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Abstract

Drying of fine hair and fibers induces dramatic capillary-driven deformation, with important 
implications on natural phenomena and industrial processes. We recently observed peculiar self-
assembly of hair bundles into various distinct patterns depending on the interplay between the bundle 
length and the liquid drain rate. Here, we propose a mechanism for this pattern selection, derive and 
validate theoretical scaling laws for the polymorphic self-assembly of polygonal hair bundles. 
Experiments are performed by submerging the bundles into a liquid bath, then draining down the liquid. 
Depending on the interplay between the drain rates and the length of the fibers, we observe the bundles 
morphing into star (having concave sides), polygons (having straight edges and rounded corners), or 
circles. The mechanism of self-assembly at the high drain regime is governed by two sequential stages. 
In the first stage of the high drain rate regime, the liquid covers the outside of the bundles, and drainage 
from inside the bundle does not play a role in the self-assembly due to the high viscous stress. The local 
pressure at the corners of the wet bundles compresses the fibers inward blunting the corners, and the 
internal lubrication facilitates fiber rearrangement. In the second stage, the liquid is slowly draining 
from within the fiber spacing, and the negative capillary pressure at the perimeter causes the fibers to 
tightly pack. In the slow drainage regime, the first stage is absent, and the fibers slowly aggregate 
without initial dynamic rearrangement. Understanding the mechanism of dynamic elastocapillarity 
offers insights for studying the complicated physics of wet granular drying.

1. Introduction 

Drying of granular-like structures such as particles, hairs and fins plays a critical role in both natural 
phenomena, such as soil drying, and industrial processes, such as binder removal and capillary 
infiltration in material processing [1-4]. Hairs and long fibers have inherent flexibility due to their high 
aspect ratio, showing intriguing shape morphing and self-assembly. As an example of morphing hair in 
nature, otters, one of the semiaquatic mammals in the animal kingdom, utilize their hairs with cuticle 
patterns to trap air bubbles near their skin to regulate their body temperature during swimming [5]. 
Moreover, in nanomanufacturing, carbon nanotubes assemble and significantly deform, driven by 
capillarity, as they dry [6, 7]. This nanoscale self-assembly can be used to fabricate and tailor surface 
textures at high resolution and fast rates. In all of these processes, the kinetics play an important role on 
the final morphing shape of the hairs. 

Capillary forces cause elastic deformation when a liquid meniscus forms between slender structures, 
a phenomenon known as elastocapillarity [8]. Here, balancing between bending and capillary energies 
gives the elastocapillary length, lec ~ (B/)1/2, where B and  are the bending stiffness per unit width and 
surface tension [9]. When the structure size is larger than lec, it gets deformed by capillarity. We 
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routinely observe elastocapillarity in our daily lives, such as painting, washing long hair, and drying of 
soils, wet grass or leaves [10]. Inspired by these intriguing phenomena, scientists have studied the 
deformation of flexible lamellae [11-14], and capillary rise in soft deformable solids [15-17]. 

Recently, our group and others observed that different self-assembly morphologies are observed as 
function of the rate of drainage. We have shown that hydrodynamic elastocapillary-driven assembly of 
hairy structures leads to bundle morphing into various patterns [18-22]. Currently, there are no 
theoretical scaling law models which can capture the drain rate dependence of the self-assembly patterns, 
also referred to as elastocapillary mode shapes. In particular, the mechanics of hairy bundles is 
extremely complex, exhibiting nonlinear packing leading to increase the resistance to compression [18]. 
This packing, in the case of hollow bundles, also controls the resistance to fluid flow through the bundles 
which sets the time scale of bundle morphing from an open bundle (having an internal hole) at low drain 
rate, to a closed bundle at high drain rate. However, for polygonal self-assembly, where there is no 
internal hole, it is not clear how the drain rate leads to dynamic pattern selection.

Here, we start with an experimental investigation of the multimodal self-assembly of prismatic bundles 
having triangular, square and pentagon cross sections. We then derive scaling laws to theoretically 
analyze the assembly modes driven by dynamic elastocapillarity. Considering the mechanics of packed 
hairs, we propose a nonlinear elastic force law and construct a theoretical model to predict the final 
shapes of the prismatic bundles emerging from the liquid with different drain rates. We finally compare 
the prediction model and the experimental measurements of elastocapillary deflections affected by drain 
dynamics.

2. Phenomenology of dynamic capillary morphing

A. Experimental observations

To investigate the polymorphic assembly of the polygonal hair bundles, we use a 3D printer (Micro 
Plus cDLM, Envisiontec) to fabricate various types of polygonal bases (triangle, square, and pentagon) 
having an array of holes forming a triangular, square or pentagon assembly, then insert individual 
carbon fiber tows with length l into the holes. The depth of the holes completely penetrates the base, 
and the fiber tows are fixed using an adhesive. A single carbon fiber tow has approximately 4600 fibers 
2.5 μm in radius r. Since the bundles homogeneously swell when they are submerged in water, and the 
holes spacing is quite small, we can consider that they have uniform spacing d between the fibers. In 
the experiment, the radius of the polygons' circumcircle, distance from center to the polygon corners, is 
R = 7 mm. The left side of Fig. 1 shows the schematics of the submerged prismatic hair bundles.

We submerge the bundles into a liquid bath, then pull them out from the liquid using a motorized 
linear stage (EAS series, Orientalmotor). Depending on the motor speed of the linear stage, we control 
the drain rates u ranging from 0.1 to 100 mm/s. We mount a DSLR camera on the top of the bundles to 
optically shoot the top view of the assembled bundles patterns. The top views of the initial and final 
shapes can be observed in the right to each schematic of Fig. 1. After drainage, the hairs of the bundles 
stick together by surface tension. For hair length l > 10 mm, all hairs fully assemble, forming a star 
(concave polygon), polygon, and circle shapes as increasing u and l (see Fig. 1). We note that when l is 
very short (l = 10 mm), the hairs cannot completely cluster together forming a hole in the center [23].

Short bundles (small l) or at slow drain rates (slow u), the bundles assemble into star shapes, with 
concave sides and relatively pointy corners. They form circle shapes when they are sufficiently long 
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(large l) and at fast drain rates (fast u). Between these two extremes, there is a transition regime where 
they form polygon shapes with straight sides and rounded corners. We plot the trend of assembly modes 
for various l and u on the right side of Fig. 1. As shown in Fig. 2(a), the final shapes transition from star 
to circle shapes as u increases even with the same bundle stiffness (same l). We observe that the bundles 
rearrange their configuration and become more circular at the early stage of the high drain rate regime 
(high u), as shown in Movie S1 and S2. In the following, we will discuss how the prismatic bundles 
assemble into various shapes due to both dynamical and geometrical effects.

First, to make the problem accessible by scaling laws, we propose a geometric parameter to describe 
the diversity of the self-assembly patterns. Taking symmetry into account, we consider a right-angle 
triangular unit cell in the polygons and quantitatively describe the geometry of the final shapes with this 
single numerical value, that we refer to as roundness s as shown in Fig. 2(b) The unit cell corresponds 
to the orange area in each polygon, as shown in the orange dashed lines of Fig. 2(b). As the number of 
sides of the polygons increases, the corner angle of the unit cell, θ, increases. Here, we geometrically 
simplify the final shapes of the unit cell, as shown in the black box of Fig. 2(b). Comparing two typical 
deflections: diagonal (hypotenuse of the unit cell) direction, δ, and the direction normal to the side of 
the polygon δn, we approximately describe the assembly mode shapes, where the roundness s can be 
written as

. 𝑠 =
𝛿sin 𝜃

𝛿𝑛
(1)

The final shape is a star, polygon, or circle when s < 1, s = 1, and s > 1, respectively. We will 
theoretically derive scaling laws to calculate δ and δn of eqn (1) in detail in the next sections. 

We experimentally measure δ and δn of the unit cell by averaging the values at every corner and side 
of the polygonal bundle. Using eqn (1), we plot s for various values of the drain rate u and bundle length 
l, as shown in Fig. 2(c). The plot uses darker shade of the markers’ colors to visually show that s steadily 
increases when l or u increases. The assembled bundle tends to become more circular when s > 1, while 
it shows a star-like shape when s < 1. The bundles show a transition region of polygon shapes when s 
≈ 1. This simple but somewhat quantitative geometric analysis allows us to capture the self-assembly 
patterns. Final assembly patterns are spontaneously selected not only due to changes in u (dynamic 
effects) but also l (stiffness of bundles), as shown in the plots of Fig.1. 

We note some characteristics of the s parameter and its sensitivity to the type of polygon. For triangles, 
as observed in Fig. 2(c), the s parameter is observed to (1) be numerically shifted to lower values, (2) 
show data spread over a wider range and (3) have a more “blurred” transition compared to more circular 
shapes like squares and pentagons. As shown in Fig. 2(c), the average value of the experimentally 
measured /n is 0.9 when l = 15 mm and u = 0.1 mm/s (the smallest length and drain rate in the 
experiments). While having this same value of /n = 0.9, we observe the difference in the calculated s 
  0.45, 0.63, and 0.72 for the triangle, square, and pentagon, respectively. This can also be considered 
from the constant s perspective. For instance, s = 1 correspond to /n of 2, 1.41 and 1.24 for triangle, 
square and pentagon respectively. Based on all these observations, a single numerical parameter, s, can 
typically capture the complex geometrical description of a wide variety of polygons and other shapes 
(stars and circles). We believe it greatly helps the mathematical modeling of the area of self-assembly 
of complex patterns. 

Morphing mechanism 

We find that the mechanism is best understood by considering the fast drain rate regime first. In the 
fast drainage regime, the assembly can be divided into two sequential processes: dynamic 
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rearrangement (stage 1), then slow capillary aggregation (stage 2), as shown in Fig. 2(a). Figure 3(a) 
provides schematic snapshots of the two morphing stages. As the bundles emerge from the bath, the 
hairs piece the liquid interface without buckling and start to assemble. In stage 1, the liquid covers the 
outside of the bundles due to the high viscous stress between the small spacings of fibers while the 
horizontal liquid-air interface outside is freely descending at a velocity u. The sharp corners of 
polygonal bundles cannot maintain their small radius of curvature due to the local high Laplace pressure 
caused by the curvature. In this stage hence, the corners get blunted to release the corner’s pressure, and 
compress the fibers inward. The liquid covering the bundle compresses the soft lubricated fibers by δd 
in the diagonal direction toward the centroid. This leads to dynamic rearrangement of the bundles where 
the initial spacing d0 changes to d. The local pressure mostly acts on the corner, rather than the side, 
since the pressure difference can be negligible at the flat side of the bundle when it is covered with a 
thick liquid film (no menisci). Figure 2(a) shows that the lubricated bundles with the same l self-
assemble into more circular configurations when the drain rate is fast. Because this initial rearrangement 
is the initial condition to the subsequent aggregation stage, stage 1 strongly influences the final shape 
observed after fast drainage even after the liquid is fully drained. Stage 2 takes a longer duration and 
starts after the initial dynamic rearrangement and the thick film covering the bundle drains. Capillary 
pressure in the menisci within the spacing between the fibers causes the bundles to shrink by δa at the 
corners, or δn on the flat sides to eventually form a star, polygon, or circle shape. Thus, the total 
deflection at the corner is δ = δd + δa. Even in the fast drainage regime, stage 2 is slow, and it typically 
takes about 20 s for the liquid to drain and the final bundle geometry to form. 

At slow drain rates, the liquid film around the bundles in constantly drained down under the force of 
gravity, unlike the fast drainage, and small menisci are left within the fiber spacings. From the in situ 
observations, we note that only stage 2, capillary aggregation, affects the assembly process, and stage 
1 can be ignored. The negative pressure in the menisci between the fiber spacings along the perimeter 
of the bundle compresses the bundles inward from all directions. The rearrangement (stage 1) due to 
the dynamic effects does not affect the final pattern, and the assembly process directly starts from the 
aggregation step (stage 2). Thus, in the slow drainage regime, δd  0 and the total deflection can be 
written as δ  δa. 

3. Scaling laws of hydrodynamic elastocapillary polymorphing

A. Capillarity forces excreted on the hair bundles 

In stage 1, which only affects the fast drain rate experiments, a liquid film covers the perimeter of the 
polygonal bundles. At the corners, the local pressure tends to increase the radius of curvature and blunts 
the corners, as shown in Fig. 3(b). A dynamical capillary force, Fd, compresses the corners of the soft 
lubricated bundles. The local pressure difference driven by capillarity can be written as p1  p0 = γ/a, 
where γ is surface tension and a is the radius of the curvature of the meniscus covering the corner. Here, 
we assume that the typical arc of the meniscus scales as a. Then, we can typically set the surface area 
as ah, where h is an external rise height raised by the drain dynamics. Multiplying the surface area and 
the local pressure, we obtain

, 𝐹𝑑 ∼ 𝛾ℎ (2)
as shown in the black box of Fig 3(a). The external rise height, h, arises at the outermost fibers when 
the bundles emerge from the water bath. According to the classical model for h (Landau-Levich film 
problem), we can express the characteristic length h ~ lcCa1/3 [24]. lc is the capillary length of the liquid 
used, lc = (γ/ρg)1/2, where ρ and g are the density of the liquid and gravitational acceleration, respectively. 
Ca is the capillary number, Ca = μu/γ, where μ is liquid viscosity. Using h ~ lcCa1/3, eqn (2) yields Fd ~ 
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γ7/6(ρg)-1/2(μu)1/3. This force leads to a deformation δd at the corners. The stiffness relating the force to 
the deformation is described in the next section. At fast u, the soft lubricated bundles become circular 
due to the large magnitude of Fd, as shown in the bottom images of Fig. 3(b). This is associated with 
fiber rearrangement leading to changing the shape of the unit cell. We approximate this shape change 
as shown in Fig. 3(c), by deriving the relation of the new corner angle, θd. Using the sine rule, we 
mathematically write

. 𝜃𝑑 = tan ―1 [ 𝑅sin 𝜃cos 𝜃

𝑅(cos 𝜃)2 ― 𝛿𝑑
] (3)

According to eqn (3), θd  θ when δd is very small (slow u). We note that h, the external film height, is 
valid only within stage 1. At the end of this stage, the liquid film surrounding the bundle is completely 
drained. Once the liquid starts to drain through the fiber spacing (stage 2), h is not valid. We indeed 
rationalize a characteristic time scale relevant only for the early stages of the rearrangement governed 
by h ~ lcCa1/3, at the fast drainage regime. Using this h scaling, the characteristic growth time scale of 
the external rise height is expressed as  ~ h/u, so  ~ γ1/6(ρg)-1/2μ1/3u-2/3. We compare the theoretically 
predicted  with the experimentally measured rearrangement time, as shown in Fig. 4(a). The plot of 
Fig. 4(b) shows that the rearrangement time scale obeys the relation u-2/3. Based on this result, one can 
accept that the Landau-Levich problem governs the characteristic time scale of the external dynamic 
rise and the dynamic rearrangement, which is relevant in the early stage of the fast drainage regime.

Next, the assembly proceeds to stage 2: capillary aggregation of the hairs. While the liquid continues to 
slowly drain from within the bundles, the meniscus between the fibers leads to the capillary pressure 
acting perpendicular to the polygon sides. Thus, the capillary pressure can be expressed as γ/b, where b 
is the radius of the curvature of the meniscus between the fibers, as shown in Fig. 3(c). This compression 
pressure is applied to total fiber length l so that the surface area can be scaled as bl. Multiplying the 
pressure and the surface area, we obtain the side compression force, Fc ~ γl. At the corner, especially, 
the compression in a diagonal direction is scaled as γlsinθd by considering the bundle geometry after 
fiber rearrangement, as shown in the black box of Fig. 3(c). We note that the resulting deformation due 
to aggregation has different values in the corners δa than the side δn not only due to the different force, 
but also due to different stiffness as described in the next section. 

B. Nonlinear restoring stiffness of the bundles in the aggregation stage

First, we consider the nonlinear stiffness of a fiber array where each fiber is treated as a cantilever, 
and the stiffness of the array is governed by the fibers progressively making contact as the deformation 
is increased. The fibers are wet; so this case is relevant for the hydrodynamically lubricated fibers. The 
elastic deflection of a single soft rod obeys the classical Hooke’s law, where the deflection is linearly 
proportional to the elastic force. However, the situation will be qualitatively different when the row of 
hairs, having initial spacing d, sequentially come into contact, as shown in Fig. 5(a). When the 
deformation is larger than d, the total deflection can be expressed as δa ~ nd, where n is the number of 
fibers coming into contact. When all hairs in a row are in contact but still lubricated, we sum all-
individual fiber deflection to express the elastic resistance force:

, 𝐹 =
𝐸𝐼

𝑙3 [𝛿𝑎 + ∑𝑛 ― 1
𝑖 = 1 (𝛿𝑎 ― 𝑖𝑑)] (4)

where i is integer numbers ranging from 1 to n  1. E and I are Young’s modulus and second moment 
of area of a single rod, respectively. The summation equation of eqn (4) yields
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. 𝐹 =
𝐸𝐼

𝑙3 [𝛿𝑎𝑛 ―
𝑑𝑛(𝑛 ― 1)

2 ] (5)

Using the relation δa ~ nd, eqn (5) becomes

, (6)𝐹 ∼
𝐸𝐼

𝑑𝑙3𝛿2
𝑎

when n >> 1 [18,19]. Since the deformation is typically larger than the spacing d, as shown in Fig. 5(b), 
we use this quadratic force law (F  δa

2), instead of the linear force law.

Due to the inward nature of the capillary forces, the bundle stiffness is also governed by packing 
effects. This especially affects the diagonal direction where fibers from the side tend to deposit in the 
diagonal direction due to the large deformation of the bundle’s cross section. The packing effects lead 
to a nonlinear stiffness law due to elimination of internal voids. Specifically, in both the initial and final 
packing configurations of the unit cell, the bundle has internal voids. However, the decrease in these 
voids due to aggregation causes significant stiffening effect due to packing. It is important to model the 
packing-induced stiffening by considering the fiber rearrangement. The rearrangement is driven by the 
capillary forces between individual fibers which pulls the fibers closer together as the bundle deforms 
(see Fig. 5(b)). Hence, the direction of the capillary forces changes with the bundle deformation, a 
phenomenon known in solid mechanics as “follower forces”, defined here as forces which change their 
absolute direction due to large deformation [25]. Under the effect of follower forces, the fibers in the 
“diagonal” direction provide larger resistance to deformations due to rearrangement. The black box of 
Fig. 5(c) schematically shows the expected packing configuration of the assembled bundles, where rows 
of fibers, acting like parallel springs, resist the deformation in the diagonal direction. We 
mathematically derive a force law for the packed bundle due to aggregation at the corners (see Appendix 
A for details). The restoring force of the bundle in the diagonal direction is:

.𝐹𝑎 ∼ (𝜌0

𝜌𝑓

𝑅
𝑟

𝑅
𝑅 ― 𝛿sin 𝜃cos 𝜃) 𝐸𝐼

𝑑𝑙3𝛿𝑎
2 (7)

The predictive expression of eqn (7) resembles eqn (6) but has the effect of large changes in packing in 
the pre-factor of the right hand side. In this pre-factor, 0 and f are the dimensionless initial and final 
area fraction of fibers (as observed from the top), which have values of 0.089  0.006 and 0.37  0.11, 
respectively as measured experimentally. Figure 4(d) shows the difference between quadratic force law 
with and without packing effects, by theoretically comparing eqn (6) and (7). As expect, the significant 
stiffening is due to the terms  and the packing causes increased stiffening as governed by the 𝑅/𝑟 ~103

term  in the denominator. We find that the packing force law is critical to capture the pattern 𝑅 ― 𝛿
selection in elastocapillarity of prismatic hair bundles. 

4. Nonlinear capillary force-deflection relations

We derive the dynamic deflection δd, relevant for the fast drainage regime (high u). In this stage, we 
treat the bundles as soft noninteracting beams with lubricated interfaces. The elastic resistance of the 
soft floppy bundles having N fibers can be simply expressed as Fs = NEI/l3δd. The details of the 
expression of N are in Appendix A. Using the dynamic capillary force Fd of eqn (2), the force balance 
(Fs ~ Fd) leads to γh = NEI/l3δd. Please note that the external rise height can be written as h ~ lc(μu/γ)1/3 
being a function of u, so δd can be neglected when u is very small. Based on this force balance, the 
normalized deflection due to dynamic effects  can be theoretically written as𝛿𝑑 = 𝛿𝑑 𝑅

, 𝛿𝑑 = 𝛼𝑑(𝜆𝜂𝜙)2𝜁 (8)
where d = r/(k0R),  = l/R is the aspect ratio,  = l/lec is the elastocapillary number, and  = (cos)1/2 
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is the roundness factor of the polygon, where the polygonal shapes become close to a rounded shape as 
 increases. k is a prefactor for the scaling law. The dimensionless external rise height,  = h/l(sin)1 𝜃

being a function of u, indicates the magnitude of the dynamic effects.

 In stage 2, the rearranged bundles undergo further deformation due to fiber aggregation. In this stage, 
the capillary compression in the diagonal direction (Fcsind) is balanced by Fa of eqn (7), such that we 
can write γlsind = [(0/f)(R/r)R/(Rδ)sincos]EI/(dl3)δa

2, where δ = δd + δa. We rearrange the 
preceding relation in terms of δa, make some simplifications (see Appendix B for details), then 
normalize such that , and finally obtain𝛿𝑎 = 𝛿𝑎 𝑅

, 𝛿𝑎 =
[{𝛼𝑎(𝜆𝜂𝜙)2}2 + 4𝛼𝑎(𝜆𝜂𝜙)2(1 ― 𝛿𝑑)]1 2

― 𝛼𝑎(𝜆𝜂𝜙)2

2  (9)

where a = fd0/(0R). The quadratic solution of eqn (9) is nonlinear function of the term  due to 
packing effects. We note that the aggregation model of eqn (9) includes  of eqn (8) since stage 2 𝛿𝑑

starts from the dynamically rearranged bundles resulting from stage 1. If the dynamic effects are absent 
, the assembly is mainly governed by static capillarity. (𝛿𝑑 = 0)

In stage 2, the deflection in the normal direction is determined solely by the geometry, where the 
capillary force simply pull the fibers inward until they fully densify with no void between them. Here, 
we do not consider rearrangement-induced packing because of the flat nature of the side, in contrast 
with the corner, as shown in the green box of Fig. 5(b). Back of the envelope calculation support this 
treatment as mentioned in the Appendix C. The value of δn can be estimated by a geometric argument 
by considering the elimination of spacing between the fibers in the densified state, leading to δn  Rd0/(r 
+ d0)sinθ. Normalizing δn by R gives 

. 𝛿𝑛 =
𝑑0

𝑟 + 𝑑0
sin 𝜃 (10)

We note that eqn (10) does not depend on capillary forces, since it is derived based on the geometric 
arguments of full densification (see Appendix C for detail). Based on eqn (8), (9) and (10), the final 
deformed shape of the polygon can be estimated as described in the next section. 

5. Scaling prediction of the dynamic pattern selection 

We have theoretically investigated the deflections in the diagonal and normal directions so far. For the 
diagonal direction, we express  by combining eqn (8) and (9). The normal direction can 𝛿 = 𝛿𝑑 + 𝛿𝑎

be expressed in eqn (10). Based on eqn (1), theoretically predicted s can be written as

. 𝑠 =
2𝛼𝑑(𝜆𝜂𝜙)2𝜁 + [{𝛼𝑎(𝜆𝜂𝜙)2}2 + 4𝛼𝑎(𝜆𝜂𝜙)2{1 ― 𝛼𝑑(𝜆𝜂𝜙)2𝜁}]1 2

― 𝛼𝑎(𝜆𝜂𝜙)2

2𝑑0 (𝑟 + 𝑑0)
(11)

The theoretical model of eqn (11) involves the polygon shape roundness (), bundle aspect ratio (), 
elastocapillarity effect (), and fluid dynamic effects (). Using these dimensionless parameters, we 
transform the regime map in the plots of Fig. 1 into a universal regime map ( versus ) in Fig. 6. 
According to Fig. 2(c), the range below s = 1 indicates that the final shapes of bundles are star. When s 
 1 (transition regime), the bundles assemble to polygonal shapes. Finally, they select circular patterns 
when s exceeds 1. In Appendix D, we mathematically describe an exact value of s corresponding to 
transforming each bundle type (triangle, square, pentagon) to a corresponding regular bundle that is 
more rounded. As shown in Fig. 6, one observes theoretical curves for various s ranging from 0.9 to 
1.1, corresponding to three dynamic assembly modes. We note that the theoretical curves asymptotically 
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converge to the dashed line in Fig. 6, where  ~ 1/[d()2] when s ≥ 1.2. It shows the star shapes at 
small  and , which corresponds to high stiffness and negligible dynamic effects. The middle range 
of  and  is the transition region, where the bundles morph to the polygons. Finally, the bundles 
become circular in the range of high  and , which corresponds to large flexibility and dominant 
dynamic effects. 

When  is very small ( < 4), an internal void forms in the bundle due to the strong stiffness 
even in high  (see Fig. 6). Using the preceding model [11], we can roughly estimate the typical 
threshold of maximum bundle size following the fiber length: Nt = [l2/(lecd)]2/3, where  is a prefactor 
for the scaling law. The total number of fibers of the polygon bundle can be written as Nt = cN, where 
c = 2/(/2  ) is the number of the unit cell in polygons. When the polygon is a triangle, for example, 
c = 6. Based on the relation Nt, we can express the minimum  to completely assemble whole fibers,

. (𝜆𝜂𝜙)𝑚 =
1

𝛽3[𝑐3𝑅2sin3 𝜃cos 𝜃

𝑑0
2 ]

1 4
 (12)

The typical ()m of eqn (12) by averaging the three polygons (triangle, square, and polygon) is 
approximately 4, when  = 2.6 (see the vertical dashed line of Fig. 5(b)). Only when  > ()m, the 
bundles show complete fiber assembly into a single solid bundle, which is our main interest.

6. Conclusions 

 We have theoretically and experimentally investigated the polymorphic assembly of hairy bundles by 
dynamic elastocapillarity. We experimentally show that prismatic hair bundles exhibit various shapes 
after assembly due to the interplay between their stiffness (fiber length) and dynamic capillary 
aggregation. By combining in situ experiments and theoretical scaling laws, we explain the mechanism 
of pattern selection as follows. At fast drainage, the liquid initially covers the bundles due to the high 
viscous stress in the spacing between the fibers. The fibers are rearranged by the local pressure at the 
corners of soft lubricated bundles due to the presence of thick liquid films on the perimeter. After this 
fast rearrangement, the liquid starts to drain down slowly from the inner parts of the fibers and menisci 
appear around the perimeter, then capillary pressure between the fibers compresses the bundles and 
cause them to aggregate and pack. On the other hand, in the slow drainage regime, the dynamic effects 
can be ignored, and the fibers directly aggregate without rearrangement. To construct a scaling law to 
describe this mechanism, we modeled the packing effects at the corner of the polygonal bundles during 
the assembly, which lead to a nonlinear elastic force law. We propose a simple geometric descriptor, 
referred to as the roundness s, to describe the bundles’ final shapes, namely stars, polygons, and circles. 
We non-dimensionalize the various factors affect the self-assembly, namely the polygon shapes (), 
bundle lengths (), elastocapillary effects (), and fluid dynamic effects (). Using these dimensionless 
parameters, we theoretically expressed the deflections in both diagonal and normal directions of the 
unit cell, then provide a universal regime map of morphing polygonal bundles, as shown in Fig. 6. Our 
theoretical model captures three distinct assembly modes for various  and  well. We expect that 
the present work will be useful for soft matter fields concerned with predicting complex morphing 
geometries such as flexible membranes [26,27], nano/microfabrication [28,29], programmable origami 
[30,31], and even some applications of soft robotics and actuators [32,33].

Appendix A: Nonlinear stiffness due to packing effects
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Fiber aggregation leads to packing-induced nonlinear and non-isotropic stiffening. Due to the 
geometry of the polygonal bundles, and the nature of the capillary forces acting inward in a direction 
perpendicular to the sides, packing is non-uniform within the bundle area. Consider for instance a single 
isolated row of fibers oriented in the diagonal direction before shrinkage. after shrinkage, the row can 
not be considered as a single row because fibers come into contact forming multiple rows, na, acting 
like springs in parallel, in the diagonal direction (see the bottom black box of Fig 4(c)). Then, the total 
elastic force can be simply expressed, Fa = naF, to consider na parallel rows acting like springs in parallel 
to resist deformation in the diagonal direction. Figure 4(c) shows the packing morphology of the 
assembled bundles. In an initial configuration of the unit cell, the area occupied by fibers can be written 
as 0R2sincos/2, where the dimensionless number 0 is the initial top area fraction of fibers. Using 
the top area of the bundle (Nr2), the total number of fibers of the unit cell can be written as 

. 𝑁 ∼
𝜌0𝑅2sin 𝜃cos 𝜃

𝑟2 (A1)

Here, we use the scaling law sign ~ and ignore the constant numbers such as integer and . After 
assembly, we can typically write the assembled area occupied by fibers, f(R  δ)rna. Fiber area 
conservation, Nr2 = f(R  δ)rna, allows us to express na ~ Nr/[f(R  δ)]. Replacing N with eqn (A1) 
yields

. 𝑛𝑎 ∼
𝜌0𝑅2

𝜌𝑓𝑟(𝑅 ― 𝛿)sin 𝜃cos 𝜃 (A2)

Using eqn (A2) and (6), we can express the total elastic resistance, Fa = naF, as eqn (7). This packing-
induced stiffening in the diagonal direction is critical to form the star shapes with pointy corners. 

Appendix B: Deflection due to capillary aggregation, δa

Balance between capillary compression (Fcsind) and elastic resistance (Fa) leads to γlsind = 
[(0/f)(R/r)R/(Rδ)sincos]EI/(dl3)δa

2. We rearrange the preceding relation in terms of δa, then the 
equation becomes 

.𝛿𝑎
2 =

𝜌𝑓𝑑
𝜌0𝑅

𝑙4

𝐸𝐼/(𝑟𝛾)
1

cos 𝜃
𝑅 ― 𝛿

𝑅
𝑑sin 𝜃𝑑

𝑑0sin 𝜃 (A3)

The last fraction of eqn (A3), dsind/(d0sin), depends on dynamic effects, but its variance is negligible 
in the current experimental range. Therefore, we can simplify eqn (A3) to the normalized expression:

, 𝛿𝑎
2 = 𝛼𝑎( 𝑙

𝑙𝑒𝑐)
2( 𝑙

𝑅)2( 1
cos 𝜃)(1 ― 𝛿) (A4)

where a = fd0/(0R) and lec = [EI/(r)]1/2. We note that . By solving a quadratic equation 𝛿 = 𝛿𝑎 + 𝛿𝑑

of eqn (A4), then normalizing , we obtain eqn (9).𝛿𝑎 = 𝛿𝑎 𝑅

Appendix C: Approximate solution of deflection in normal direction, δn

In the normal direction, the fibers can easily contact without significant jamming effects the 
compression force and the fiber displacement are aligned, as shown in the green box of Fig. 5(b). We 
consider δn being solely a function of geometry. According to the elimination of the spacing d within 
the fibrous array, we get δn = nnd, where nn is the number of the fibers at the single row in the normal 
direction. Dividing the side length of the unit cell by the spacings and fiber radius, nn = Rsinθ/(r + d). 
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Normalized δn by R can be written as

.𝛿𝑛 =
𝑑

𝑟 + 𝑑sin 𝜃 (A5)

We can estimate the decrease in d by the conservation of N between the initial and rearranged 
configuration (stage 1 as illustrated in Fig 3(a)):

.𝑑 = 𝑑0(1 ― 𝛿𝑑)1 2 (A6)
One can geometrically accept that d of eqn (A6) will decrease as the bundle shrinks and rearrange by 
δd. The magnitude of change of  in eqn (A5) is very small, so we approximately use  of eqn (10) 𝛿𝑛 𝛿𝑛

being a function of geometrical parameters. As a final note, the deflection balancing between Fc and F 
of eqn (6) can be written as δa ~ [l4d/(EI)]1/2. Thus, δa  166 mm when l = 20 mm. A typical δn  3 mm 
in a triangle configuration, so δn << δa, allows us to assume that the fibers will stop deforming once 
they are all in contact. Due to the symmetry between the different unit cells, they all then balance each 
other, and the bundle remains straight without much more densification. 

Appendix D: Mathematical description of circular patterns

We geometrically express circular shapes using the s parameter by considering the transformation of 
each unit cell to a regular unit cell, and hence the same number of unit cells forming a regular 
polygon, as shown in Fig. 7. Considering a triangular bundle for instance which had six right-angled 
unit cells before self-assembly, the final shape after self-assembly becomes a regular hexagon since 
each of the triangular unit cell becomes isosceles. The initial bundles having triangle, square, and 
pentagon cross sections transform their cross section to a circle, which we approximate 
mathematically as hexagon, octagon, and decagon, respectively. We write the area of the gray 
isosceles triangle in the inset of Fig. 7: w2cos/2, where w is the radius of the circumcircle of the 
regular polygon. By using N of eqn (A1), the fiber area conservation, Nr2 = fw2cos/2, yields

. 𝑤 ∼ (𝜌0

𝜌𝑓
sin 𝜃)

1 2
𝑅 (A7)

Considering the ratio of deflections in the diagonal and normal directions, we can mathematically 
express the roundness for the circular shapes:

. 𝑠𝑤 =
(𝑅 ― 𝑤)sin 𝜃
𝑅sin 𝜃 ― 𝑤 (A8)

The values sw of eqn (A8) are 2.1, 1.4, and 1.2 for triangle, square, and pentagon, respectively. This 
geometrical argument is mathematical more rigorous than simply considering the onset of circularity to 
be s > 1. Interestingly, we find that when s > 1.2,  reaches an asymptotic scaling of  ~ 1/[d()2].
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Figures

 

Fig. 1. Dynamic pattern selection in polymorphic elastocapillary of prismatic hair bundles having (a) 
triangular, (b) square, and (c) pentagon cross section. The schematics on the left side of (a,b, and c) 
show the submerged bundles, and the rest show the bundles having different final patterns after 
complete drainage. The experimental top view photographs of the bundles are located at the right side 
of each 3D schematics. In the plots, empty polygons, filled polygons, and circles correspond to star, 
polygon, and circle shapes, respectively. The symbol  corresponds to bundle self-assembly with a hole 
forming at the center. The darkness of the symbols indicates the increase in the original bundle length 
l, for the same bundle size R = 7 mm. Movie S1 shows the assembly videos of three modes (star, polygon, 
and circle) in three polygons (triangle, square, and pentagon). All scale bars are 5 mm.
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Fig. 2. Geometric parametrization of polymorphic assembly of polygonal bundles. (a) The morphology 
of the assembled bundles in various drain rates when l = 25 mm and R = 7 mm (see Movie S2). scale 
bar is 5 mm (b) Description of the final shapes of the triangular bundles. The angle  of the orange 
region is different for each type of polygon, but the bundles are design to have the same R. The black 
frame shows the geometric parametrization of the assembly modes by the roundness, s. Orange dashed 
lines correspond to the unit cell of polygons. (c) Experimentally measured s versus u for various 
geometries. All symbols are listed in the plots of Fig. 1. 
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Fig. 3. Mechanism of capillary compression of polygonal bundles. (a) General mechanism of bundle 
morphing during the drainage showing the two stages of the fast drainage; whereas only stage 2 plays 
a role in the slow drainage. The bundles are rearranged by d due to the dynamic effects and then further 
shrink by a in a diagonal and n in a normal direction. The black boxes indicate the side view of the 
bundles in the assembly process. The dashed orange lines correspond to the unit cell of the triangles. 
(b) Forces during the dynamic rearrangement of stage 1. Schematics of the external dynamic rise height 
induced by u. The black box shows the force blunting the corners Fd operating along height h. (c) Fiber 
aggregation during stage 2 is governed by capillary pressure, /b, between the fibers. The black box 
shows the close-up view of the compression direction at the corner, considering the evolution of the 
morphology after stage 1. 
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Fig. 4. The characteristic timescale of the rearrangement. (a) Optical images showing the top view of 
the polygons at the onset, middle and end of the rearrangement stage in the fast drainage regime. All 
three bundles have l = 25 mm and drain rate u =100 mm/s. (b) Comparison between experimentally 
measured rearrangement time (open symbols) and theoretically predicted growth time (black line). The 
black theoretical line is  = ch/u, where c = 5.5 is a prefactor of the scaling law to precisely fit the 
experiments. The error bars of the data correspond to the standard deviation of all experimental 
measurements at each drain rate.
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Fig. 5. Nonlinear elasticity of the hair bundles. (a) Description of F, the restoring force of a single array 
having n fibers. (b) The geometry of the various directions of forces and fiber deformations. The black 
box shows a close-up view of triangular bundles after rearrangement. The orange and green boxes 
correspond to the fiber aggregation in the diagonal and normal directions, respectively. The black 
dashed arrows correspond to the movement direction of fibers. (c) Capillary aggregation with packing 
effects in the diagonal direction. The darkness of the gray tones indicates increased packing and stiffness. 
The black boxes on the right illustrate the fibers in the diagonal direction before (top) and after (bottom) 
packing. na is an effective row size perpendicular to the diagonal direction. (d) Comparison between 
quadratic force laws with packing effects (solid lines) and without them (dashed lines). The line colors 
in order from light to dark correspond to l = 10, 20, and 30 mm. In the computation, we exclude the 
dynamic effects (d = 0) and use  = 30 (triangle).
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Fig. 6. Regime map of the assembly patterns selection. The theoretical lines of eqn (10) in order from 
left to right are s = 0.9, 1, and 1.1. The vertical dashed line corresponds to the minimum  for 
complete assembly, expressed by eqn (11). All symbols are listed in the plots of Fig. 1. In the 
computation, k = 0.2. Most of the bundles that self-assemble into starts (open markers) fall to the left 
of the s = 0.9 curve, while most of the bundles that form circular shapes are to the right of the s = 1.1 
curve. The dashed line corresponds to the asymptotic solution reached when s ≥ 1.2, and corresponds 
to the asymptotic solution,  ~ 1/[d()2].
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Fig. 7. Mathematical description of the circular patterns in each polygon. The regular polygons of 
hexagon, octagon, and decagon correspond to the circular patterns in triangle, square, and pentagon, 
respectively. Orange dashed lines corresponds to the unit cell. The inset indicates s of the circular 
patterns can be expressed by w, R and .
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