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Flatness and Intrinsic Curvature of Linked-Ring Membranes†

James M. Polson,∗a Edgar J. Garcia,b and Alexander R. Klotzb

Recent experiments have elucidated the physical properties of kinetoplasts, which are chain-mail-
like structures found in the mitochondria of trypanosome parasites formed from catenated DNA
rings. Inspired by these studies, we use Monte Carlo simulations to examine the behavior of two-
dimensional networks (“membranes”) of linked rings. For simplicity, we consider only identical rings
that are circular and rigid and that form networks with a regular linking structure. We find that the
scaling of the eigenvalues of the shape tensor with membrane size are consistent with the behavior of
the flat phase observed in self-avoiding covalent membranes. Increasing ring thickness tends to swell
the membrane. Remarkably, unlike covalent membranes, the linked-ring membranes tend to form
concave structures with an intrinsic curvature of entropic origin associated with local excluded-volume
interactions. The degree of concavity increases with increasing ring thickness and is also affected
by the type of linking network. The relevance of the properties of linked-ring model membranes to
those observed in kinetoplasts is discussed.

1 Introduction

Recent interest in topologically complex soft materials has lead
to the fabrication and characterization of molecules with non-
covalent connectivity, including molecular knots and linked-ring
networks known as catenanes.1 Molecular catenanes can be cre-
ated synthetically with techniques such as metallo-organic com-
plexation,2 but several forms of catenated macromolecules or
“Olympic gels”3,4 are known to form naturally. These include
the HK97 virus that has a capsid made of catenated proteins,5

and catenated DNA molecules that occur in the mitochondria of
cancerous cells.6 The most extreme example of “molecular chain-
mail” is the kinetoplast. A kinetoplast is a complex DNA structure
found in the mitochondria of trypanosome parasites, consisting of
thousands of circular DNA molecules, known as minicircles, topo-
logically linked in a two-dimensional network.7 Kinetoplasts are
part of an RNA editing mechanism that allows mutated metabolic
genes to be expressed, and the network of minicircles is believed
to have a honeycomb topology with an average “valence” of 3.8

Recently, kinetoplasts have been investigated as a model ex-
perimental system for studying the physics of 2D polymers and
catenated materials.9 It was observed that kinetoplasts from the
Crithidia fasciculata parasite in free solution exhibit the behav-
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ior expected of a thermalized elastic membrane but also have a
strong intrinsic curvature. Subsequently, Soh et al. showed that
stretched kinetoplasts form a metastable deformed state10 and
undergo isotropic changes in size when the buffer ionic condi-
tions are varied.11 One salient question is the degree to which
their exotic catenated structure affects their physical properties,
as distinct from their two-dimensional network topology: to what
extent is a catenated membrane different from a covalent or teth-
ered membrane? The lengthscale of minicircle catenation is typ-
ically below the lengthscale of optical microscopy and the defor-
mations achieved through microfluidic stretching11 or confine-
ment9,12 may not be sufficient to distinguish their effects.

One predicted feature of self-avoiding two-dimensional poly-
mers is their “flatness,” referring to the fact that the length-scale
of their surface undulations is predicted to have a weaker de-
pendence on molecular weight than the in-plane dimensions of
the polymer, leading to an effectively infinite persistence length
independent of molecular composition. While incorporating a
local energetic bending rigidity into a model is sufficient to in-
duce flatness, an effective bending rigidity of entropic origin can
also arise solely through excluded-volume interactions. As noted
by Kantor and Kremer,13 local excluded-volume interactions pro-
vide the bending rigidity that leads to flatness, but then play no
further role at larger distances. Flatness has been identified for
various models of self-avoiding membranes in numerous simula-
tions.14–20 While kinetoplasts have the appearance of a smooth
but curved open membrane, it is not known from experiments
whether catenated 2D materials exhibit the predicted flat phases
of 2D polymers.

The apparent curvature of kinetoplasts in solution is not known
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to be an essential part of the trypanosome gene editing appara-
tus, nor is it known whether it arises due to “purse-string” effects
at the edge,21 the topology of the network or defects therein, or a
subtler entropic mechanism. There has been recent interest in the
spontaneous curvature of thermalized planar materials due to lat-
tice impurities22 as well as the influence of intrinsic curvature on
defect dynamics,23 but the spontaneous equilibrium curvature of
membrane-like polymers without explicit curvature has not been
investigated. Recently, Soh and Doyle showed that the apparent
curvature of kinetoplasts vanishes when they are strongly con-
fined.12

In this study, we use Monte Carlo simulations to investigate
the equilibrium statistical properties of catenated membranes.
While other recent simulation studies have examined the sta-
tistical and dynamical properties of similar systems, including
catenane dimers,24,25 poly-catenanes,26–30 Olympic gels,31–33

as well as the linking statistics of ring polymers under confine-
ment,34–36 this is the first simulation study of a catenated mem-
brane, to our knowledge. The model membrane consists of identi-
cal rigid circular rings connected in 2D lattices. Although the sim-
ulations in Refs. 24–36 use flexible-chain models, we find the use
of rigid rings to be a necessary simplification for computational
efficiency. We are interested in the growth of out-of-plane fluctu-
ations and spontaneous curvature with respect to the number of
rings in the network, the extent to which these features deviate
from those found in covalently-connected membranes, as well as
the effects of ring thickness, lattice shape and linking topology. As
observed in the case for covalent membranes, we find that linked-
ring membranes have a flat topology. Remarkably, we also find
that they form concave structures qualitatively similar to those
observed in kinetoplasts.

2 Model and Methods
We use Monte Carlo (MC) simulations to study membranes com-
posed of interlocking rigid circular rings. Figure 1 illustrates the
three membrane structures examined in this study. The mem-
brane of Fig. 1(a) has a hexagonal shape and triangular lattice
structure (HT). It is composed of two types of rings: those with
a linking valence of 6 (except at the edges where the valence is
either 3 or 4), and those with a valence of 2. This membrane re-
sembles tethered membranes used in previous simulations stud-
ies,15,16,18–20,37 with the 6-valence rings analogous to vertices
or particles and the 2-valence rings analogous to the connect-
ing bonds. The membrane size M is defined as the number of
6-valence rings that span the structure from one corner through
the center to the opposite corner. As an illustration, Figure 1(a)
shows a membrane with M=9. Figure 1(b) shows a square mem-
brane with a square-lattice structure (SS) composed of rings with
a linking valence of 4 (except at edges and corners) as well as
those with a valence of 2. For this linking topology, we consider
only membranes that are square when stretched out, as illustrated
in the figure. The membrane size M is the number of 4-valence
rings along the side of the square. As an illustration, M=10 for
the membrane in the figure. Figure 1(c) shows the third mem-
brane type examined: a membrane with triangular-lattice link-
ing, as for HT membranes, but whose shape is (approximately)

square, as for SS membranes. We call these ST membranes. This
model is employed in some calculations to determine whether any
observed differences in behavior between HT and SS membranes
are caused by the linking topology or the membrane shape. Inte-
ger lattice sizes for the 6-valence rings M1 and M2 are chosen to
best approximate a square shape. As an illustration, M1=10 and
M2=11 for the membrane in Fig. 1(c).

Fig. 1 Snapshots of linked-ring membranes illustrating the shapes and
linking topologies examined in this study. (a) Hexagonal-shaped mem-
brane with triangular-lattice linking (HT) and a size of M=9. (b) Square-
shaped membrane with square-lattice linking (SS) and a size of M=10.
(c) Approximately square membrane with triangular lattice linking (ST)
with dimensions M1=10 and M2=11. (d) Close-up illustration of linking
structure for HT and ST membranes. (e) Close-up illustration of linking
structure for the SS membrane.

We examine membranes with rings of finite and zero thickness.
The diameter of the rings, D, is chosen to be the unit of length, i.e.
D=1. Rings of finite thickness have a circular cross section when
bisected by a plane containing the ring normal. The diameter of
this cross section, w defines the thickness of the ring. For w >

0, the diameter is the distance between the centers of the two
circular cross sections. We consider a ring thickness in the range
w = 0−0.2D.

The MC simulations use the standard Metropolis methodology.
For convenience, the initial positions and orientations of the rings
are chosen to correspond the structures shown in Fig. 1. Two
types of MC trial moves are carried out for randomly selected
rings: random displacement and random rotation about a ran-
domly chosen axis. Trial moves are accepted or rejected based
on whether they preserve the original linking structure, i.e., rings
that are originally linked must stay linked, and rings that were
originally unlinked must remain so. Any move that violates these
constraints is rejected. For rings with w > 0 moves are also re-
jected if the volumes occupied by the rings overlap, as determined
using the method described in Ref. 38. (A detailed description of
the algorithms used for testing for interlocking rings and overlap
of finite-w rings is presented in the ESI.†) Moves that preserve
the link structure and do not result in such overlap are accepted.
Maximum displacement and rotation angles are chosen to yield
an acceptance ratio in the range 30 – 50%. Displacement and
rotation moves are selected with equal probability. A MC cycle is
defined as a sequence of N consecutive trial moves, where N is
the total number of rings in the membrane. Thus, during each
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cycle an attempt is made to either translate or rotate each ring
once, on average. Prior to data sampling, the system is equili-
brated for a period chosen to ensure the complete decay of the
initial transients in the histories of all measured quantities. Equi-
libration periods were typically O(106) MC cycles, and produc-
tion runs were in the range of 3− 5× 106 MC cycles in duration.
Typically, the results of between 10 and 200 independent simu-
lations were averaged to achieve reasonable statistical accuracy,
with larger systems requiring more averaging.

The principal quantity of interest in this study is the shape ten-
sor, whose components, Sαβ , are defined

Sαβ =
1
N

N

∑
i=1

(ri,α − rCM
α )(ri,β − rCM

β
), (1)

where ri,α is the α-coordinate of the position of the center of the
ith ring, and where rCM

α is likewise the α-coordinate for the center
of mass of the membrane. The instantaneous eigenvalues are
denoted R2

1, R2
2, and R2

3, where we choose R2
1 ≥ R2

2 ≥ R2
3. The

corresponding eigenvectors are denoted n̂1, n̂2 and n̂3. Note that
the radius of gyration is related by R2

g = R2
1 +R2

2 +R2
3. We also

introduce a measure of membrane concavity, ζ as follows:

ζ =
1
N

N

∑
n=1

ξnρn (2)

Here, ξn is a coordinate of the position of the nth ring measured
along the ξ axis, which is aligned with n̂3. The ξ axis is also de-
fined to pass through the center of mass, which defines the point
where ξ = 0. In addition, ρn is the transverse distance of ring n
to the nearest point on the ξ axis. Note that ζ tends to be ap-
preciably non-zero when the rings close to the membrane center
are on one side of the center of mass and rings further from the
center are on the other side, i.e., where the membrane has a con-
cave structure. The quantities used to define ζ are illustrated in
Figure 2. Note that correctly distinguishing between positive and
negative values of ζ requires resolving the ambiguity in choosing
between two possible directions of n̂3. This is done by exploit-
ing the fixed connectivity of the membrane rings. The details are
discussed in the ESI.†

+ξ
n

3

^

center of mass

ξ

n

nξ

n

ρ

ρ

n

Fig. 2 Illustration of quantities used in the definition of concavity ζ in
Eq. (2). ξn and ρn are the position coordinates of ring n in a coordinate
system with ξ aligned along n̂3, the eigenvector for the smallest shape-
tensor eigenvalue that passes through the membrane center of mass. The
shaded region represents a cross section of the membrane in the plane
containing n̂3 and the center of mass. Note that the figure illustrates the
case of a membrane with ζ < 0.

Of particular interest is the concavity probability distribu-

tion, P(ζ ), and the related free-energy function, defined by
F(ζ )/kBT =− lnP(ζ ), where kB is Boltzmann’s constant and T is
absolute temperature. In some systems the distributions obtained
from simple sampling over 100–200 simulations are averaged to
obtain reliable estimates of F(ζ ) over the range of interest for
ζ . In other systems a sizeable free energy barrier precludes ac-
curate estimates of F in the barrier region. In such cases, we
employ a multiple-histogram method that incorporates umbrella
sampling.39 The method was used for the case where the barrier
heights exceed approximately 3kBT . As in previous studies where
one of us has employed this method (see, e.g., Ref. 40), we refer
to the method as the Self-Consistent Histogram (SCH) method.
To implement the SCH method, we carry out many independent
simulations, each of which employs a unique “window potential”
of the form:

Wi(ζ ) =


∞, ζ < ζ min

i

0, ζ min
i < ζ < ζ max

i

∞, ζ > ζ max
i

(3)

where ζ min
i and ζ max

i are the limits that define the range of ζ for
the i-th window. Within each window of ζ , a probability distribu-
tion pi(ζ ) is calculated in the simulation. The window potential
width, ∆ζ ≡ ζ max

i − ζ min
i , is chosen to be sufficiently small that

the variation in F does not exceed ≈ 2kBT . The windows are
chosen to overlap with half of the adjacent window, such that
ζ max

i = ζ min
i+2 . The window width was typically in the range ∆ζ =

0.1D−0.2D. The SCH algorithm was employed to reconstruct the
unbiased distribution, P(ζ ), from the pi(ζ ) histograms. The free
energy follows from the relation F(ζ ) =−kBT lnP(ζ )+const. We
choose the constant such that F = 0 at ζ = ζmin, where ζmin is the
location of the free-energy minimum.

A derivation of the histogram reconstruction method is de-
scribed in Ref. 39. A detailed description of applying the method-
ology to measure the polymer translocation free-energy function
is described in detail in Ref. 40.

In the results presented below, distances are measured in units
of the ring diameter, D, and free energy is measured in units of
kBT .

3 Results and Discussion
Figure 3 shows the scaling of the shape-tensor eigenvalues, R2

1,
R2

2 and R2
3 with respect to L ≡

√
N, where N is the total number

of rings in the membrane. Since N is approximately proportional
to the average surface area of the membrane, L is a rough mea-
sure of its span measured along the surface. Figure 3(a) shows
the scaling results for the HT membrane depicted in Fig. 1(a),
while Fig. 3(b) shows results for the SS membrane illustrated in
Fig. 1(b). In each case, results for ring thickness of w=0 and
w=0.1 are shown. In all cases, the eigenvalues exhibit power-
law scaling. The solid and dashed lines are the best-fit curves for
R2

i ∝ L2νi . The values of the scaling exponents νi are presented in
Table 1.

The exponents ν1 and ν2 are typically close to unity for both
HT and SS membranes, though deviations from this value are
evident for membranes of zero thickness. The exponent ν3 de-
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Fig. 3 Scaling of eigenvalues of the shape tensor as a function of mem-
brane size, L≡

√
N, where N is the total number of rings in the membrane.

(a) Results for HT membranes for ring thickness of w=0 and w=0.1. (b)
Results for SS membranes for ring thickness of w=0 and w=0.1.

HT SS
w=0 w=0.1 w=0 w=0.1

ν1 0.95±0.01 0.99± 0.01 0.92±0.02 0.97±0.02
ν2 0.99±0.01 1.03± 0.01 0.97±0.01 1.02±0.03
ν3 0.79±0.02 0.84± 0.01 0.73±0.02 0.84±0.03

Table 1 Scaling exponents, νi, for the power-law fits to the data shown
in Fig. 3 for the HT and SS membranes depicted in Fig. 1(a) and (b),
respectively.

scribing the scaling of the smallest shape-tensor eigenvalue is
somewhat lower than unity, as expected for a “flat” configuration.
As for the other exponents, ν3 is also somewhat lower for w=0
than for w=0.1. Assuming that the observed scaling persists for
larger membranes, the observation that ν3 < ν1 ≈ ν2 ≈ 1 suggests
that the membrane is flat. In this phase, the membrane thick-
ness grows with L, but at a slower rate than that of the lateral
dimensions. Such behavior also characterizes self-avoiding co-
valent membranes, in which local excluded-volume interactions
give rise to an effective bending rigidity that promotes membrane
flatness.13 The “roughness” exponent ν3 observed for linked-ring
membranes here tends to be somewhat larger than that measured

for covalent membranes.17–19,41

Figure 4(a) shows the variation of R2
i with ring thickness, w,

for HT membranes of size M=11, as well as for SS membranes
of size M=10. Both of the large eigenvalues, R2

1 and R2
2, increase

monotonically with increasing w. This is indicative of an over-
all increase in the size of the membrane. However, as evident in
the close up for R2

3 in Fig 4(b), the scaling of this eigenvalue is
qualitatively different. In the case of SS membranes, this quantity
increases slightly, though it appears to level off around w ≈ 0.18.
In the case of HT membranes the variation is weaker and non-
monotonic, displaying a maximum near w ≈ 0.1. Figure 4(c)
shows the membrane shape anisometry, η ≡ (R2

1 +R2
2)/2R2

3, with
w. For the SS membrane, η is mostly constant, except at w≥ 0.15,
where there is a small increase. By contrast, the shape anisometry
of the HT membrane increases significantly over the entire range
of w.

Fig. 4 (a) Scaling of eigenvalues of the shape tensor as a function of ring
thickness, w. Results are shown for a SS membrane of size M=10 and a
HT membrane of size M=11. The solid and dashed curves are guides for
the eye. (b) Close up of the data for R2

3 from panel (a). (c) Membrane
anisometry η (defined in the text) vs ring thickness.

Figure 5 provides further insight into the effects of varying the
ring thickness using the case of a HT membrane of size M=11.
Figures 5(a) and (b) show the probability distributions for center-
to-center ring distance and angle between normal vectors, respec-
tively, for pairs of linked rings. Generally, as w increases, the ring-
distance distribution narrows, and the normal vectors of linked
rings are increasingly likely to be perpendicular to each other
(this is the relative ring orientation depicted in the illustration
of Fig. 1(d)). Figures 5(c) and (d) show the same two distribu-
tions except between pairs of neighboring 6-valence rings. As in
Fig. 5(a), the distance distribution narrows, but unlike the previ-
ous case, there is an additional shift toward greater distances as w
increases. This key result explains the increase in R2

1 and R2
2 with

w in Fig. 4. The sharpening of the distribution around θ = 0 (i.e.,
cosθ = 1) with increasing w in Fig. 5(d) indicates that the orien-
tations of neighboring 6-valence rings of the HT membrane are
becoming increasingly aligned as the rings become thicker, likely
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effecting a reduction in membrane roughness.

Fig. 5 (a) Probability distribution for distance between centers of pairs
of linked rings. Results are shown for a HT membrane of size M=11
for various values of w. (b) Distribution for cosθ , where θ is the angle
between normal vectors for pairs of linked rings. The legend is same as
in panel (a). (c) As in (a), except distributions for neighboring 6-valence
rings. (d) As in (b), except θ is the angle between normal vectors of
neighboring 6-valence rings.

The results presented in Figs. 3, 4 and 5 appear to suggest
that linked-ring membranes behave comparably to self-avoiding
covalent membranes in the following manner. Independent of
the membrane shape (square or hexagonal) or linking topol-
ogy (square or triangular), the membrane is flat. Increasing
ring thickness principally affects the pair distribution function of
linked rings. This increases the mean center-to-center distance,
thus increasing the membrane size quantified by R2

i in a manner
analogous to increasing the tethering range of bound particles in
a covalent membrane.

A much more interesting picture emerges, however, when we
examine the membrane concavity, ζ , as defined in Eq. (2). Fig-
ure 6(a) shows the time dependence of ζ for a HT membrane of
size M=5 and ring thickness w=0.15. Generally, ζ tends to fluctu-
ate about the two values of ±0.13, between which it infrequently
executes rapid jumps. The corresponding probability distribution
measured from an average of many such histories is shown in
Fig. 6(b). As expected, the distribution is symmetric about ζ = 0.
In addition, it features two sharp peaks with maxima at ±0.13,
whose widths are a measure of the magnitude of the fluctuations
about these values. The probability at zero concavity is very low
relative to the value at the maxima, consistent with the observa-
tion of infrequent and rapid transitions between the two states.
Physically, this behavior corresponds to the presence of a concave
membrane that periodically transitions to a new state where the
concave side switches from one face to the other. Figure 6(c)
shows a snapshot of a membrane of size M=13 that clearly il-
lustrates the concave shape, qualitatively similar to the concave
shapes observed in microscopy studies of kinetoplasts.9

Let us now examine the properties of the concavity free-energy

0 1 2 3 4 5 6

MC cycles / 10
6

-0.2

-0.1

0
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0.2
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-0.4 -0.2 0 0.2 0.4
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2

4

6

P

(a) (b)

Fig. 6 (a) Time dependence of ζ from a single simulation for a HT mem-
brane of size M=5 and ring thickness w=0.15. (b) Concavity probability
distribution for the same system as in (a). (c) Snapshot illustrating a HT
membrane with concave shape for a system with M=11 and w=0.15.

functions, F(ζ )/kBT = − lnP(ζ ). Figure 7(a)–(f) shows a col-
lection free-energy functions that illustrate the effects of lattice
type, membrane size, and ring thickness. Note the free energy
is measured in units of kBT . Since F (ζ ) = F (−ζ ), we plot func-
tions for ζ ≥ 0 without any loss of information. Figure 7(a) shows
functions for HT membranes of various size, each for fixed ring
width of w=0.15. Two trends are evident. First, the most prob-
able concavity, defined by the minimum in the free energy, ζmin,
increases with size. Second, the free energy barrier at a concavity
of ζ = 0 increases with M. Thus, as the membrane size increases,
it becomes increasingly unlikely that the membrane will sponta-
neously flip to the state with the opposite concavity. For suffi-
ciently large size, the membrane effectively becomes locked into
whichever state the system randomly selected at the beginning
of the simulation. Figure 7(b) reveals that both the most prob-
able concavity, ζmin, and the free energy barrier height increase
with increasing ring thickness. Thus, like increasing system size,
increasing w stabilizes the system by reducing the likelihood of
concavity “flips”.

Figures 7(c) and (d) show the effects of varying membrane size
and ring thickness, respectively, for the SS membranes illustrated
in Fig. 1(b). Likewise, Figs. 7(e) and (f) show corresponding re-
sults for the ST membrane illustrated in Fig. 1(c). The trends are
mostly qualitatively consistent with those for HT membranes. In
each case, there is a free-energy barrier centered at ζ=0, as well
as a free-energy minimum located at ζmin, both of which tend
to increase with membrane size and ring thickness. However,
there are quantitative differences in the results for the HT and
SS membranes. Most notably, the SS-membrane barrier height,
∆F ≡ F(0)−F(ζmin), is smaller than that of the HT membrane
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Fig. 7 (a) Concavity free-energy functions for a HT membrane of ring
thickness w=0.15. Results for various M are shown. (b) As in (a), except
for fixed size of M=11 and various w. (c) Free-energy functions for a SS
membrane of ring thickness w=0.15 for various M. (d) As in (c) except
for fixed size of M=11 and various w. (e) Free-energy functions for an
ST membrane with w=0.15 and various M1 and M2. (f) As in (e), except
for fixed M1=10 and M2=11 and various w.

and appears to level off with membrane size and thickness. By
contrast, the trends for the ST membrane are much closer to the
those of the HT membrane. Specifically, ∆F increases monotoni-
cally with membrane size and ring thickness, with values consid-
erably greater than those of SS membranes of comparable size.

Figures 8(a) and (b) show a comparison of the variation of
ζmin and ∆F with membrane size for different membranes. As a
rough measure of membrane size for HT membranes, we use the
sum of the areas of the triangles formed by the 6-valence rings
(see Fig. 1(a)). The resulting membrane area is A = c2l2

b(M−1)2,
where lb is the measured root-mean-square distance between
neighboring 6-valence rings, and where c2 = 3

√
3/8. A compa-

rable measure of area for the SS membranes depicted in Fig. 1(b)
has the same form but with c2 = 1. Likewise, for the ST mem-
branes of Fig. 1(c), c2 =

√
3/2.

Figure 8(a) shows that ζmin varies linearly with A for each of the
three membrane types. At any given A, the values are comparable
for the different membranes. Figure 8(b) shows the monotonic
increase of ∆F with A for HT and ST membranes. By contrast,
the much smaller barrier for SS membranes increases only for
A . 150, following which it levels off.

Fig. 8 (a) Variation of ζmin with membrane area A, and (b) variation of
the barrier height ∆F with A for the three types of membrane shown in
Fig. 1. The definition of A is given in the text. In each case, the ring
width is w=0.15. (c) Variation of ζmin with w, and (d) variation of ∆F
with w. Results are shown for the HT and SS membranes, each of size
M = 11, and for ST membranes of size M1=10 and M2=11.

Figure 8(c) and (d) shows the variation of ζmin and ∆F , respec-
tively, with ring thickness w. Results are shown for HT and SS
membranes, each of size M=11, as well as for ST membranes of
size M1=10 and M2=11. For each membrane, ζmin varies linearly
with w. Note that the areas of the membranes at any given w
differ slightly, which may account for the somewhat larger values
for the ST membranes. The most notable trend in Fig. 8(d) is the
qualitative difference between the results for the SS membrane
relative to those for the other membrane types. The leveling off
of the barrier height for w &0.15 for SS membranes stands in con-
trast to the continuing increase for HT and ST membranes.

A crude explanation for the linear scaling of ζmin with A fol-
lows from employing a simple mathematical model in which the
membrane is approximated as a small portion of a spherical sur-
face with a uniform mass density. As described in the appendix,
this model predicts an approximately linear relation between ζ

and A, the area of the concave surface. A linear fit to the pre-
dicted curve, shown in Fig. 11, yields a slope that is comparable
to, though slightly greater than the value measured for the HT
membrane in Fig. 8(a) for the case of w=0.15. The roughness of
the membrane (clearly not accounted for in the smooth surface
depicted in the inset of Fig. 11) likely accounts in part for the
small quantitative discrepancy.

A complementary measure of the degree of membrane concav-
ity is the Gaussian curvature, κG. The Gaussian curvature is easily
calculated at any node on a triangular mesh using the method de-
scribed by Meyer et al.42 This can be conveniently applied to an
HT membrane, where each 6-valence ring is essentially a node
in a triangular mesh. We have carried out such calculations for
an HT membrane and measured the mean κG. The details of the
procedure are described in Section IV of the ESI.† The insets of
Fig. 9(a) and (b) show the variation of κG with ring thickness,
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w, and with membrane size, M, respectively. The main part of
each panel of the figure shows the variation of the characteristic
length Rc ≡ 1/

√
κG with w and M. The results are illuminating.

Perhaps the most notable point is the fact that κG > 0 for all sys-
tems measured. The positive Gaussian curvature indicates that
the membrane is indeed concave, as suggested by the results for ζ

above. In Fig. 9(a) we note that κG and Rc are only weakly depen-
dent on the ring thickness, except at w = 0, where the curvature
is notably lower. By contrast, Fig. 9(b) shows that the curvature
rapidly decreases with increasing membrane size. Remarkably, Rc

increases linearly with M. This trend has a straightforward inter-
pretation if the membrane is modeled as a portion of a spherical
surface as in the inset of Fig. 11. In this picture M is proportional
to the diameter of the membrane as measured along its surface,
and the quantity Rc is the radius of the underlying sphere. The
proportionalisty Rc ∝ M then implies that the curvature increases
in a manner that fixes the angle θ0, defined in the figure. In this
sense, the membrane shape is preserved as both membrane diam-
eter and radius of curvature co-increase.

Fig. 9 (a) Variation of Rc (≡ 1/
√

κG) with ring thickness for a HT mem-
brane of fixed size M = 9. The inset shows the corresponding variation of
the Gaussian curvature, κG, with w. (b) Variation of Rc with membrane
size M for a HT membrane of fixed ring thickness w = 0.15. The inset
shows the corresponding variation of the Gaussian curvature with M.

Note that the presence of intrinsic curvature complicates the
simple interpretation, based on the scaling of R2

i in Fig. 3, that
the membrane is flat, i.e. that the lateral dimensions of the mem-
brane as measured along the surface grow faster than its thick-
ness with increasing system size. As a result of this curvature
the exponents ν1 and ν2 are expected to be somewhat lower than
unity, while the roughness exponent, ν3, is expected to be larger
than a value determined solely by out-of-plane fluctuations in the
membrane shape. To estimate the magnitude of these effects we
employ again the spherical-surface model described above. As
shown in the appendix, this simple model predicts minimal ef-
fect on the values of ν1 and ν2. In addition, it suggests that the
contribution to R2

3 is small compared to that from the effects of
membrane roughness. Consequently, it is reasonable to interpret

the scaling results as implying linked-ring membranes are flat.
The trends evident in Figs. 7 and 8 suggest that concavity ap-

pears to be an intrinsic property of the simple membranes com-
posed of rigid interlocking circular rings examined here. The
growth of the free-energy barrier ∆F with membrane area for
membranes with triangular linking topology (HT and ST mem-
branes) suggests that a concave configuration is increasingly pre-
ferred as membranes of this type grow in size. The situation is
qualitatively different, however, for membranes with a square
linking topology (SS membranes). In this case the barrier is much
smaller and approaches a constant value as A increases, and thus,
the tendency toward concavity is much weaker. The similarity of
the behavior for HT and ST membranes suggests the qualitatively
different results for the SS membrane is not due to the shape
of the membrane (square, rather than hexagonal), but rather its
linking topology (triangular, rather than square). It seems that
the “tighter” triangular linking topology (i.e. a higher linking
valence) underlies the spontaneous formation of stable concave
structures. Increasing the ring thickness has the combined ef-
fect of swelling the size of the membrane, as noted in Fig. 4,
and increasing the tendency toward concave shapes, as noted in
Fig. 8(d).

It is instructive to compare the concavity of the linked-ring
membranes to that of covalent membranes of a type examined
in previous studies. As an example, consider a membrane com-
posed of hard spherical particles of diameter σ connected through
a fixed network of tethers, each to a small number of neighbor-
ing particles. The interaction energy between tethered particles
is zero, unless the particles overlap or distance between them ex-
ceeds some limit, b, in which case it is infinite. Such self-avoiding
athermal membranes are known to be flat. Using this model we
have carried out simulations of hexagonal membranes with the
triangular tethering network. This is analogous to the HT mem-
brane shown in Fig. 1(a), with the 6-valence rings replaced by
hard spheres, and the 2-valence rings effectively replaced by the
tethers. To make the comparison meaningful, we choose the pa-
rameter values of σ and b to yield the mean and variance of
the distance between tethered particles to match that between
the centers of the 6-valence rings in the linked-ring membrane.
Figure 10 shows concavity free-energy functions for linked-ring
membranes of ring thickness w=0.15 and the corresponding co-
valent membranes for various M. As expected, F(ζ ) for the cova-
lent membrane shows a negligible barrier for any membrane size,
in stark contrast to the linked-ring membranes. As well, functions
rise steeply at much smaller ζ than those for covalent membranes.

The results shown in Fig. 10 highlight the fact that the spon-
taneous concavity of small linked-ring membranes does not arise
simply from the presence of excluded-volume interactions, which
are also present for the covalent membrane. Instead, it seems to
be a consequence of the form of the anisotropy in these interac-
tions; that is, the excluded volume depends strongly on the rela-
tive orientation of any pair non-linked rings, as does the range
of the accessible center-to-center separation distance between
linked rings. A loose analogy is the spontaneous entropy-driven
orientational ordering in colloidal liquid crystals arising from the
orientational anisotropy in the excluded-volume interaction be-
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Fig. 10 Concavity free-energy functions for hexagonal-shaped mem-
branes. Results for various sizes are shown for a HT membrane with
ring thickness w=0.15 and for an equivalent covalent membrane, as de-
fined in the text. The dashed black curves show results for modified HT
membranes where excluded-volume and linking interactions were consid-
ered only for pairs of rings that share a linking partner.

tween elongated colloidal particles.43

As noted in the introduction, self-avoiding covalent membranes
are flat as a result of local excluded-volume interactions, which
give rise to an effective bending rigidity, while interaction sites
separated by longer distances (as measured along the membrane)
play no significant role.13 To determine whether the concavity
of linked-ring membranes likewise arises from local anisotropic
excluded-volume interactions, we carry out a calculation for a
linked-ring system modified as follows. For pairs of rings that are
either linked or which have a common linking partner, the tests
for linking and overlap are implemented as before. For all other
pairs of rings, the tests for linking and overlap are ignored in the
MC algorithm. This means that pairs of rings separated by two or
more links are permitted to overlap, for example in a “taco” con-
figuration. The simulations were carried out for HT membranes
of various sizes for w=0.15. The calculated free-energy functions
are overlaid shown as dashed lines in Fig. 10. The functions for
the modified system are virtually identical to those for the orig-
inal membranes, with only a small increase in F for low ζ . We
conclude that membrane concavity does indeed arise from local
interactions between rings.

As noted earlier, a key motivation for the present study is to
provide some insight into the observed properties of kinetoplasts,
structures consisting of thousands of interlinking circular DNA
molecules. Two simulation results stand out as possibly relevant
for kinetoplasts. The first is the monotonic increase in the mem-
brane size with increasing ring thickness, evident in Figs. 3 and
4. By comparison, Soh et al. found that kinetoplasts increased in
size with the effective width of the DNA rings, which is controlled
by varying the ionic strength of the solvent.11 The second result
is the emergence of intrinsic curvature giving rise to the concave
structures, as seen for example in the snapshot of Fig. 6, which

is also a property of kinetoplasts. The other naturally occurring
planar catenated network, the capsid of the HK97 virus, is also
found in a strongly curved state.5 Although curved surfaces can
easily be constructed from flat surfaces through various means,
such as a tailor-like procedure of cutting and removing wedges44

or through a purse-string mechanism, it is surprising and notable
that the simple linking networks such as those shown in Fig. 1
exhibit this property.

Some caveats are in order here. To manage the computational
cost our simulation model is necessarily simplistic and ignores nu-
merous features of the real system whose effects may well be non-
negligible. For example, the kinetoplast DNA mini-circles have a
typical contour length of several Kuhn lengths and are thus flex-
ible objects, in contrast to the rigid circular rings in the model.
In addition, the membrane linking structures shown in Fig. 1 are
somewhat arbitrary, though convenient, choices. An alternative
and perhaps more realistic approach might be selection of a ran-
dom linking topology chosen in a manner as in Ref. 36. Finally, we
note the relatively small size of the membranes employed in the
simulation. Even the largest model membranes contain far fewer
rings than kinetoplasts. They are also far fewer than the typi-
cal number of nodes or particles used in simulations of covalent
membranes. Unfortunately, simulation of larger catenated net-
works is not computationally feasible at present. Consequently,
it remains an open question as to whether the observed trends
will persist for much larger membranes. Still, future simulations
may eventually remedy these limitations by using more realistic
models, and we view the present simulation study as an impor-
tant first step toward understanding the behavior of catenated
networks such as kinetoplasts.

4 Conclusions
In this study, we use Monte Carlo simulations to examine the sta-
tistical properties of “membranes” composed of 2D networks of
linked rings. This work is largely inspired by recent experiments
studying the physical properties of kinetoplasts, chain-mail-like
structures found in the mitochondria of trypanosome parasites
consisting of thousands of catenated circular DNA molecules.
To keep the simulations computationally feasible, we employ a
highly simplified model using hard, rigid, circular rings that are
linked together in a regular lattice pattern, and consider mem-
branes that are effectively much smaller than kinetoplasts. Gener-
ally, the scaling of the average membrane dimensions with system
size suggest that the networks are flat, in the sense that the lat-
eral dimensions grow much faster than the membrane thickness.
Increasing ring thickness tends to swell the membrane, qualita-
tively consistent with observations from kinetoplast experiments.
Remarkably, we find that the membranes tend to form concave
structures that qualitatively resemble the shapes observed in kine-
toplasts. This feature is of entropic origin and arises from local
anisotropic excluded-volume interactions between rings. The de-
gree of concavity increases with ring thickness and tends to be
more pronounced in networks with a higher linking valence.

Future work will focus on refining the model to make it better
resemble the experimental system. Two relevant features to incor-
porate are flexibility of the rings and a random linking topology
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with the “correct” mean valence. It will be of interest to deter-
mine whether the observed membrane concavity is affected by
such changes. Another topic of interest is the effect of holes on
the conformational properties of linked-ring membranes, a fea-
ture recently studied in the context of covalent membranes.45 A
longer-term goal is developing a more computationally efficient
coarse-grained membrane model using the measured properties
of the present model system. Such a model would effectively fa-
cilitate simulations of much larger membranes that better resem-
ble kinetoplasts.

A Appendix

In this appendix, we examine a simple model of a concave surface
to help understand the observed variation of ζmin with system size
in Fig. 7(a) and 8(a). The model is also used to estimate the
effects of intrinsic curvature on the scaling exponents obtained
from fits to the data in Fig. 3.

Consider a two-dimensional surface constructed from a portion
of the surface of a sphere of radius R, as illustrated in the inset of
Fig. 11. The surface is of uniform mass density. It can be shown
that the area of the surface is

A = 2πR2(1− cosθ0), (4)

and that the z-component of the center of mass is given by zcm =
1
2 R(1− cosθ0), where the angle θ0 is defined in the figure. The
concavity ζ can be calculated as

ζ =
1
A

∫
S

√
x2 + y2(zcm− z)da.

Using spherical coordinates to evaluate the integral, it is easily
shown that

ζ

R2 =

[ 1
3 sin3

θ0− 1
4 (1+ cosθ0)(θ0− sinθ0 cosθ0)

]
1− cosθ0

. (5)

In Fig. 11(a), the blue curve shows the variation of ζ/R2 vs A/R2,
calculated using Eqs. (4) and (5), respectively, for θ0 ranging from
0 to 45◦. The function is only slightly curved across this range. A
linear fit to the data, shown as the dashed red line, yields a slope
of m = 0.0075, and so ζ/R2 ≈ 0.0075A/R2.

In applying this model to analyze the concavity of linked-
ring membranes, we note that the curvature radius R may it-
self depend on the membrane size, as quantified by the total
ring number N, as do both A and ζ . Nevertheless, the fact that
ζ (N)/R(N)2 ∝ A(N)/R(N)2 implies ζ (N) ∝ A(N) with the same
proportionality constant, in this case the value m = 0.0075. In
Fig. 8(a) the most probable concavity, ζmin follows the approxi-
mate scaling ζmin ≈ 0.0061A for the case of HT membranes with
a triangular bonding linking network. The proportionality con-
stant of 0.0061 compares reasonably well to the value of 0.0075
obtained from the linear fit to the curve in Fig. 11 above. The
difference is attributable to several approximations, including the
choice of shape and curvature of the model surface and the ne-
glect of thermal fluctuations in the surface. Indeed, the presence
of undulations in the surface would contract its effective area
(when projected onto a sphere) for a given M, contributing to the

+z

oe

R

(a) (b)

Fig. 11 (a) Variation of scaled concavity, ζ/R2, with scaled surface area,
A/R2, for a surface constructed from a portion of a sphere of radius
R. The dashed red line is a linear fit to the data. The inset shows an
illustration of the surface (shaded in blue) in relation to the underlying
spherical surface and also shows the definition of θ0. (b) Scaled shape-
tensor eigenvalues, R2

1/R2 and R2
3/R2 vs scaled surface area A/R2 for the

spherical shell model shown in the inset of Fig. 11. The solid curves
show power-law fits to the two data sets, which yield effective scaling
exponents of ν1=0.977 and ν3=1.997. The ratio R2

3/R2
1 is also shown.

observed smaller value of the proportionality constant. Although
the model neglects such subtle effects, it nevertheless provides a
simple explanation for the variation of the most probable concav-
ity with membrane size. Finally, note that this model must even-
tually break down for sufficiently large A/R2, most obviously in
the regime θ0 > π/2, where the predicted membrane edge length
decreases with membrane area.

The model can also be used to estimate the effects of concavity
on the scaling properties of the shape-tensor eigenvalues, R2

i . In
Fig. 3, we noted that the smallest eigenvalue R2

3 is typically an
order of magnitude smaller than R2

1 and R2
2. In addition, the cor-

responding scaling exponents ν1 and ν2 are close to unity while ν3

are somewhat smaller. Taken together, these observations appear
to suggest that the membrane is flat, in the sense that the lateral
size grow faster than the (smaller) membrane thickness. How-
ever, long-range curvature complicates this interpretation. The
concavity leads to an additional contribution to R2

3, which could
grow with membrane size. This is expected to increase the effec-
tive exponent, ν3, beyond the value arising solely from membrane
shape fluctuations, as well as reduce ν1 and ν2 from unity.

To quantify these effects, we again employ the smooth con-
cave surface illustrated in the inset of Fig. 11(a) and calculate the
variation of the scaled eigenvalues R2

1/R2 and R2
3/R2 with scaled

surface area, A/R2. (Note that R2
1 = R2

2, by symmetry.) The results
are shown in Fig. 11(b) for θ0 ≤ 45◦. In this range, the eigen-
values both approximately exhibit power-law scaling. The effec-
tive scaling exponent for R2

1 is ν1 = 0.977, very close to the value
of unity expected for flat membranes without long-range curva-
ture. The effective exponent for R2

3 of ν3 = 1.997 is considerably
larger. However, note that the ratio of the eigenvalues, R2

3/R2
1, is

very small, varying between 3× 10−4 and 3× 10−2. By contrast,
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R2
3/R2

1 = O(10−1) in Fig. 3. This suggests that the value of R2
3

is mainly determined by the shape fluctuations in the linked-ring
membranes rather than by long-range curvature. We note that the
exponent ν3 extracted from fits to the data in Fig. 3 and listed in
Table 1 tend to be somewhat larger than values (typically ≈ 0.6)
measured for covalent membranes. It is possible that membrane
curvature, which leads to such a steep increase in R2

3 with area
in Fig. 11(b), contributes to this larger value. Regardless, the
combined results of Fig. 3 and 11(b) suggest that the lateral di-
mension of a curved linked-ring membrane (measured along the
surface) grows faster than its thickness as the total ring number
N increases.
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