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Coarse-grained theory for motion of solitons and

skyrmions in liquid crystals

Cheng Longa and Jonathan V. Selinger∗a

Recent experiments have found that applied electric �elds can induce motion of skyrmions in chiral

nematic liquid crystals. To understand the magnitude and direction of the induced motion, we

develop a coarse-grained approach to describe dynamics of skyrmions, similar to our group's previous

work on the dynamics of disclinations. In this approach, we represent a localized excitation in terms of

a few macroscopic degrees of freedom, including the position of the excitation and the orientation of

the background director. We then derive the Rayleigh dissipation function, and hence the equations

of motion, in terms of these macroscopic variables. We demonstrate this theoretical approach for 1D

motion of a sine-Gordon soliton, and then extend it to 2D motion of a skyrmion. Our results show

that skyrmions move in a direction perpendicular to the induced tilt of the background director.

When the applied �eld is removed, skyrmions move in the opposite direction but not with equal

magnitude, and hence the overall motion may be recti�ed.

1 Introduction

In nematic liquid crystals, the director field can have many differ-
ent structures with complex topology.1–6 Some of these structures
are defects, such as disclinations, with singularities in the direc-
tor.7–9 Other structures are nonsingular topological textures, such
as skyrmions or knots in the director field, which do not have any
singularities but are still unable to relax to a uniform configura-
tion.10–17

When observed in liquid-crystal cells under a microscope, topo-
logical structures often look like particles. Furthermore, these
structures appear to move as particles when they are subjected
to external forces. For example, Smalyukh and collaborators
put skyrmions in a chiral liquid crystal under an applied electric
field.15,16 When the field is switched on, the skyrmions move in
a director perpendicular to the induced tilt, and when the field
is switched off, the skyrmions move in the opposite direction but
with a different magnitude. As a result, if the field is periodi-
cally toggled on and off, the skyrmions exhibit a rectified motion,
which the experimenters call “squirming.”

There are already well-established hydrodynamic methods to
model the dynamics of liquid crystals. Ericksen-Leslie theory con-
structs partial differential equations for the director field and the
flow velocity field, and then solves these equations to predict the
time evolution of the material.18–21 Beris-Edwards theory follows
a similar approach, but uses the full tensor field describing the
magnitude and director of nematic order, rather than just the di-
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rector field.22 These methods are certainly capable of describing
the motion of topological structures.23,24 Indeed, the squirming
motion of skyrmions has already been modeled by such meth-
ods.15,16 Even so, it is still helpful to represent the motion of
topological structures on a more coarse-grained basis, like the
motion of particles, in order to develop a more intuitive under-
standing of how they respond to applied forces.

In a recent paper from our group, we developed a coarse-
grained theory for the motion of disclinations in two-dimensional
(2D) liquid crystals.25 In this coarse-grained theory, the basic con-
cept is to represent disclinations by a small number of degrees of
freedom, which describe the defect position and orientation. We
then express the free energy and the Rayleigh dissipation func-
tion in terms of the defect position and orientation. This proce-
dure can be done in two ways: either (a) construct these func-
tions phenomenologically, based only on symmetry, in terms of
the coarse-grained defect position and orientation, or (b) deter-
mine these functions from the Frank free energy and the hydrody-
namic dissipation by integrating over the entire director field and
flow field. Using both of these approaches, we derive equations of
motion for disclinations as effective oriented particles. Shankar et
al. have used a related method to model defect motion in active
nematic liquid crystals.26

The purpose of the current paper is to apply the same concept
of coarse-graining to nonsingular topological structures in liquid
crystals. In Sec. 2, we begin with the one-dimensional (1D) mo-
tion of a sine-Gordon soliton. In this problem, the relevant coarse-
grained degrees of freedom are the soliton position and width,
and the orientation of the background director field. We deter-
mine the free energy and Rayleigh dissipation function in terms
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Fig. 1 (a) Visualization of a soliton in a 1D liquid crystal. The orientation

of each cylinder represents the local director. From the bottom to the

top, the director twists about the z-axis by π. (b) Plot of the soliton

solution for φ(z) from Eq. (3), with the parameters φE = −π/2, zS = 0,
and ξ = 1.

of those variables, both by using a phenomenological, symmetry-
based approach and by integrating over the entire director field.
We thereby obtain equations of motion for the soliton as an ef-
fective particle. These equations show explicitly that the soliton
moves in response to changing an electric field. If the field is pe-
riodically toggled on and off, the motion is rectified because the
soliton width changes as a function of field.

In Sec. 3, we extend the argument to the 2D motion of a
skyrmion in a chiral liquid crystal. In this case, the important
degrees of freedom are the 2D position vector, the radius of
the skyrmion, and the three-dimensional (3D) orientation of the
background director. We determine the free energy and Rayleigh
dissipation function, and then derive the equations of motion.
The coarse-grained theory shows that the skyrmion moves in a
direction perpendicular to the applied electric field, explicitly be-
cause of the chirality. As with the sine-Gordon soliton, the motion
is rectified if the field is periodically toggled on and off, because
the skyrmion radius changes as a function of field. In those ways,
the theory provides simple explanations for key features of the
experimental motion.

2 Sine-Gordon soliton

As a simple example to illustrate the key features of the theo-
retical approach, we consider the sine-Gordon soliton, shown in
Fig. 1(a). In this example, the director lies in the (x,y) plane,
and it varies only as a function of height z and time t. Suppose
that we apply an electric field, which tends to align the director
at a certain background orientation in the (x,y) plane. The di-
rector may remain uniform at the favored orientation, or it may
exhibit one or more walls, where it twists through an angle of π.
Each of these walls is a sine-Gordon soliton. Each soliton can be
regarded as a particle, with a characteristic position and width.
The position of the soliton may move up or down in time. How-
ever, the soliton cannot just appear or disappear without melting
the nematic order, which would cost a prohibitive amount of free
energy. In that sense, the soliton is a topological structure.

We first model the soliton using the standard continuum theory,
and then consider how to coarse-grain the model.

2.1 Continuum theory

In continuum theory, we must represent the director field in
the entire liquid crystal as n̂(z, t) = (cosφ ,sinφ ,0), where φ(z, t)
is the azimuthal angle in the (x,y) plane. Because the direc-
tor n̂ is equivalent to −n̂, the angle φ is equivalent to φ + π.
Likewise, we represent the electric field in the (x,y) plane as
E = (E cosφE ,E sinφE ,0). The total free energy per area in the
(x,y) plane can then be expressed as

F =
∫

dz
[

1
2

K(∂in j)(∂in j)+Kqn̂ ·∇× n̂− 1
2

ε0∆ε(E · n̂)2
]

=
∫

dz

[
1
2

K
(

∂φ

∂ z

)2
−Kq

(
∂φ

∂ z

)
− ε0∆εE2

2
cos2(φ −φE)

]
. (1)

Here, the first term is the Frank free energy for deformations in
the director field, the second term shows the favored twist if the
liquid crystal is chiral, and the third term gives the dielectric cou-
pling between the electric field and the director. We consider
positive dielectric anisotropy ∆ε > 0, so that the director tends to
align parallel to the electric field.

To minimize the free energy, we derive the Euler-Lagrange
equation in an infinite system

K
∂ 2φ

∂ z2 =
ε0∆εE2

2
sin2(φ −φE), (2)

with the constraint φ(+∞)−φ(−∞) = π. Note that this equation
does not involve the chirality q, because the chiral term in the free
energy is a total derivative. An exact solution is

φ(z) = φE +
π

2
+2arctan

[
tanh

(
z− zS

ξ

)]
, (3)

where

ξ =

(
4K

ε0∆εE2

)1/2
(4)

is the characteristic width of the soliton, and zS is any arbitrary
position for the soliton center. This solution is plotted in Fig. 1(b).
The free energy of that solution, relative to the free energy of the
uniform state φ(z) = φE , is ∆F = K(4ξ−1−πq). Hence, the soliton
has a lower free energy than the uniform state if q > 4/(πξ ), as
discussed previously.27

The antisoliton, with the opposite sign of twist, has the form
φ(z) = φE − (π/2)− 2arctan[tanh((z− zS)/ξ )]. It has a lower free
energy than the uniform state if q < −4/(πξ ). In an achiral liq-
uid crystal with q = 0, the soliton and antisoliton each have a
higher free energy than the uniform state, but still they are each
metastable and cannot relax to the uniform state.

Let us now make the simplest possible model for the dynamics
of the liquid crystal, assuming director rotation but no fluid flow.
The Rayleigh dissipation function per area in the (x,y) plane can
be written as

D =
∫

dz
[

1
2

γ|ṅ|2
]
=
∫

dz
[

1
2

γφ̇
2
]
, (5)
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where γ is the rotational viscosity, and ṅ and φ̇ are the time deriva-
tives. The equation of motion can then be regarded as a balance
of forces. The force on φ from the free energy is

− δF
δφ(z, t)

= K
∂ 2φ

∂ z2 − ε0∆εE2

2
sin2(φ −φE), (6)

and the force on φ from dissipation is

− δD
δ φ̇(z, t)

=−γ
∂φ

∂ t
. (7)

The sum of these forces must be zero, and hence the equation of
motion becomes

γ
∂φ

∂ t
= K

∂ 2φ

∂ z2 − ε0∆εE2

2
sin2(φ −φE). (8)

By solving this partial differential equation (PDE), we can predict
the time evolution of the director everywhere in the liquid crys-
tal, both inside and away from the soliton. For example, we can
predict how the director responds to a change in the magnitude
or direction of the electric field. In principle, this procedure al-
lows us to see how the soliton position moves as a function of
time. However, the equation does not show the soliton motion
very clearly. For that reason, in the following sections, we con-
sider a more coarse-grained theory.

2.2 Coarse-grained theory: Phenomenological approach

At a coarse-grained level, a sine-Gordon soliton is characterized
by two variables: the position rS = (0,0,zs) and the width ξ .
Furthermore, the liquid crystal around the soliton is character-
ized by the background director n̂BG = (cosφBG,sinφBG,0). For a
phenomenological theory, we ask: Considering the symmetry of
the system, how can the free energy and the Rayleigh dissipation
function depend on those three variables?

The free energy must have some term that aligns the back-
ground director with the applied electric field. At lowest or-
der in the electric field, this term can be written as −(E · n̂BG)

2,
with some arbitrary coefficient. The free energy must also have
some term that drives the width ξ toward the favored value
ξ̄ = ((4K)/(ε0∆εE2))1/2. This term should diverge for both ξ → 0
and ξ → ∞, and hence should be proportional to ξ + ξ̄ 2/ξ . By
contrast, the free energy must be independent of zS, because of
translational symmetry along the z-axis. Hence, a phenomenolog-
ical expression for the free energy becomes

F =− f1E2 cos2(φBG −φE)+ f2

(
ξ +

ξ̄ 2

ξ

)
, (9)

with arbitrary coefficients f1 and f2.
The Rayleigh dissipation function must show the energy dissi-

pation from all of the coarse-grained modes, up to quadratic order
in the time derivatives. It must certainly have terms proportional
to |ṙS|2 = ż2

S, to ξ̇ 2, and to |ṅBG|2 = φ̇ 2
BG. In addition, it may have

a cross term of the form ṙS · (n̂BG × ṅBG) = żSφ̇BG. Because of the
cross product, this term is chiral. It is permitted by symmetry,
even if the liquid crystal is not chiral, because the soliton itself is
chiral. Combining all of these term, the dissipation function takes

the form

D =
1
2

d1φ̇
2
BG +

1
2

d2ż2
S +

1
2

d3ξ̇
2 −d4żSφ̇BG, (10)

with arbitrary coefficients d1, d2, d3, and d4.

From the free energy and Rayleigh dissipation function, we can
derive the equations of motion for the coarse-grained variables.
The balance between the force from free energy and the force
from dissipation gives

− ∂F
∂φBG

− ∂D
∂ φ̇BG

= 0, (11a)

− ∂F
∂ zS

− ∂D
∂ żS

= 0, (11b)

−∂F
∂ξ

− ∂D

∂ ξ̇
= 0. (11c)

Let us consider Eq. (11b) for the soliton position. Because the free
energy is independent of zS, the force from free energy is zero,
and the force from dissipation is −∂D/∂ żS =−d2żS+d4φ̇BG. When
φBG is constant, this force can be interpreted as a drag force on
soliton motion, and the drag coefficient is d2. In the more general
case when φBG is not constant, the balance of forces requires

żS =

(
d4

d2

)
φ̇BG. (12)

Hence, if the background orientation φ̇BG rotates, the soliton po-
sition zS must move up or down. In particular, if the electric field
rotates in the (x,y) plane with frequency ω, so that n̂BG also ro-
tates with frequency ω, then the soliton position must move verti-
cally with velocity (d4/d2)ω. This motion occurs purely because of
the dissipative coupling between soliton velocity and background
rotation; it does not require any dependence of free energy on
soliton position.

One feature of this phenomenological approach is that it gives
very general results, based purely on symmetry, independent of
any microscopic details. However, a drawback of this approach is
that it does not provide any information about how the arbitrary
coefficients depend on more fundamental properties of the liquid
crystal. For that information, we must consider an alternative
approach.

2.3 Coarse-grained theory: Integration approach

For an alternative approach, we want to develop a coarse-grained
theory that is explicitly based on the continuum theory of Sec. 2.1.
This approach is known as the collective coordinate method in
nonlinear dynamics.28,29 For this calculation, we make an ansatz
for time-dependent director field associated with a soliton,

φ(z, t) = φBG(t)+
π

2
+2arctan

[
tanh

(
z− zS(t)

ξ (t)

)]
. (13)

This ansatz is inspired by the static solution of Eq. (3), but now
the parameters φBG, zS, and ξ are allowed to depend on time, and
hence the entire director field may depend on time. We put this
ansatz into the free energy of Eq. (1) and the Rayleigh dissipation
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function of Eq. (5), and express these functions in terms of φBG,
zS, and ξ .

In this calculation, we must perform integrals over z. Some of
these integrals are divergent in the limit of infinite system size.
To regularize them, we consider a large box, with z from −L/2 to
+L/2. We assume L ≫ ξ , and eventually take the limit of L → ∞.

By inserting the ansatz (13) into the free energy (1) and inte-
grating over the entire system, we obtain

F =− ε0∆εE2(2L−ξ )

4
cos2(φBG −φE)+

ε0∆εE2ξ

4
+

2K
ξ

. (14)

In this expression, the first term comes from the dielectric energy
of the uniform background director n̂BG in the electric field E,
and it is proportional to the system size L. It gives the optimum
background director φBG = φE . The second term is the dielectric
energy cost of the soliton, which arises because the director in-
side the soliton generally does not align with the electric field.
This penalty is proportional to the soliton width ξ , and hence fa-
vors a smaller width. The last term is the elastic energy of the
soliton, which is inversely proportional to ξ , and hence favors a
larger width. The competition between the last two terms gives
the optimum width, consistent with Eq. (4). Note that this free
energy has the form anticipated in Eq. (9) of the phenomenolog-
ical theory. In particular, it depends on φBG and ξ , but not on zS,
because of translational symmetry along the z-axis.

Similarly, by integrating the Rayleigh dissipation function (5)
over the entire system, we obtain

D =
Lγφ̇ 2

BG
2

+
2γ ż2

S
ξ

+
π2γξ̇ 2

24ξ
−πγ żSφ̇BG. (15)

Because the energy dissipation arises from changes of the director
field, all of the time derivatives φ̇BG, żS, and ξ̇ contribute to the
dissipation function. The first term is associated with changes in
the background field, and it is proportional to the system size L.
The other terms are associated with changes of the soliton posi-
tion or width, which are localized, and hence those terms are in-
dependent of L. The second term shows that the drag coefficient
for soliton motion is 4γ/ξ , following the argument after Eq. (11).
Furthermore, the last term shows a dissipative coupling between
motion of the soliton żS and rotation of the background field φ̇BG,
as anticipated in Eq. (10) of the phenomenological theory. This
term is chiral; it would have the opposite sign for an antisoliton
with the opposite twist.

Now that we have Eqs. (14–15) for the integrated free energy
and dissipation function, we can put them into Eqs. (11) for the
balance of forces, and derive equations of motion for the three
coarse-grained variables. In the limit of large system size L ≫ ξ ,
the equation of motion for φBG becomes

γφ̇BG =− ε0∆εE2

2
sin2(φBG −φE). (16)

In this limit of large L, the effect of soliton motion on the back-
ground field is negligible. Hence, the rotation of φBG is deter-
mined only by the external field E, and is independent of the
soliton coordinates zS, żS, ξ , and ξ̇ .

In a similar way, the equation of motion for the soliton position
zS becomes

żS =

(
πξ

4

)
φ̇BG. (17)

This equation of motion is equivalent to Eq. (12) of the phe-
nomenological theory, but now we see that the arbitrary ratio
d4/d2 has a physical interpretation as πξ/4, proportional to the
soliton width. Hence, if the electric field rotates with frequency ω,
then n̂BG also rotates with frequency ω, and the soliton position
moves vertically with velocity πξ ω/4.

Finally, the equation of motion for the soliton width ξ becomes

π2γ

12ξ
ξ̇ =

2K
ξ 2 − ε0∆εE2

2
cos2(φBG −φE). (18)

In the next subsection, we will use this equation to explain the
rectification of soliton motion in a toggling electric field.

2.4 Rectified motion

At this point, we would like to assess how well the coarse-grained
theory describes the motion of a sine-Gordon soliton. For that
purpose, we consider motion induced by a toggling electric field
E = (Ex(t),Ey,0). In this scenario, the static component Ey rep-
resents some constant anisotropy, which tends to align the di-
rector along the y-axis, and the time-varying component Ex(t)
represents an applied field that induces director tilt toward the
x-axis. We choose units such that γ = K = ε0∆ε = Ey = 1; i.e.
we measure time in units of γ/(ε0∆εE2

y ) and distance in units of
[K/(ε0∆εE2

y )]
1/2. In these units, we toggle Ex(t) between 0 and 3,

with a period of τ, which is chosen to be much greater than the
relaxation time of the director field, τ ≫ γ/(ε0∆εE2).

We perform numerical calculations in two ways: by solving
the continuum PDE (8) and by solving the coarse-grained ordi-
nary differential equations (16), (17), and (18). For the contin-
uum solution, we fit the results to the ansatz of Eq. (13), and
use the fit to extract the time-dependent parameters φBG(t), ξ (t),
and zS(t). Figure 2 shows a comparison of the numerical results
from these two solution methods. Parts (a–c) represent the be-
havior when Ex is switched on, and parts (d–f) represent when
the Ex is switched off. The results for φBG(t) agree almost per-
fectly, switching between φ off

E = π/2 and φ on
E = arctan(1/3)≈ 0.32

(mod π). The results for ξ (t) and zS(t) generally agree well. The
overall agreement shows that the coarse-grained theory is able
to capture the basic features of a moving soliton in a changing
field. The small discrepancies occur because the continuum so-
lution deviates slightly from the ansatz (13) by breaking the odd
symmetry about the center of the soliton.

The most important aspect of the numerical results is that the
soliton position zS(t) exhibits a net displacement after the full cy-
cle of field switching. This displacement can be seen in Figs. 2(c)
and 2(f): When the field is switched on, the soliton position shifts
from zS = 0 to a negative value. When the field is switched off
again, the soliton position moves back forward and overshoots
the initial position, ending with a positive displacement. The net
change is small, but it can accumulate over many cycles of the
field. Hence, the soliton has a net rectified motion in response to
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Fig. 2 Numerical solutions for a 1D soliton in an electric �eld toggled between Eoff = (0,1,0) and Eon = (3,1,0). (a)�(c) Time variation of φBG, ξ and

zS in the half-period after the electric �eld is switched on. The soliton starts from a steady state located at zS = 0. (d)�(f) Time variation of these

coarse-grained variables in the following half-period after the electric �eld is switched o�. All the numerical solutions of the coarse-grained equations

of motion (16), (17), and (18) are compared with the direct numerical solution of the continuum PDE (8). Time is measured in units of γ/(ε0∆εE2
y ),

and distance in units of [K/(ε0∆εE2
y )]

1/2.

the field toggling. This effect is seen in both the continuum and
the coarse-grained solitions.

To explain the rectification, consider the coarse-grained equa-
tion of motion (17) for the soliton position zS(t). Hypothetically
speaking, if the soliton width ξ were independent of time, then
we could integrate this equation to obtain ∆zS = (πξ/4)∆φBG. For
a full cycle of toggling the electric field on and off, the net change
in background orientation is ∆φBG = 0, so the equation would give
∆zS = 0, i.e. no rectification. Hence, the observed rectification
must be associated with time dependence of the soliton width ξ .

The time dependence of ξ can be understood in terms of its
dependence on the electric field strength. Equation (4) shows
that the equilibrium soliton width depends inversely on E. That
equation is not exactly valid during the nonequilibrium dynamics,
but still the same trend occurs: A larger field strength leads to
a smaller width, and a smaller field strength to a larger width.
During the on phase of the cycle, the liquid crystal experiences
a stronger field, so ξ is smaller, and the displacement is smaller
(in the negative direction because ∆φBG = φ on

E −φ off
E < 0). During

the off phase of the cycle, the liquid crystal experiences a weaker
field, so ξ is larger, and the displacement is larger (in the positive
direction because ∆φBG = φ off

E − φ on
E > 0). This difference gives

rectification.

To confirm this explanation, we perform a series of calculations
for fixed φ off

E = π/2, Eoff = 1, φ on
E = arctan(1/3)≈ 0.32, and various

values of Eon. Figure 3(a) shows numerical results for the net
displacement, combining the on and off processes, as a function
of Eon. We can see that the net displacement is zero when Eon =

Eoff, because the on and off processes are exactly opposite to each
other. The net displacement is negative when Eon < Eoff, because

the negative displacement in the on process exceeds the positive
displacement in the off process. The reverse is true when Eon >

Eoff.

Those results for the net displacement correspond to the dy-
namic trends in the soliton width ξ , shown in Fig. 3(b)–3(d). Just
before the field is switched on or off, the electric force is balanced
by the elastic force, and ξ stays at its equilibrium. Just after the
field is switched, the electric force becomes weaker because the
equilibrium director has changed to an orientation inside the soli-
ton, while the elastic force remains the same. These unbalanced
forces make ξ increase to restore the balance. As the background
director gradually shifts to its equilibrium orientation, the electric
force becomes stronger, and this change makes ξ decrease until
it reaches its equilibrium. For Eon < Eoff [Fig. 3(b)], the increase
and decrease of ξ are exactly opposite in the up and down pro-
cesses. For Eon < Eoff [Fig. 3(c)], these trends still occur, but they
are not exactly opposite; rather, ξ is generally larger during the
on process than during the off process. Conversely, for Eon > Eoff

[Fig. 3(d)], ξ is generally smaller during the on process than dur-
ing the off process.

3 Skyrmion

For a further, more complex example of a moving topological
structure, we consider a skyrmion, as shown in Fig. 4. In this
example, the director varies as a function of x and y, and per-
haps also time t. Far from the center, the director points in the
background direction n̂BG = ẑ. Right at the center, the director
points in the opposite direction −ẑ. In the intermediate region,
the director covers all possible orientations on the unit sphere. In
a chiral liquid crystal, the director deformation is mainly double
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Fig. 3 Numerical solutions for a 1D soliton in an electric �eld toggled

between φ off
E = π/2 with Eoff = 1, and φ on

E = arctan(1/3)≈ 0.32 with various

values of Eon. (a) Net displacement of the soliton over one full cycle of

toggling, as a function of Eon. (b)�(d) Soliton width as a function of

background orientation φBG, during the on and o� switching processes,

with Eon = 1, 0.6, and 101/2 ≈ 3.16, respectively. The red lines represent

the dynamic change in ξ after the electric �eld is switched o�, and the

blue lines represent the corresponding change after the electric �eld is

switched on. The area below each line is proportional to the distance the

soliton travels in the corresponding process.

twist, and the structure is stabilized because this double twist is
compatible with the chirality.

The director field of a skyrmion is well-defined everywhere,
with no singularity. Even so, there is no way for the structure
to relax to a uniform configuration without melting the nematic
order or disrupting the director all the way out to infinity, which
would have a prohibitive free energy cost. Hence, like a sine-
Gordon soliton, a skyrmion is a nonsingular topological structure.

While a sine-Gordon soliton can move up or down in the z di-
rection, a skyrmion can move in the (x,y) plane. When it moves,
the center of the director distortion shifts to another position,
while preserving the overall topological properties. Indeed, this
motion has been studied experimentally.15,16 While previous re-
search has modeled the motion through continuum theory, we
would like to develop a coarse-grained description, in order to
have a simpler understanding of how the skyrmion responds to
applied electric fields.

3.1 Continuum theory
In principle, continuum theory for a skyrmion is similar to contin-
uum theory for a sine-Gordon soliton. For a skyrmion, we must
represent the director field as a three-dimensional unit vector
n̂(x,y, t) = (sinθ cosφ ,sinθ sinφ ,cosθ), where θ(x,y, t) is the polar
angle and φ(x,y, t) is the azimuthal angle. Likewise, the electric
field is a 3D vector E. The total free energy per length in the z
direction then becomes

F =
∫

dxdy
[

1
2

K(∂in j)(∂in j)+Kqn̂ ·∇× n̂− 1
2

ε0∆ε(E · n̂)2
]
. (19)

We still assume positive dielectric anisotropy ∆ε > 0, so that n̂
tends to align parallel to E.

(a) (b)

Fig. 4 Examples of skyrmions in chiral liquid crystals, stabilized by twist.

(a) Right-handed with φ0 = π/2. (b) Left-handed with φ0 =−π/2.

To minimize the free energy, we would like to solve the Euler-
Lagrange equations

δF
δθ(x,y, t)

= 0,
δF

δφ(x,y, t)
= 0, (20)

to find a director field with the topology of a skyrmion. Unfortu-
nately, these equations do not have an exact solution. For that rea-
son, researchers have generally used two approaches. First, one
can construct an ansatz for the director field, and minimize the
free energy over parameters in that ansatz. Alternatively, one can
use a purely numerical method to solve the Euler-Lagrange equa-
tions for a director field that minimizes the free energy. Either of
these approaches can give a skyrmion solution. In the appropriate
regime of chirality q and electric field E, the skyrmion has a lower
free energy than the uniform state. Outside that regime, even if
it has a higher free energy, it is still metastable and cannot relax
to the uniform state.

For the dynamics of a skyrmion, we again consider director
rotation with no fluid flow. The Rayleigh dissipation function per
length in the z direction is

D =
∫

dxdy
[

1
2

γ|ṅ|2
]
, (21)

and hence the equations of motion for θ and φ become

− δF
δθ(x,y, t)

− δD
δ θ̇(x,y, t)

= 0, − δF
δφ(x,y, t)

− δD
δ φ̇(x,y, t)

= 0. (22)

These equations can be solved numerically to determine the time
evolution of any initial configuration, as the applied electric field
is varied.

3.2 Coarse-grained theory: Phenomenological approach
Although the continuum theory for a skyrmion is more com-
plex than the continuum theory for a sine-Gordon soliton,
we can still use the same phenomenological approach to de-
velop a coarse-grained theory. In this coarse-grained the-
ory, a skyrmion is characterized by its position rS = (xS,yS,0)
and its radius ξ . Likewise, the liquid crystal around the
skyrmion is characterized by the background director n̂BG =

(sinθBG cosφBG,sinθBG sinφBG,cosθBG). The phenomenological
approach considers how the free energy and the Rayleigh dissi-
pation function can depend on those coarse-grained variables.
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The free energy must have the form

F =− f1(E · n̂BG)
2 + f2

(
ξ +

ξ̄ 2

ξ

)
, (23)

analogous to Eq. (9) for the sine-Gordon soliton. In this expres-
sion, the first term aligns the background director with the ap-
plied electric field. The second term drives the radius ξ toward
some arbitrary favored value ξ̄ . Because of translational invari-
ance, the free energy must be independent of skyrmion position
rS. The Rayleigh dissipation function must have the form

D =
1
2

d1|ṅBG|2 +
1
2

d2|ṙS|2 +
1
2

d3ξ̇
2 −d4ṙS · (n̂BG × ṅBG), (24)

analogous to Eq. (10) for the sine-Gordon soliton. The last term
is a chiral dissipative coupling, which is permitted by symmetry
because of the chirality of the skyrmion.

Now that we have these expressions for the free energy and
Rayleigh dissipation function, we can derive the equations of mo-
tion for the coarse-grained variables. In particular, the equation
for the skyrmion position is

− ∂F
∂rS

− ∂D
∂ ṙS

= 0. (25)

Because the free energy is independent of rS, the force from
free energy is zero, and the force from dissipation is −∂D/∂ ṙS =

−d2ṙS + d4n̂BG × ṅBG. When n̂BG is constant, this force can be
interpreted as a drag force on skyrmion motion, and the drag co-
efficient is d2. In the more general case when n̂BG is not constant,
the balance of forces requires

ṙS =

(
d4

d2

)
(n̂BG × ṅBG). (26)

From this equation, we can see that the skyrmion moves in the
direction given by n̂BG × ṅBG, projected into the (x,y) plane. For
example, if n̂BG is initially in the z direction, and it rotates toward
the x direction, then the skyrmion moves in the y direction. This
motion is a direct result of the chirality of the skyrmion, analo-
gous to the motion of a sine-Gordon soliton discussed earlier. To
estimate the magnitude of the velocity, we need to use the in-
tegration approach to connect the phenomenological parameters
with smaller-scale features of the skyrmion structure.

3.3 Coarse-grained theory: Integration approach

To implement the integration approach, we must construct an
ansatz for the director field of a skyrmion, insert that ansatz into
the continuum free energy and Rayleigh dissipation function, and
integrate over the entire system. Here, we are mainly interested
in the dynamic behavior of the skyrmion position rS, which should
depend only on the dissipation function, not the free energy, be-
cause of translation invariance. Hence, we concentrate on the
dissipation function rather than the free energy.

The ansatz for n̂(r) must depend on the skyrmion position rS

and radius ξ , as well as the background director n̂BG, and hence
we write it as n̂(r;rS,ξ , n̂BG). Previous theoretical research has
normally studied the case of a skyrmion centered at the origin,

rS = 0, with a background director in the vertical direction, n̂BG =

ẑ. In that case, the director field is most conveniently written in
cylindrical coordinates (ρ,φ) as the hedgehog ansatz

n̂(r;0,ξ , ẑ) =

sin f (ρ/ξ )cos(φ +φ0)

sin f (ρ/ξ )sin(φ +φ0)

cos f (ρ/ξ )

 . (27)

Here, the function f (ρ/ξ ) is the position-dependent polar angle,
with the limits f (0) = π and f (∞) = 0; it generally decays ex-
ponentially for large ρ. The constant φ0 = ±π/2 represents the
right- or left-handed structure of the skyrmion; one handedness
is favored by the free energy in a chiral liquid crystal, and the
other is disfavored.

If the skyrmion is not centered at the origin, then we can easily
modify this ansatz with a translation by the vector rS, giving

n̂(r;rS,ξ , ẑ) = n̂(r− rS;0,ξ , ẑ). (28)

If the background director n̂BG is not vertical, then it can be re-
lated to the vertical direction through a rotation n̂BG =R · ẑ, where
R is the matrix representing a rotation through the angle θBG

about the axis (−sinφBG,cosφBG,0). Hence, we apply the same
rotation matrix to the entire director field, which gives the full
ansatz

n̂(r;rS,ξ , n̂BG) = R · n̂(r;rS,ξ , ẑ). (29)

In constructing this rotation, we implicitly assume that n̂BG is
close to ẑ, and −n̂BG is close to −ẑ, not vice versa. Hence, the re-
sults will be symmetric under simultaneously changing the signs
of n̂BG and ẑ, but not under separately changing the signs of n̂BG

or ẑ.

We now insert the ansatz into the dissipation function of
Eq. (21) to obtain

D =
1
2

γ

∫
dxdy

∣∣∣∣ṙSi
∂ n̂
∂ rSi

+ ξ̇
∂ n̂
∂ξ

+ ṅBGi
∂ n̂

∂nBGi

∣∣∣∣2 (30)

=
1
2

γ ṙSiṙS j

∫
dxdy

∂nk

∂ rSi

∂nk

∂ rS j
+ γ ṙSiξ̇

∫
dxdy

∂nk

∂ rSi

∂nk

∂ξ

+ γ ṙSiṅBG j

∫
dxdy

∂nk

∂ rSi

∂nk

∂nBG j
+ terms independent of ṙS.

The first term simplifies to D(1) = 1
2Cγ|ṙS|2, where

C = π

∫
∞

0
udu

((
∂ f (u)

∂u

)2
+

sin2 f (u)
u2

)
(31)

is a dimensionless constant of order 1, which depends on the
form of f (ρ/ξ ). This term shows the isotropic drag on a mov-
ing skyrmion, with the drag coefficient of Cγ. The second term,
involving ṙS and ξ̇ , integrates to D(2) = 0, which indicates that a
change of skyrmion radius does not drive a skyrmion to move.

The third term shows a dissipative coupling between ṙS and
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ṅBG. After some long calculations, it simplifies to

D(3) =±C′
γξ ṙS ·

[
(n̂BG × ṅBG)+(1− ẑ · n̂BG)(ẑ× ṅBG)

+
(ẑ · n̂BG)(ẑ · ṅBG)(ẑ× n̂BG)

1+ ẑ · n̂BG

]
, (32)

where

C′ = π

∫
∞

0
du
(

u
∂ f (u)

∂u
+

sin(2 f (u))
2

)
(33)

is another dimensionless constant of order 1. In Eq. (32), the ±
sign corresponds to the chirality φ0 = ±π/2 in the ansatz. For
n̂BG close to ẑ, or θBG ≪ 1, the first term in square brackets
scales as θ 1

BG, while the second and third terms scale as θ 3
BG.

Hence, we neglect the higher-order terms, and consider only
D(3) =±C′γξ ṙS · (n̂BG × ṅBG).

Combining these components, the total dissipation function be-
comes

D =
1
2

Cγ|ṙS|2 ±C′
γξ ṙS · (n̂BG × ṅBG)+ terms independent of ṙS.

(34)
Hence, the equations of motion for the soliton position become

ẋS =∓
(

C′ξ

C

)
(n̂BG × ṅBG)x, ẏS =∓

(
C′ξ

C

)
(n̂BG × ṅBG)y.

(35)
These expressions have the same form that was anticipated in
the phenomenological theory, based only on symmetry considera-
tions, but now we have explicit expressions for the coefficients in
terms of the soliton width ξ and dimensionless factors C and C′.

3.4 Rectified motion

The results of this section for skyrmions moving in 2D are quite
analogous to the results of the previous section for sine-Gordon
solitons moving in 1D. In each case, the motion of the topological
structure is controlled by a dissipative coupling with the back-
ground director, and the background director is controlled by the
applied electrici field. We can use this analogy to predict the re-
sults of a field-toggling experiment on a skyrmion.

Suppose that we apply an electric field that causes n̂BG to tilt
from ẑ toward x̂. In that case, ṅBG is in the x direction, so
n̂BG × ṅBG is in the y direction. Hence, this tilt leads the skyrmion
to move in the y direction. Likewise, tilting the background direc-
tor toward the y direction leads the skyrmion to move in the −x
direction. In either case, the velocity of skyrmion motion scales as
the rotational velocity of n̂BG times the skyrmion radius ξ . Bring-
ing n̂BG back to ẑ leads to skyrmion motion in the opposite direc-
tion. As with the sine-Gordon soliton, the magnitude of reverse
motion should differ from the magnitude of forward motion, if
the radius ξ changes due to a change in the applied electric field
magnitude. Hence, a single cycle of the applied field should give
some net motion, and repeated cycles should give rectified mo-
tion perpendicular to the tilt direction.

The scenario suggested here is similar to the experiments of
Smalyukh and collaborators, which study skyrmion motion under
a toggling electric field.15,16 In some of those experiments, the

role of Ez is played by a static anisotropy in a thin cell, resulting
from surface anchoring, which tends to align n̂BG in the vertical
direction. The role of Ex is played by a vertical electric field act-
ing on a liquid crystal with negative dielectric anisotropy, which
tends to push n̂BG toward the (x,y) plane, together with a sur-
face pretilt that favors the x direction within that plane. In other
experiments, a liquid crystal with positive dielectric anisotropy is
used. In both cases, the experiments show that tilting n̂BG from
the z direction toward the x direction leads to skyrmion motion
in the y direction. Likewise, bringing n̂BG back toward z leads to
skyrmion motion in the opposite direction, but with a different
magnitude. Repeated cycles of the field thus give net rectified
motion, which the experimenters describe as “squirming.”

Of course, we recognize that the experiments are more com-
plex than the theoretical scenario. In particular, the experiments
involve a 3D liquid cell with anchoring conditions on the top and
bottom surfaces, rather than the idealized 2D liquid crystal con-
sidered here. The experimental group has already done detailed
theoretical modeling of the 3D cell under field toggling, and the
modeling agrees with the observed behavior. Our current work
certainly does not match the level of detail in that modeling. We
only suggest that our work identifies the minimal theoretical fea-
tures that are needed to explain the observed squirming motion:
the dissipative coupling between skyrmion motion and the back-
ground director, arising from the chirality of the skyrmions, and
the change in the skyrmion size between the forward and reverse
processes. In that way, it identifies the types of topological struc-
tures that should exhibit similar dynamic behavior.

4 Conclusions

The research in this paper leads to both specific conclusions for
the dynamics of skyrmions and general conclusions for theoretical
methods.

For skyrmions, our main conclusion is that their motion can
be described as the dynamics of effective particles, in spite of the
fact that they are really topological structures of the director field.
Skyrmion motion has conventional isotropic drag, and it also
has an interesting dissipative coupling with rotation of the back-
ground director field. The particle-like description of skyrmion
dynamics is similar to the particle-like description of disclination
dynamics in previous studies.25,26 Indeed, the particle-like de-
scription works even better for skyrmions than for disclinations,
because the integrals (31) and (33) for effective drag coefficients
are convergent in the skyrmion case, while the analogous inte-
grals diverge with the system size in the disclination case. In
future work, this theory could be applied to other problems in
skyrmion dynamics, such as the collective motion of many in-
teracting skyrmions,30 or the motion of complex structures with
large skyrmion number.31

More generally, we have used a theoretical approach based on
the free energy and the Rayleigh dissipation function, and this
theoretical approach seems to be promising for describing dissi-
pative dynamics of any localized structure. One helpful feature
of this approach is that it can be done on any length scale: We
can construct the free energy and Rayleigh dissipation function
in terms of mesoscopic order parameter fields, such as the ne-
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(a) (b)

Fig. 5 Examples of skyrmions stabilized by splay. (a) Parameter φ0 = 0.
(b) Parameter φ0 = π.

matic director field, or in terms of more macroscopic variables,
such as the positions or orientations of topological structures. By
taking appropriate derivatives of those functions, we can find the
forces and derive the equations of motion for mesoscopic order
parameters fields or macroscopic variables. If we wish to develop
a coarse-grained theory in terms of macroscopic variables, there
are two options: We can construct a phenomenological theory
based purely on symmetry considerations, which gives quick re-
sults in terms of arbitrary coefficients, or we can use the inte-
gration method to derive the coefficients in terms of known pa-
rameters in the continuum theory. This coarse-grained theoretical
approach should be useful for further studies of the dynamics of
many different topological structures.
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Appendix: Skyrmions stabilized by splay (Rashba)

rather than twist (Dresselhaus)

In this article, we have discussed one mechanism to stabilize
skyrmions, which is the favored twist arising from chirality. How-
ever, that is not the only possible mechanism. Another possibil-
ity is the favored splay arising from polarity. The splay mecha-
nism could occur if a liquid crystal has a surface that breaks the
symmetry between n̂ and −n̂, as investigated experimentally and
theoretically by Meyer and Pershan long ago.32 Alternatively, it
could occur in a ferroelectric nematic phase, which spontaneously
breaks the symmetry between n̂ and −n̂, as investigated in several
recent studies.33–35

In the liquid crystal literature, to our knowledge, experi-
ments have only reported twist-stabilized skyrmions, not splay-
stabilized skyrmions. However, in the literature on magnetic
skyrmions, both types of skyrmions have been discussed.36 In that
literature, the twist mechanism is called “Dresselhaus spin-orbit
coupling,” and the splay mechanism is called “Rashba spin-orbit
coupling.” It is possible that splay-stabilized skyrmions will also
be found in liquid crystals. Such skyrmions would have the struc-
ture shown in Fig. 5.

In this appendix, we show how the results in this article about
coarse-grained dynamics are modified for splay-stabilized rather
than twist-stabilized skyrmions.

First, consider the phenomenological approach. For splay-
stabilized skyrmions in an achiral liquid crystal, symmetry does
not permit the cross product term ṙS · (n̂BG × ṅBG) in the Rayleigh
dissipation function of Eq. (24). However, the liquid crystal does
have polarity P along to the director, so its dissipation function
can have a term proportional to (ṙS · ṅBG)(P · n̂BG). If n̂BG and P
are both close to ẑ direction, this term simplifies to (ṙS · ṅBG), so
the full dissipation function becomes

D =
1
2

d1|ṅBG|2 +
1
2

d2|ṙS|2 +
1
2

d3ξ̇
2 −d′

4(ṙS · ṅBG). (36)

Because the free energy is still independent of the skyrmion posi-
tion, the equations of motion become simply ∂D/∂ ẋS = ∂D/∂ ẏS =

0, so ẋS = (d′
4/d1)(ṅBG)x and ẏS = (d′

4/d1)(ṅBG)y. Hence, the splay-
stabilized skyrmion moves parallel to ṅBG, projected into the (x,y)
plane, unlike the twist-stabilized skyrmion, which moves perpen-
dicular to ṅBG, projected into the (x,y) plane.

Next, consider the integration approach. In the hedgehog
ansatz of Eq. (27), twist-stabilized skyrmions have the parame-
ter φ0 = ±π/2, corresponding to the right- or left-handed struc-
tures in Fig. 4. By contrast, splay-stabilized skyrmions have the
parameter φ0 = 0 or π, corresponding to the inward or outward
splay structures in Fig. 5. Hence, we repeat the integration of the
dissipation function for general φ0, which gives

D =
1
2

Cγ|ṙS|2 +C′
γξ ṙS ·

{[
(n̂BG × ṅBG)+(1− ẑ · n̂BG)(ẑ× ṅBG)

+
(ẑ · n̂BG)(ẑ · ṅBG)(ẑ× n̂BG)

1+ ẑ · n̂BG

]
sinφ0 (37)

−
[

ṅBG − (ẑ · ṅBG)n̂BG

1+ ẑ · n̂BG

]
cosφ0

}
+ terms independent of ṙS.

For splay-stabilized skyrmions, that expression reduces to

D =
1
2

Cγ|ṙS|2 ∓C′
γξ ṙS ·

[
ṅBG − (ẑ · ṅBG)n̂BG

1+ ẑ · n̂BG

]
+ terms independent of ṙS, (38)

with the upper or lower sign corresponding to φ0 = 0 or π. For n̂BG

close to ẑ, or θBG ≪ 1, the first term in square brackets scales as
θ 1

BG, while the second term scales as θ 3
BG. Hence, we neglect the

higher-order term, and obtain a dissipation function consistent
with Eq. (36) anticipated from the phenomenological approach.

Based on either the phenomenological or the integration ap-
proach, we see the dissipation function is quite similar for splay-
stabilized skyrmions and for twist-stabilized skyrmions. However,
the key difference is that the velocity ṙS is coupled with ṅBG for
splay-stabilized skyrmions, while it is coupled with n̂BG × ṅBG for
twist-stabilized skyrmions. This difference should have a direct
consequence for motion in a field-toggling experiment: Splay-
stabilized skyrmions should exhibit a “squirming” rectified mo-
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tion in the direction aligned with the tilt change ṅBG, while twist-
stabilized skyrmions show this motion perpendicular to the tilt
change. This result shows the power of coarse-grained theory to
predict motion based on symmetry considerations, without de-
tailed simulations.
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