potentials.

We have explored the parameter space by systematically
varying Pe, the aspect ratio γ = `/b, and the area fraction
φ = N/L2 (πb2/4+ `b

)
and successfully resolved various types of

collective motions, ranging from isolated clusters and
homogeneous chaos to stable crystals21,27,28. Among them, the
intriguing fluidized states (see Movie S1) are robustly captured
for dense SPRs (60% < φ < 85%) with a finite aspect ratio
(6 < γ < 30) and high activity (Pe > 20), independent of the

initial configurations (e.g., either isotropic or nematically
aligned). As highlighted in Fig. 1(a), we observe that the local
positional structures exhibit both Smectic A and Smectic C-like
orders, respectively corresponding to straight band and curved
arch that are formed by interconnected rod layers with a
thickness approximately one rod length. Meanwhile, aggregation
of SPRs can cause large density fluctuations, leading to depleted
zones with only a few isolated rods while the rod concentration
in dense clusters remains approximately uniform.

Next, we reconstruct velocity uuu, director nnn, and polarity qqq
vector fields on a uniform grid from the discrete particle data
using the k-nearest neighbors algorithm29. We have successfully
captured various types of defect motions, such as generation and
annihilation, across the computation domain. The zoom-in views
in Figs. 1(b,c) exhibit details of nematic and polar structures
associated with the motile ±1/2−order disclination defects with
sizes of multiple rod lengths, much larger than dislocations
which are typically about one rod length. As shown in
panels(b-d), the director field reveals a comet-like +1/2−order
defect which typically carries curly bands that wrap around
straight layers in the middle; while an inverted-Y shaped
−1/2−order defect shown in panels(e-g) often sits between two
adjacent polar groups that slide relative to each other. Moreover,
panels(c) and (f) clearly show that the velocity vector field
(green arrows) is highly correlated with the polarity field (black
arrows), suggesting that the SPRs move approximately in the
local alignment direction.

It has been well understood that in wet matter, defect motions
may lead to coherent structures in the ambient flows. For
example, a “streaming” +1/2−order defect, once born, will
induce a localized jet in the direction of defect motion, between
two oppositely signed vortices7,12,15,30,31. Nevertheless, as
illustrated by the schematic on the right of Fig. 1(a), without
hydrodynamic coupling with fluid flows, dry ±1/2−order defects
may keep rotating as the rod layers located along the symmetry
axes (marked by dashed grey lines) continuously tilt when being
pushed by the surrounding polar bands or clusters, creating
swirling velocity fields similar to Figs. 1(c) and (f). Indeed, as
two examples shown in Figs. 2(a) and (b) where defect
annihilation occurs respectively in the bulk and at the boundary,
we clearly see rotational motions of both ±1/2−order defects
when tracking the movements of defect symmetry axes (marked
by yellow lines). Also, intriguingly, Movie S2 and S3 show that
defect annihilation ends when the rod layers in the middle are
eventually “released” due to uncurling of the traveling arch.

We then compute the global statistical properties of the defects
and the corresponding velocity and orientation fields. As
illustrated in Fig. 3(a), we identify ±1/2 defects via discrete
contour integral of the director field32,33. By tracking their
trajectories (marked by light green and purple lines) and
symmetry axes (marked by dark green and purple lines), we
obtain the distributions of the magnitude of defects’ translational
(V ) and rotational (Ω) velocities as shown in panel(b). We find
that, in contrast to the fast streaming behaviors in wet systems,
here the +1/2−order defect moves as slowly as the −1/2−order
defect, with the most probable speed only about 0.3 (the single
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Fig. 2 Sequential snapshots of nematic director fields highlight defects’
rotational motions (Pe = 68, φ = 78%, γ = 10). (a) Annihilation of a pair
of ±1/2−order defects. (b) Annihilation of a +1/2−order defect at the
boundary. The yellow lines mark the defects’ symmetry axes.

rod moving speed is 1). The +1/2−order defects only move and
rotate slightly faster than the −1/2−order ones because the
polar, commet-like shape is less stable than the inverted-Y shape
with its threefold symmetry. In panel(c), we calculate the
two-point correlation function g(r) for the defect core positions
for the (+1/2,+1/2), (−1/2,−1/2), and (+1/2,−1/2) pairs. It is
seen that the defects of the same charge are statistically
separated by greater than 10 rod lengths, while the
oppositely-charged pairs may stay much closer due to generation
and annihilation, as suggested by the peak around r = 2 on the
g(+1/2,−1/2) curve.

Furthermore, we examine the statistical measurements of the
swarming motions in the assembly and seek their connections
with the topological defects. As shown in Fig. 3(d) where
horizontally-aligned rods are distributed homogeneously at t =
0, defects start forming immediately after the system’s mean
enstropy 〈ω〉 =

〈 1
2 |∇×uuu|2

〉
(〈〉 represents a spatial average)

reaches the maximum, corresponding to the strong shearing
motions between interlocked polar lanes (see Movie S1). At
quasi-steady states when t > 0.6, both the defect numbers and
〈ω〉 plateau. The spatial correlation functions for the
ensemble-averaged center-of-mass (C.O.M.) velocity (Cuu) and
orientation (Cpp) of rods show a cut-off dimensionless length
around 10, suggesting that the characteristic size of bulk “flow”
is consistent with the separation distance between defects of the
same charge shown in panel(c). In addition, in panel(f) we
calculate the spectrums for the ensemble-averaged kinetic
energy (Ek) and enstropy (Eω ). Interestingly, on the length scale
2π/k close to the single-rod length, both measurements exhibit
an asymptotic scaling close to k−4, which hence suggests a
similar trend for Ek but a faster decay for Eω when compared to
those reported in 2D wet systems34,35.

To unveil the origins of the quasi-steady fluidized motions and
to find their connections with the defect dynamics, we take a
close look at the defect generation process. As shown in
Figs. 4(a) and (b), generation of a pair of ±1/2−order defects
typically occurs in between two oppositely oriented polar lanes
with nematically aligned SPRs and move approximately
unidirectionally. The process starts as a few misaligned rod
layers rotate to become almost perpendicular to the lane and
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Fig. 3 Global statistical measurements (Pe = 68, φ = 78%, γ = 10).
(a) Defect trajectories superposed on the director field. (b) Rotational
(Ω) and translational (V ) velocity magnitude distribution of ±1/2−order
defects. (c) Two-point correlation function for defect core positions. (d)
Time evolution of mean enstrophy 〈ω〉 and defect numbers. (e) Rod
C.O.M. velocity (Cuu) and orientation (Cpp) spatial correlation functions.
(f) Kinetic-energy (Ek) and enstropy (Eω ) spectrums.

then propagate away, which was also mentioned by Ref22. The
moving front of this group keeps pushing the neighboring lane to
form a curly arch, while the bottom continuously merges with
the SPRs that run in the opposite direction, which eventually
leads to the formation of a pair of ±1/2−order defects (see
Movie S4). The two newly-born defects will start rotating after
separation, seemingly being ripped apart by the shearing
motions between the two lanes.

3 Continuum model
Evidently, the observed defect dynamics originate from the
deformation and breakup of polar lanes. To gain further
quantitative understandings, we construct a minimal continuum
dry model for interactions between a polar lane wherein rods are
sharply aligned in direction qqq1 and another small polar cluster
pointing in direction qqq2, where qqq1,2 are two unit vectors (see
schematic in Fig. 5(a)). We emphasize that although this
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Fig. 4 Sequential snapshots of (a) the director field and (b) rendered
images of rod distribution in a polar lane that bends and break (Pe = 68,
φ = 78%, γ = 10).

phenomena is somewhat reminiscent of the classical
Kelvin-Helmholtz instability occurring between two fluids, here
we are not intended to make connections to any
phenomenological hydrodynamic models.

To begin with, we employ a probability distribution function
(PDF) Ψ(xxx, ppp, t) in terms of the rod’s C.O.M. position xxx and
orientation ppp. The PDF satisfies the Smoluchowski equation36

∂Ψ

∂ t
+∇ · (ẋxxΨ)+∇p · (ṗppΨ) = 0 (1)

where ∇ is the regular spacial gradient operator and
∇p = (I− pppppp) ·∂/∂ ppp is the orientational gradient operator on the
unit sphere. The two conformational fluxes ẋxx and ṗpp using local
slender-body theory as

ẋxx = ppp−d∇(lnΨ), (2)

ṗpp =−∇pUs, (3)

where d is an effectively translational diffusion coefficient. Here
Us = −ζ (D : pppppp) is the so-called Maier-Saupe potential that
effectively produces a mean-field torque to enforce local
alignment, with ζ a strength coefficient and D =

∫
p ppppppΨd ppp the

second-moment tensor37. Equations (2)-(3) state that an
individual SPR can move along the ppp−direction when subject to
thermal fluctuations and can simultaneously rotate to align with
the neighboring rods via steric interactions. Note that we also
neglect the rotational diffusion by assuming the steric
interactions dominate the rod’s rotation in dense assemblies.

We assume a bi-directional form of Ψ for a main group of
sharply aligned rods pointing in the qqq1−direction and a small
polar cluster pointing in the qqq2−direction, such that

Ψ(xxx, ppp, t) = c1 (xxx, t)δ (ppp−qqq1)+ c2 (xxx, t)δ (ppp−qqq2) (4)

where c1 > c2, and δ is a Dirac delta function. Hence the Maier-
Saupe potential can be written as

D = c1qqq1qqq1 + c2qqq2qqq2. (5)
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Fig. 5 The real part of the growth rate Re(σ1) as a function of the
wave-angle θ (a) and wavenumber k (b) for the perpendicular case (case
I), when varying ζ and fixing c(0)1 = 0.9, c(0)2 = 0.1, d = 0.005. In panel(b),
we fix the wave-angle θc = 3π/4.

which is then substituted into Eq. (3) to calculate the zeroth and
the first moment of Eq. (1). After performing integration by parts
on two hemispheres in the ppp space, it is straightforward to derive
the coarse-grained equations for concentration c1,2 and polarity
vector qqq1,2

38

∂c1

∂ t
+∇ · (c1qqq1) = d∆c1, (6)

∂c2

∂ t
+∇ · (c2qqq2) = d∆c2, (7)

∂qqq1
∂ t

+qqq1 ·∇qqq1−2ζ c2 (qqq1 ·qqq2) [qqq2−qqq1 (qqq1 ·qqq2)] = d∆qqq1, (8)

∂qqq2
∂ t

+qqq2 ·∇qqq2−2ζ c1 (qqq1 ·qqq2) [qqq1−qqq2 (qqq1 ·qqq2)] = d∆qqq2. (9)

To perform linear stability analysis, we adopt asymptotic
expansions about the base-state equilibrium solutions, denoted
by superscript “(0)”,

c1,2 = c(0)1,2 + εc′1,2, (10)

qqq1,2 = qqq(0)1,2 + εqqq′1,2 (11)

where perturbation variables are denoted by superscript “′”. At
the zeroth order O(1), it is easy show that the admissible
equilibrium solutions are

c(0)1 = 1− c(0)2 = const, qqq(0)1 = êeex, qqq(0)2 = êeey, (case I) (12)
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and

c(0)1 = 1− c(0)2 = const, qqq(0)1 = êeex, qqq(0)2 =−êeex, (case II) (13)

At the order of O(ε), we adopt a plane-wave decomposition and
express the disturbance solutions as c′ (xxx, t) = c̃(kkk)exp(ikkk · xxx+σt)
and qqq′ (xxx, t) = q̃qq(kkk)exp(ikkk · xxx+σt) with wave-vector
kkk = k (cosθ ,sinθ) and wave-angle θ ∈ [0,π) measured with
respect to qqq(0)1 . This leads to a linear system from which we can
solve the eigenvalue problems to obtain the real part of the
growth rate Re(σ1) for the polar lane. For case I where two
near-perpendicular groups interact, the growth rate being
analytically derived as

σ1 = ζ − ik√
2

sin
(

θ +
π

4

)
−dk2−

√[
ζ − ik√

2
sin
(

θ +
π

4

)]2
+

k2

2
sin(2θ)+2iζ k

[
cos(θ)c(0)1 + sin(θ)c(0)2

]
.

(14)

As shown in Fig. 5, we fix qqq(0)1 = êeex to be horizontal and
d = 0.005, and then vary ζ over a wide range
(O(10−1) − O(102)). We find instabilities can occur (i.e.,
Re(σ1) > 0) when qqq(0)2 points vertically, which is consistent with
the numerical observations in Fig. 4, where the small group
always moves approximately perpendicular to the polar lane. As
shown in Fig. 5(a), the real part Re(σ1) of Eq. (14) reaches the
maximum value at the critical wave-angle θc = 3π/4. When
fixing θ = θc, the corresponding Re(σ1)− k curves are shown
panel(b). When ζ is specified, the instability appears to be of
finite-wavelength, with the maximum Re(σ1) occurring at a
critical wavenumber kc > 0. When choosing ζ close to 0.3
(measured for dense passive Brownian rods with a finite aspect
ratio39), we measure kc to be approximately 1 (i.e., one rod
length) with the characteristic length scale `c = 2π/kc about 6,
close to the measured characteristic length about 10 in Fig. 3 (c)
and (e). Moreover, the model predicts that instabilities can be
significantly suppressed when ζ → 0 or ζ → ∞. Since ζ measures
the combined effects of aspect ratio γ and concentration φ 37,39,
our analysis essentially indicates that such fluidized states won’t
occur for dilute and short-rod assemblies where the dynamics
tend to be more homogeneous, nor do they happen for
densely-packed assemblies of high aspect-ratio SPRs wherein
polar lanes are much more stable, corresponding to large kc and
hence `c � 1. These findings agree with numerical results from
previous studies23,27. For case II where two groups are
approximately anti-parallel, the growth rate can be derived as

σ1 =−ζ −dk2±
√

ζ 2− k2cos2 (θ)−2ikζ

(
c(0)1 − c(0)2

)
cos(θ),

(15)
which directly shows Re(σ1) ≤ 0, and hence suggests that the
cases of two anti-parallel groups are always stable.

4 Conclusion
To summarize, we use large-scale BD simulations to resolve
fluidized swarming motions of dense dry SPR assemblies. We
demonstrate that, even without hydrodynamic effects, local
interactions of active smectic-like structures may deform the
orientation field in a long-range fashion, leading to rich defect
dynamics and large-scale swarming motions. In particular, we
find the ±1/2−order defects in dry matter are born between two
relative sliding polar lanes and exhibit significant rotations
afterwards, owing to their unique polar structures. We expect
these findings to provide new insights into the multiscale origin
of dynamics in non-equilibrium soft condensed systems.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work is supported by NSF Grant No. CAREER-1943759 and
has used the computation resources from the Flatiron Institute
and MSU’s High Performance Computing Center.

Notes and references
1 A. Sokolov, I. Aranson, J. Kessler and R. Goldstein, Phys. Rev.

Lett., 2007, 98, 158102.
2 H. Zhang, A. Be’er, E. Florin and H. Swinney, Proc. Natl. Acad.

Sci., 2010, 107, 13626–13630.
3 J. Dunkel, S. Heidenreich, K. Drescher, H. Wensink, M. Bär

and R. Goldstein, Phys. Rev. Lett., 2013, 110, 228102.
4 T. Sanchez, D. Chen, S. DeCamp, M. Heymann and Z. Dogic,

Nature, 2012, 491, 431–434.
5 R. Zhang, N. Kumar, J. Ross, M. Gardel and J. de Pablo, Proc.

Natl. Acad. Sci., 2018, 115, E124–E133.
6 M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost,

M. Rao and R. Simha, Rev. Mod. Phys., 2013, 85, 1143–1189.
7 M. Shelley, Annu. Rev. Fluid Mech., 2016, 48, 487–506.
8 A. Doostmohammadi, J. Igné-Mullol, J. Yeomans and

F. Sagués, Nat. Commun., 2018, 9, 3246.
9 T. Adhyapak, S. Ramaswamy and J. Toner, Phys. Rev. Lett.,

2013, 110, 118102.
10 L. Chen and J. Toner, Phys. Rev. Lett., 2013, 111, 088701.
11 P. Romanczuk, H. Chaté, L. Chen, S. Ngo and J. Toner, New J.

Phys., 2016, 18, 063015.
12 T. Gao, R. Blackwell, M. Glaser, M. Betterton and M. Shelley,

Phys. Rev. Lett., 2015, 114, 048101.
13 E. Ben-Jacob, A. Finkelshtein, G. Ariel and C. Ingham, Trends

Microbiol., 2016, 24, 257–269.
14 F. Beroz, J. Yan, B. Sabass, H. A. Stone, B. L. Bassler, N. S.

Wingreen and Y. Meir, Nat. Phys., 2018, 14, 954–960.
15 O. J. Meacock, A. Doostmohammadi, K. R. Foster, J. M.

Yeomans and W. M. Durham, Nat. Phys., 2021, 17, 205–210.
16 T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,

Phys. Rev. Lett., 1995, 75, 1226–1229.
17 K. Nagai, Y. Sumino, R. Montagne, I. Aranson and H. Chaté,

Phys. Rev. Lett., 2015, 114, 168001.

Journal Name, [year], [vol.],1–6 | 5

Page 5 of 6 Soft Matter



18 A. Solon, H. Chaté and J. Tailleur, Phys. Rev. Lett., 2015, 114,
068101.

19 A. Patelli, I. Djafer-Cherif, I. Aranson, E. Bertin and H. Chaté,
Phys. Rev. Lett., 2019, 123, 258001.

20 S. Saha, J. Agudo-Canalejo and R. Golestanian, Phys. Rev. X,
2020, 10, 041009.

21 Y. Yang, V. Marceau and G. Gompper, Phys. Rev. E, 2010, 82,
031904.

22 S. R. McCandlish, A. Baskaran and M. F. Hagan, Soft Matter,
2012, 8, 2527–2534.

23 X. Shi and Y. Ma, Nat. Commun., 2013, 4, 3013.
24 M. C. Bott, F. Winterhalter, M. Marechal, A. Sharma, J. M.

Brader and R. Wittmann, Phys. Rev. E, 2018, 98, 012601.
25 R. Großmann, I. Aranson and F. Peruani, Nat. Commun.,

2020, 11, 5365.
26 W. Yan, H. Zhang and M. Shelley, J. Chem. Phys., 2019, 150,

064109.
27 X. Shi and H. Chaté, arXiv:1807.00294, 2018.
28 M. Bär, R. Großmann, S. Heidenreich and F. Peruani, Annu.

Rev. Cond. Matter Phys., 2020, 11, 441–466.

29 G. R. Terrell and D. W. Scott, Ann. Statist., 1992, 20, 1236–
1265.

30 L. Giomi, M. Bowick, X. Ma and M. Marchetti, Phys. Rev. Lett.,
2013, 110, 228101.

31 H. Li, X. Shi, M. Huang, X. Chen, M. Xiao, C. Liu, H. Chaté
and H. P. Zhang, Proc. Natl. Acad. Sci., 2019, 116, 777–785.

32 K. B. Hoffmann and I. F. Sbalzarini, Phys. Rev. E, 2021, 103,
012602.

33 A. J. Vromans and L. Giomi, Soft Matter, 2016, 12, 6490–
6495.

34 L. Giomi, Phys. Rev. X, 2015, 5, 031003.
35 J. Urzay, A. Doostmohammadi and J. Yeomans, J. Fluid Mech.,

2017, 822, 762–773.
36 M. Doi and S. Edwards, The theory of polymer dynamics,

Oxford University Press, USA, 1988.
37 W. Maier and A. Saupe, Zeit. Nat. Teil A, 1958, 13, 564.
38 T. Gao, R. Blackwell, M. Glaser, M. Betterton and M. Shelley,

Phys. Rev. E, 2015, 92, 062709.
39 S. Chen, W. Yan and T. Gao, Phys. Rev. E, 2020, 102, 012608.

6 | 1–6Journal Name, [year], [vol.],

Page 6 of 6Soft Matter


