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nn-PINNs: Non-Newtonian Physics-Informed Neural
Network for complex fluid modeling†

Mohammadamin Mahmoudabadbozchelou,a George Em. Karniadakis,b and Safa Jamalia†

Time- and rate-dependent material functions in Non-Newtonian fluids in response to different defor-
mation fields pose a challenge in integrating different constitutive models into conventional compu-
tational fluid dynamic platforms. Considering their relevance in many industrial and natural settings
alike, robust data-driven frameworks that enable accurate modeling of these complex fluids are of
great interest. The main goal is to solve the coupled Partial Differential Equations (PDEs) consisting
of the constitutive equations that relate the shear stress to the deformation and fully capture the
behavior of the fluid under various flow protocols with different boundary conditions. In this work, we
present Non-Newtonian Physics-Informed Neural Networks (nn-PINNs) for solving systems of cou-
pled PDEs adopted for complex fluids flow modeling. The proposed nn-PINN method is employed to
solve the constitutive models in conjunction with conservation of mass and momentum by benefiting
from Automatic Differentiation (AD) in neural networks, hence avoiding the mesh generation step.
nn-PINN is tested for a number of different complex fluids with different constitutive models and
for several flow protocols. These include a range of Generalized Newtonian Fluids (GNF) empirical
constitutive models, as well as some phenomenological models with memory effects and thixotropic
timescales. nn-PINN is found to obtain the correct solution of complex fluids in spatiotemporal
domains with good accuracy compared to the ground truth solution. We also present applications
of nn-PINN for complex fluid modeling problems with unknown boundary conditions on the surface,
and show that our approach can successfully recover the velocity and stress fields across the domain,
including the boundaries, given some sparse velocity measurements.
Key Words: Data-Driven Constitutive Modelling; Physics-Informed Machine Learning; Non-
Newtonian Fluids; Complex Fluid; Soft Material

1 Introduction
A vast majority of fluids are considered non-Newtonian with re-
spect to their response to an applied deformation/flow owing to
various states of evolving internal structures. Complex fluids ex-
hibit a wide range of rheological behavior to different flow con-
ditions1–15, and hence their behavior becomes rate- and time-
dependent. As the material’s response to an applied deforma-
tion or stress becomes more complicated, so does the constitu-
tive model of choice to describe such response, resulting in more
model parameters and hence more experimental protocols to de-
termine those parameters. Decades of research effort in con-
structing mathematical expressions that describe such complex
rheological behavior through closed-form constitutive equations
has contributed greatly in better understanding and designing

a Department of Mechanical and Industrial Engineering, Northeastern University,
Boston, Massachusetts 02115
b Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
† Corresponding author, s.jamali@northeastern.edu

these complex fluids and their processing conditions. Nonethe-
less, in order to design fluids with desirable behavior, or to pre-
dict their mechanical features, one critically needs to solve their
constitutive differential equations for realistic flow and process-
ing conditions. This requires the ability to mimic the flow in dif-
ferent geometries, for different material functions, and different
flow protocols, whether the goal is to model blood flow in mi-
crocapillaries or to recover crude oil flow during deep water ex-
traction. Conventional computational fluid dynamic (CFD) codes
commonly solve a series of mass and momentum conservation
equations for a Newtonian fluid such as air or water, in which the
viscosity is constant regardless of the deformation rate or time.
However, when dealing with nuances of different complex fluids
such as yielding behavior, some CFD codes fail to capture the real-
istic behavior or they become computationally too expensive and
prohibitive. Thus, solvers that enable a facile choice of consti-
tutive models for non-Newtonian fluids and can be adapted for
arbitrary geometries and boundary conditions are of great impor-
tance and interest across many disciplines.
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Over many decades, several classes of constitutive models have
been developed with each capturing different aspects of non-
Newtonian fluids. The simplest class of constitutive models is re-
ferred to as Generalized Newtonian Fluid (GNF) equations. GNFs
are a class of empirical constitutive equations in which differ-
ent rate-dependent functional forms are designated to replace
the constant viscosity in Newtonian constitutive law1–3. There
exists a wide range of GNF models, such as the simple power-
law (PL) model with only two model parameters, the Herschel-
Bulkley model with an additional parameter to represent the yield
stress behavior of the material, and the Carreau-Yasuda model
with five parameters to capture the low and high viscosity limits
of the material. In general, GNFs only provide a functional form
for the viscosity and the other material functions, namely first
and second normal stress differences, are not described through
these equations. Furthermore, GNFs simply provide a rate de-
pendent viscosity, but do not capture the intrinsic viscoelastic or
thixotropic timescales associated with structured complex fluids.
The time-dependent behavior of complex fluids manifests in vis-
coelasticity and/or thixotropy depending on the source of such
time-sensitivity. Although viscoelasticity is a common feature of
many non-Newtonian fluids, it is not the only property of the
fluid associated with an intrinsic timescale. Thixotropy is com-
monly referred to the sensitivity of the viscosity to the history
of strain rate16,17, and is commonly manifested in thermokine-
matic memory of the fluid5,8,18 and enhanced rheological hys-
teresis19,20. In other words, these thixotropic effects originate
from evolution of the microstructure of the material as a result
of the interplay between the natural structure formation of the
material and shearing forces exerted by the flow. While many
common fluids show different levels of thixotropy21, representing
such complex microstructurally-driven macroscopic response is
far from trivial. Many complex fluids commonly show thixotropic,
static and dynamic yielding, rate-dependent shear thinning, and
elastic responses under different flow protocols and are referred
to as Thixotropic Elasto-Visco-Plastic (TEVP) fluids22–24. In or-
der to fully capture different time- and rate-dependent phenom-
ena commonly observed in complex fluids, one will need to em-
ploy detailed multi-component phenomenological models to rep-
resent such behavior. For instance, the Iso-Kinematic Hardening
model8,25 considers a combination of a viscoelastic element, in
addition to a sliding block that represents the plastic component.
Predictably, such a detailed model is able to capture a wide range
of time and rate dependent rheological behavior of a complex
fluid; however, the model consists of 9-15 parameters that is in-
evitably challenging to be determined.
Note that the constitutive equations mentioned above merely rep-
resent a limited number of models that have been developed,
in order of computational complexity. For many decades, phe-
nomenological models from early models such as Maxwell and
Kelvin, to most recent such as IKH and other thixotropic mod-
els with microstructural parameters16 have been developed and
employed for understanding the underpinning physics of a prob-
lem. For each of these classes of constitutive models, from em-
pirical GNFs models to phenomenological constitutive equation
with embedded memory and elastic effects, one critically needs to

consider the material under the question, the flow protocol, and
the material function of interest before choosing the appropriate
model. For a pedagogical review of different models and their
capabilities, refer to Morrison 1 , Macosko 2 , Bird et al. 3 , Phan-
Thien and Mai-Duy 26 . Nonetheless, as the material becomes
multi-component and more complex, the number of additional
parameters required to fully capture the rheological response of
the fluid to an applied deformation increases and eventually be-
comes computationally prohibitive. The emergence of multiple
time and length scales due to structure formation and break up at
different local or global scales18–20 requires combining different
models or increasing the number of parameters to make the CFD
modeling more accurate.
Many engineering and scientific software packages have been de-
veloped to perform fluid mechanical simulations of a given geom-
etry, material, and processing condition based on discretization of
the system’s governing partial differential equations (PDEs)27–29.
Although discretization is very helpful in solving any system of
PDEs, it also brings its own complexities and requires additional
expertise and attention to how one should discretize a particu-
lar domain30,31. For instance, mesh-independent frameworks are
important factors that should be considered in traditional PDE
solvers to achieve the correct solution. Hence, an alternative nu-
merical platform that reduces the computational complexity of
implementing a fully resolved constitutive model to identify the
behavior of a system is of great interest in general. Data-driven
methods could lead to a significant improvement to be made in
this area.
With an ever-increasing computational power and the ability to
process data at an unprecedented rate in recent decades, Artifi-
cial Intelligence (AI) and Machine Learning (ML) algorithms have
become an undeniable and extremely powerful method of choice
for understanding and predicting different phenomena. ML al-
gorithms are being used extensively in all avenues of science
and data-driven models have become indisputable and powerful
tools in engineering. There exists a great number of statistical-
based ML frameworks in order to facilitate CFD modeling32–34.
However, there only exists a handful of studies employing ML
algorithms in the field of soft matter and more specifically rhe-
ology35–41. By utilizing the right method of ML, we can lever-
age such advanced methodologies in material science as well,
and alleviate the issues facing in utilizing the traditional neu-
ral network frameworks. For instance, it it absolutely essential
to train these traditional ML algorithms on extremely large data
sets to achieve an accurately predictive metamodel. However, re-
cent developments of physics-based ML algorithms eliminate the
need for big data sets by including the physical laws directly in
the training process. The pioneering work of Raissi et al.42 on
Physics-Informed Neural Networks (PINNs) paved the way for
physics-based ML algorithms to resolve these issues. The main
concept is to add physical governing equations to the neural net-
work (NN) framework to achieve a meaningful metamodel. By
incorporating the governing physical laws by constraining the NN
framework to adhere to these physical laws, the need for large
training data sets can also be eliminated. Subsequently, different
forms of PINNs was introduced and applied to solve various fluid
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mechanics problems as well as heat transfer problems43–55.
There are various methods of incorporating the essential physics
into different ML algorithms. In the case of neural networks, the
physical governing laws can be included implicitly or explicitly.
Implicit inclusion of physics can be more effective when the phys-
ical laws that govern the phenomena are not particularly accu-
rate. On the other hand, explicit inclusion of physics in form of
differential equations is proven to be very efficient in accelerat-
ing solution of problems with known constitutive models. In this
work, we present an explicit methodology for including physical
intuition, referred to as non-Newtonian Physics-Informed Neural
Network (nn-PINN), to construct the spatiotemporal solution for
a complex fluid regardless of the type of rheological constitutive
model. The goal of this work is to establish a data-driven frame-
work that will preserve the essential physics of the problem while
providing accurate predictions of rheological response of a given
non-Newtonian fluid. Thus, in the following we first describe the
metamodeling approach using NNs in the form of nn-PINN in sec-
tion 2. Subsequently, we present results for various flow protocols
and complex fluids in section 3, followed by concluding remarks
and in section 4.

2 Problem Setup and Methodology

2.1 Rheological Constitutive Models

In this study, a wide range of rheological models from the sim-
plest GNF constitutive equation to a very complex TEVP model
are considered. In this section the mathematical form of these
equations are discussed.
The well-known PL model can be simply expressed as equation 1,
which represents a single exponent rate dependence for the vis-
cosity. In this model η and n are the consistency index and the
power law exponent. Based on the exponent power of the model,
it can take a shear thinning or shear thickening form.

σxy = ηγ̇
n (1)

The Carreau-Yasuda (CY) constitutive equation, another GNF
model, describes the variation of viscosity with shear rate through
five parameters, capturing the low and high frequency viscos-
ity limits commonly observed in polymer solutions and melts.
This model can be written as Equation 2. The empirical param-
eters, namely as λ , a, and n, describe critical rates at which the
fluid starts to transition from a plateau viscosity to shear-thinning
regime, how sharp this transition is, and the slope of thinning
regime, respectively. Also, η∞ and η0 are the high-shear rate and
the zero-shear viscosities, respectively. Also, η∞ and η0 are the
high-shear rate and the zero-shear viscosities, respectively.

σxy = {η∞ +(η0−η∞)[1+(γ̇λ )a]
n−1

a }γ̇ (2)

Many complex fluids exhibit a yield stress behavior manifesting in
a diverging viscosity at vanishingly small shear rates. These fluids
start to flow only upon reaching a critical yield stress56,57. In the
simplest form, this behavior can be captured through a Bingham
plastic model58 shown as equation 3, where σy is the yield stress,

and η is the viscosity at very high rates.

σxy = σy +ηγ̇ (3)

The majority of the yield stress fluids exhibit a shear rate de-
pendency upon reaching the yield stress59–63. A combination of
equations 1 and 3 leads to the so-called Herschel-Bulkley (HB)
model64 with three different parameters, in which the viscosity
itself is related to the shear rate in a non-linear way.

σxy = σy +ηγ̇
n (4)

Complex fluids often exhibit a time-dependent stress response un-
der flow owing to their inherent viscoelastic and/or thixotropic
timescales65–67. Since the transient behavior of many relevant
flow protocols cannot be recovered through GNFs, more sophisti-
cated constitutive equations capable of describing these memory
and elastic effects are required. The Maxwell constitutive equa-
tion is one of the simplest constitutive models that is constructed
by combining a purely viscous and a purely elastic part, and can
be written as equation 5, in which η is the viscosity and G is the
elastic modulus of the fluid.

σxy +
η

G
σ̇xy = ηγ̇ (5)

In order to fully capture different time and rate dependent phe-
nomena commonly observed in complex fluids, one will need to
employ detailed multi-component phenomenological models to
represent such behavior. A TEVP constitutive model includes the
elastic, plastic, viscous, and thixotropic behavior all in once. An
example of a TEVP model is shown in Equation 6, including six
model parameters. In this equation, G is the elastic modulus,
ηs and ηp are background fluid viscosity and plastic viscosity re-
spectively, σy is the yield stress, γ̇ is the shear rate, and k+ and
k− are system-specific build-up and breakage time constants for
the time-evolution of the structure parameter. As the TEVP model
brings together viscoelastic and plastic components, ηp represents
the viscosity that emerges from the particulate phase’s structure
under flow, and as such can be considered a plastic viscostiy.σ̇xy(t) = G

ηs+ηp
[−σxy(t)+σyλ (t)+(ηs +ηpλ (t))γ̇(t)]

λ̇ (t) = k+(1−λ (t))− k−λ (t)γ̇(t).
(6)

2.2 Fluid Motion Equations

The general format for the continuity equation as well as fluid
equation of motion, which express conservation of linear momen-
tum are shown as Equation 7. In these equations, ρ is the density,
v is the velocity vector, and σ is the stress tensor.{

∂ρ

∂ t +∇ · (ρv) = 0
∂ (ρv)

∂ t +∇ · (ρvv) =−∇ · pI−∇ ·σ +ρg
(7)

In the case of incompressible flow by neglecting the effect of body
forces, the continuity and conservation of momentum can be writ-
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ten as Equation 8: {
∇ · v = 0
Dv
Dt =−

1
ρ

∇ · pI− 1
ρ

∇ ·σ
(8)

In the case of two-dimensional flow in Cartesian coordinate, a
velocity field of v = (u,v) can be assumed for the fluid motion.
Hence, the system of PDEs can be written as Equation 9:

∂u
∂x +

∂v
∂y = 0

∂u
∂ t +u ∂u

∂x + v ∂u
∂y =− 1

ρ

∂P
∂x −

1
ρ
( ∂σxx

∂x +
∂σxy
∂y )

∂v
∂ t +u ∂v

∂x + v ∂v
∂y =− 1

ρ

∂P
∂y −

1
ρ
(

∂σyx
∂x +

∂σyy
∂y )

(9)

Based on different constitutive equations for the stress tensor ap-
peared in Equation 9, various systems of PDEs are obtained to
model complex fluids based on the type of material at hand. Even
for a simple non-Newtonian fluid expressing PL behavior, the
equation of motion becomes challenging to solve. There are sev-
eral solvers for GNF models available; however, employing these
solvers is far from trivial for modeling non-Newtonian flows for
different geometries, and requires close familiarity with the soft-
ware package. Moreover, the accuracy required to fully capture
the detailed behavior of a complex fluid in various conditions will
not be obtained due to the limitations of traditional numerical
solvers. Here, we are leveraging the recent advancements in ma-
chine learning to solve the fluid flow behavior of complex fluids,
regardless of the the complexity of the model at hand. To this
aim, we include a combination of equation 9 and the rheologi-
cal equations describing a complex fluid to the NN, and aim to
predict the flow in a spatiotemporal domain.

2.3 Flow Protocols

In this work, we chose various flow protocols and parameters
to show the independence of our proposed method to any
specifications on the type of flow. In order to prevent duplication
and having a reference for all of the future results, we are
summarizing the flow protocols applied here in Figure 1. We
study the velocity profiles for a range of different constitutive
models upon imposing a series of flow protocols, including
pressure flows, boundary driven flows, strain imposed and stress
imposed flows and oscillatory flow protocols, based on their
relevance to rheological interrogation of complex fluids.

2.4 Physics-Informed Neural Networks

ML frameworks can be categorized in two different approaches
based on the data at hand: supervised learning or unsupervised
learning68. Neural Networks are a subset of supervised ML algo-
rithms, which correlate the complex relations between the inputs
and outputs by creating a computational data-driven framework.
This task is achieved by optimizing the neurons’ variables to min-
imize the discrepancy between the predicted and the actual data.
The traditional NN’s training process is solely based on statistics,
meaning that the NNs generate meta-models based on correla-
tions in statistical variations of different complex systems. Hence,

any prediction from these networks is naturally agnostic to the
physical laws. Here, we are directly injecting the nonlinear phys-
ical governing laws without any prior assumptions such as lin-
earization or local time-stepping to the NN architecture. We in-
clude the physical intuitions explicitly into the NN framework by
leveraging the recent developments in Automatic Differentiation
(AD)69 to differentiate the NN with respect to its input coordi-
nates and model parameters. Figure 2 shows a schematic descrip-
tion of nn-PINN. The input parameters are temporal (t) and spa-
tial coordinates (x), and outputs are velocity (v) and shear stress
(σ). In a thixotropic fluid, the number of outputs can be adjusted
to capture the structure parameter as well. The outputs of this
network are then utilized to calculate the loss function based on
the physical law, initial conditions, and boundary conditions.
We define fi(x,y, t) to be given by the residuals of the system of
PDE equations described in Equation 9 as well as stress tensor
definitions, all in Equation 10.

Res1(x,y, t) = ∂u
∂x +

∂v
∂y

Res2(x,y, t) = ∂u
∂ t +u ∂u

∂x + v ∂u
∂y +

1
ρ

∂P
∂x + 1

ρ
( ∂σxx

∂x +
∂σxy
∂y )

Res3(x,y, t) = ∂v
∂ t +u ∂v

∂x + v ∂v
∂y +

1
ρ

∂P
∂y + 1

ρ
(

∂σyx
∂x +

∂σyy
∂y )

(10)

The traditional Neural Network algorithms are trained by the
"training data", and being tested by the "testing data". However,
in our proposed nn-PINN platform, instead of using data to train
our network, we are using physical equations to guide the train-
ing process. Hence, we do not have a training data/testing data
like the traditional data-based neural networks. In other words,
during the training process, the variables of nn-PINN are learned
by minimizing the loss function, a combination of each equation’s
residual, in addition to the discrepancy between the predicted
and the actual ICs and BCs, described in Equation 11.

MSE = MSER +ω2MSEICs +ω3MSEBCs. (11)

In our system in Equation 11, MSEBC and MSEIC are the
discrepancies between the actual and the predicted values of
the boundary conditions and initial conditions, respectively.
MSER is the residual calculated from the system of PDEs. The
mathematical definition of the these parameters are provided in
Equations 12, 13 and 14.

MSER =
Neqs

∑
j=1

1
NR j

NR j

∑
i=1

(Residual(equation j)(x,y, t))
2 (12)

MSEIC =
Nout puts

∑
j=1

1
NIC j

NIC

∑
i=1

(Predicted(u j,ICi)−Actual(u j,ICi))
2 (13)

MSEBC =
Nout puts

∑
j=1

1
NBC j

NBC

∑
i=1

(Predicted(u j,BCi)−Actual(u j,BCi))
2 (14)

In this study, instead of simply summing the residuals from BC,
IC, and system of PDEs, these losses are added based on some
weight functions. In other words, ωi is the contribution of differ-
ent sources of residual. The main reason for using these weights
is to enable control of the BCs/ICs effects. For instance, in cases
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Fig. 1 Schematic summary of the applied flow protocols in this study and their corresponding kinematics. These flow protocols are chosen due to
their applicability and commonalities in rheological analysis of different non-Newtonian fluids.

Fig. 2 Schematic illustrating the architecture of a Non-Newtonian Physics-Informed Neural Network, which consists of two main parts: a Deep
Neural Network (DNN) associated with the data (left part), and the correlation providing the association with the physical laws (right part). In
the DNN part, the input layer (shown in green) consists of spatial coordinate as x as well as temporal coordinate as t. For visual purposes, the
output layer (shown in blue) contains only two outputs as velocity (v) and shear stress (σ). The layers that correlate inputs to outputs are hidden
layers (shown in dark grey) and contain several neurons. Automatic Differentiation (AD) is employed to differentiate the output of the DNN with
respect to the inputs. Subsequently, the physical governing laws (shown in brown) are introduced to guide the training process. As a motivating
example, for a PL constitutive model as described in Equation 1 included in the network, the definitions of fi() can be written as f1 = σ −µ0 γ̇n and
f2 =

Dv
Dt +

1
ρ

∇ · pI+ 1
ρ

∇ ·σ . The boundary condition (BC) and initial condition (IC) losses are calculated based on the discrepancy between the predicted
and actual value in the boundaries (for BC losses) and at the initial part of the process (for IC losses).
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with a slip BC, the weight of BC losses can be dialed down, so
that the slip length/velocity in a certain domain can be recov-
ered. For this study, since BCs and ICs are well-defined, one will
need to find the best numbers for weights of each part of the loss
function. To this aim, a comprehensive study of the role of these
weights on the accuracy of the nn-PINN based on L2 norm defined
in equation 15 is performed.

L2 =

√
∑

N
n=1 |yactual − ypredicted |2√

∑
N
n=1 |yactual |2

. (15)

It should be noted that all calculations presented here are done
based on a Carreu-Yasuda fluid for a start-up of a flow. Table 2
shows the L2-norm of nn-PINN architectures for different weights.
In this study, weights of BCs and ICs are chosen to be 20 and 50,
respectively.

Table 1 The L2-norm (×10−3) based on different loss definitions based
on their weights for a CY fluid in a start-up of a flow.

ω3

ω2 1 10 20 50

1 5.63 6.25 5.72 5.59
10 4.78 3.21 3.45 4.49
20 6.29 3.77 3.54 3.89
50 7.91 3.76 3.18 4.72

The design of NNs is a significant feature that needs to be exten-
sively studied. The number of layers in a NN architecture as well
as the number of neurons per layer can have an effect on the ac-
curacy of NNs. Hence, the L2 norm as the measure of accuracy
is employed to compare the role of the depth (number of hidden
layers) and width (the number of neurons per layer) of the NN in
nn-PINN framework. This is used based on a predictive nn-PINN
for a GNF (PL as the working model) in a start-up of a flow with
top boundary condition of utop = 1[m/s] to eliminate any system-
specific biases. As the width and depth of system increases, the
NN becomes more complex and the accuracy of the predictions
changes. Nonetheless, this increase of complexity is not always
necessarily in favor of enhancing the accuracy of the predictions.
Often, adding more neurons to the NN can lead to overfitting,
which in turn reduces the efficiency of the algorithm. Table 2
shows the L2 norm of different NN architectures in predicting the
spatiotemporal flow based on a PL model. The architecture of the
nn-PINN framework in this study is constructed by four hidden
layers with 50 neurons in each layer are found to yield the best
levels of accuracy to avoid overfitting.
It should be noted that the loss function is optimized using a com-
bination of Adams optimizer and LBFG-S method together with
Xavier’s initialization method, while the hyperbolic tangent func-
tion is employed as the activation function throughout this work.
The convergence plot and residual losses for the nn-PINN archi-
tecture are shown in this section. The residual losses of the nn-
PINN training phase are shown in Figure 3. As it can be inferred
from the results, we only require ∼ 20,000− 25,000 iterations to
reach a properly trained metamodel that is deemed ready to be

Table 2 Errors in the L2 norm for different NN architectures based on
their number of hidden layers (depth) and neurons per layer (width) on
a single sample, keeping all other variables constant.

Width
Depth

1 2 4 8

10 0.169 0.0642 0.0346 0.0152
20 0.119 0.0444 0.0263 0.0109
50 0.107 0.0231 0.00318 0.0111

100 0.0966 0.0222 0.00833 0.00774

used for predictions. It should be noted that the criteria used
throughout this study for the weighted total residual is to be less
than 0.005.

Fig. 3 Required iterations during optimization of the loss function in
the training process of nn-PINN. The sudden drop in the loss is caused
by switching from the Adam to the L-BFGS optimizer.

All of the training and validations are done on a computer with
32GB of RAM and an i7 processor. The longest training run time
was two hours, with each training lasting an average of one hours.
This means that only with a few hours of proper training, one can
employ the trained nn-PINN to predict the spatiotemporal domain
of a non-Newtonian fluid. It is worth mentioning that after train-
ing is done, the predictions can be made virtually instantaneously.

3 Results and Discussion
Our main goal is to present a well-established, reliable, and ac-
curate framework based on physics-based ML algorithm in or-
der to solve fluid flow problems containing non-Newtonian flu-
ids. In other words, the NN is employed to find the solution to
a rheologically relevant constitutive model in a given spatiotem-
poral domain with certain initial and boundary conditions. Thus,
we present the predictions made using our nn-PINN framework
for the non-Newtonian fluids following different GNF constitu-
tive equations in various types of flow protocols of rheometric
significance. Subsequently, we investigate the applicability of
our proposed methodology to predict the behavior of the fluid
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with respect to more complex constitutive equations, namely vis-
coelastic and thixotropic phenomenological models. It should be
noted that the highest Reynolds number throughout this paper is
of O(10), and thus small enough to ignore any inertial effect.

3.1 Generalized Newtonian Fluid

In the first step, we implement a series of GNF constitutive mod-
els into our nn-PINN platform and employ it as a data-driven tool
to solve systems of coupled PDEs. It should be mentioned that
this method uses the equations without any discretization and is
completely based on training and consequent predictions, where
the system of PDEs as well as the boundary and initial conditions
are the only information used in the training process. Hence, the
output of the nn-PINN will be the spatiotemporal response of the
non-Newtonian fluid.
Before further testing of any data-driven approach, it is essen-
tial to demonstrate that the choice of model parameter has no
effect on the predictions made by the metamodel. To do this,
we adapted a simple power-law model (outlined in Equation 1)
as the main constitutive model for the shear stress response of
the fluid with three different power indices to enable compari-
son between different fluids: shear thinning (n=0.8), Newtonian
(n=1.0), and shear thickening (n=1.2). Figure 4 presents the
predicted spatiotemporal domain of a start-up flow protocol ver-
sus the numerical ground truth solution. We see from the results
in the right hand panel for the error color maps, and from vi-
sual inspection of the nn-PINN predictions against the actual nu-
merical solution, that our NN consistently predicts an accurate
velocity profile for the fluid subject to the imposed strain, regard-
less of the power index, i.e. the nature of fluid. From the top
row to the bottom row, the power index grows and the fluid na-
ture transitions from shear-thinning to Newtonian, and to shear-
thickening. As this transition occurs, the velocity profiles change
systematically; however, the data-driven metamodel accurately
tracks these changes with less than maximum of 4 percent error
in all cases.
In the next step, we consider different (and most commonly used)
GNF models outlined in Equations 1, 2, and 4 in a start-up of
flow protocol, and compare the nn-PINN predictions against the
numerical solutions. Figure 5 shows the comparison between the
ground truth solution of different GNF models and nn-PINN pre-
dictions in a start-up of shear flow protocol with top boundary
condition of Vtop = 1[m/s] while the bottom boundary is at rest.
We expect a transient phase after applying the flow followed by
a steady state upon reaching the linear velocity distribution. The
parameters of each model are listed in Table 3.
On the third column of Figure 5, we show the error in flow pre-
diction using nn-PINN. Results in Figure 5 clearly indicate that
predictions of nn-PINN closely track the ground truth of the spa-
tiotemporal response, regardless of the choice of model, since
the local error in prediction is less than 2%. This is significant
since models presented in Figure 5 represent significantly dif-
ferent physical behaviors, and different mathematical complex-
ities. For instance, the Herschel-Bulkly fluid uniquely mimics a
yield-stress fluid and can be further extended to include shear-

thinning effects as well35,70. On the other hand, the Carreau-
Yasuda model is very commonly used to describe the shear rheol-
ogy of polymeric systems, having 2 terminal viscosities embedded
in the model. As such, the results in Figure 5 demonstrate that
nn-PINN can be further generalized to include other GNF models
of interest without losing accuracy and efficiency as well.
Having established the applicability and accuracy of nn-PINN with
respect to the choice of GNF model and the model parameters,
in the next step we seek to establish its applicability to different
and more complex flow protocols. In practice, a number of dif-
ferent flow protocols can be applied to a non-Newtonian fluid
to probe their properties and applicability. It is critical to en-
sure that the neural network provides a reliable prediction for
all flow protocols as these experimentally relevant protocols are
commonly encountered in various applications. To do so, we con-
sider a Carreau-Yasuda fluid (as described in Equation 2) in three
flow protocols: a Pressure-Strain driven flow, a Pressure-stress
driven boundary, and a sinusoidal rate driven flow. The first two
flow protocols become extremely important as one considers com-
mon processing methods such as extrusion or injection molding
in which a combination of drag and pressure flows are present. In
such geometries, it is essential to solve the constitutive equation
for superposed flows to better design processing conditions. On
the other hand, oscillatory flows are commonly used to probe rhe-
ological and viscoelastic properties of different fluids. It should
be noted that the same analysis was performed for all different
flow protocols with all of the GNF constitutive models as well,
and for the sake of perspicuity only three of these cases are pre-
sented. However, the results and the accuracies remain consistent
regardless of the choice of model here as well. Figure 6 shows the
comparison between the nn-PINN predictions and the ground nu-
merical solutions of these flows for a Carreau-Yasuda model.
To further examine the differences in predicted flows by nn-PINN
and the ground truth solution, steady-state velocity profiles of a
Bingham fluid are compared in Figure 11. As shown in compared
profiles, the nn-PINN is found to predict the yield point accurately.
One should note that some commercial solvers commonly face
challenges in solving for the yield point, and thus an alteration
of the Bingham or the Herschel-Bulkly models with an arbitrarily
large viscosity is used at a given threshold to avoid diverging zero
shear viscosities. Nonetheless, nn-PINN directly uses the constitu-
tive models as written with no further modification.

For all three complex flow protocols studied, the error panels
in the right hand column suggests that nn-PINN deviates slightly
from the numerical solution; these errors diminish after a few
seconds of flow upon reaching a quasi-steady state. It should be
mentioned that similar benchmarks with a wide range of bound-
ary and initial conditions, model parameters, and flow protocols
were performed, and the nn-PINN predictions were consistently
found not to be limited by the choices made for any of the afore-
mentioned parameters.

3.2 Viscoelastic fluids

To capture the natural timescale of the material, phenomenolog-
ical models have been developed in which the viscoelastic na-
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Fig. 4 Velocity profiles for a power-law fluid in the spatiotemporal domain presented with no-slip boundary conditions at the walls and zero velocity
initial conditions. The power law parameters for these results are ρ = 100[kg/m3] and µ0 = 1[Pa.s]. The value of shear rate exponent for the first to
third rows are 0.8, 1.0, and 1.2, respectively. The first column panels are the actual numerical solution of the constitutive model in the domain, and
the second column panels are the nn-PINN predictions. Third column panels represent the discrepancy between the nn-PINN predictions and the
actual solutions. The coordinate across the velocity gradient (y-axis) is normalized by the size of the domain, and the color bars represent the velocity
scales.

Fig. 5 Velocity profiles for GNF fluids in the spatiotemporal domain presented with no-slip boundary conditions at the walls and zero velocity
initial conditions. Power-law, Herschel-Bulkly and Carreau-Yasuda GNF models are presented in the first, second and third row respectively. Model
parameters are set based on Table 3. The first column panels are the actual numerical solution of the constitutive model in the domain, and the
second column panels are the nn-PINN predictions. Third column panels represent the discrepancy between the nn-PINN predictions and the actual
solutions. The coordinate across the velocity gradient (y-axis) is normalized by the size of the domain, and the color bars represent the velocity scales.
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Table 3 The parameters of GNF model for start-up of a flow shown in Figure 4

Model ρ[kg/m3] n η [Pa.s] η0[Pa.s] η∞[Pa.s] a λ σy[Pa]
PL 100 2 1 - - - - -
HB 100 1.5 1 - - - - 10
CY 100 0.5 - 1 10 2 1.5 -

Fig. 6 Velocity profiles for a Carreau-Yasuda fluid in the spatiotemporal domain presented with no-slip boundary conditions at the walls and zero
velocity initial conditions. The model parameters are set to be ρ = 1000[kg/m3], n = 0.8, µ0 = 3[Pa.s], µ∞ = 60[Pa.s], a = 2, λ = 3, and a = 2. The first
column panels are the actual numerical solution of the constitutive model in the domain, and the second column panels are the nn-PINN predictions.
Third column panels represent the discrepancy between the nn-PINN predictions and the actual solutions. The coordinate across the velocity gradient
(y-axis) is normalized by the size of the domain, and the color bars represent the velocity scales. The first two rows represent results under pressure
and drag flows, and the final row presents oscillatory flow.

ture of the fluid under question is represented through distinct
but connected elastic and fluid elements. These models generally
involve using spring components for the elastic response of the
material and dashpot components to mimic the viscous response
under flow. These components can be connected in series (lead-
ing to the Maxwell equation) or in parallel (leading to the Kelvin
model). Here, we adopt a Maxwell fluid as shown in Equation 5 in
three different flow protocols as strain imposed, stress imposed,
and pressure driven flows. The velocity and stress contours are
shown in Figures 8 and 9, respectively. In the stress response of
the fluid in a strain imposed flow protocol, there is a gradient in
the beginning of the flow, which is diminished after some time by
reaching a steady state value. On the other hand, in the stress
imposed flow protocol, the imposed stress is propagating to the
fluid over time until it reaches the bottom boundary and after that
the entire domain is experiencing a steady state value for stress,
which is the same as the imposed stress. In the pressure driven
flow, there is a symmetry in the value of the stress with a sign
change in the center-line.
To address a common experimental artifact in rheologically rele-
vant flows and perform another test of the model efficiency with

different boundary conditions, we also investigated the applica-
bility of nn-PINN in predicting the slip boundary condition. Slip
parameter as ε = ubottom/utop is defined, and by changing this pa-
rameters we are able to acquire different levels of slippage. As
a motivating example, we considered a Maxwell fluid with three
cases as ε = 0.01, ε = 0.05, and ε = 0.10 leading to three different
levels of slip velocities of: 1%, 5%, and 10% of the maximum ve-
locity at the upper boundary. In either case, we assume that the
bottom boundary has a slip velocity proportional to the applied
shear rate to the top boundary. The results for the slip boundary
condition are shown in Figure 10. Results in Figure 10 clearly
indicate that the nn-PINN model can also recover the numerical
solution at the boundaries with different wall slip conditions with-
out losing accuracy. Considering the fact that PINNs have been
proven very effective for inverse problems, these models can be
used in quantifying the wall-slip and similar experimental arti-
facts effectively. To test this, we considered a case in which the
bottom boundary condition is associated with 10% wall-slip as an
unknown to the nn-PINN. The goal is to determine the function-
ality of the slippage velocity at the boundary, based on existing
velocity profiles. To do so, we assume a handful of sparse data of
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Fig. 7 Predicted vs. calculated steady-state velocity profiles of a Bing-
ham fluid in a Poiseuille flow with ρ = 500[kg/m3], η = 0.1[Pa], and
σy = 1[Pa].

the flow field is available. To be more precise, we consider some
velocity sensors placed randomly in the spatiotemporal domain.
In order to determine the unknown slippage boundary condition,
we also added Equation 16 to the total loss function defined in
Equation 11 with a weight of ω3.

MSEData =
NData

∑
i=1

(Predicted(ui)−Actual(ui))
2 (16)

In addition, a side Neural Network is assigned to track and
predict the unknown boundary velocity. Figure 11 represents the
predicted velocity at the bottom boundary. In addition, we are
able to find the stress field in the entire spatiotemporal domain
with a great accuracy. This suggests that even with an ill-posed
problem, only having a handful of data ( ∼ 50), nn-PINN enables
a full reconstruction of the entire spatiotemporal velocity as well
as the stress contours in the geometry under question.

3.3 Thixtropic Fluids

To fully probe the capability of our proposed methodology in pre-
dicting the spatiotemporal response of a non-Newtonian fluid,
we also implemented a TEVP fluid following Equation 6. Figure
12 represents the comparison between the nn-PINN predictions
and the ground solutions of the Thixotropic fluid for start-up of
flow with three different initial conditions as fully structurized,
fully fluidized, and half structurized fluid. A constant velocity of
Vtop = 1[m/s] is applied on the top boundary while the bottom
one is at rest. The contour panels show the results for the veloc-
ity profiles across the velocity gradient direction as a function of
time, as well as the structure parameter, λ , at the same coordi-
nates to show the correlation between fluidization processes and
the resulting flow kinematics. As it can be seen from the error
contours in the right hand side column of the Figure 12, nn-PINN

gives a robust set of predictions with virtually no deviation from
the ground solution of the constitutive equation, regardless of the
structure parameter choice at the outset. Results in Figure 12
further demonstrate the ability of these data-driven models to re-
cover the fully resolved numerical solution of complex fluids with
several material and flow timescales involved.

4 Conclusions

In this work, we presented a data-driven algorithm, nn-PINN,
and comprehensively studied the performance of the proposed
method for modeling the spatiotemporal behavior of a variety of
complex fluids with different non-Newtonian constitutive mod-
els. The nn-PINN methodology leverages the recent advances
and ever-increasing benefits of NNs in solving complex systems
of coupled PDEs, allowing us to develop an alternative method
for solving constitutive models for complex fluids in conjunction
with conservation of momentum and mass equations. This is par-
ticularly of interest with respect to complex rheological constitu-
tive models that are challenging to be implemented within CFD
solvers of choice. Commonly used flow protocols in rheometry
of complex fluids were examined, for different constitutive mod-
els of choice from simple generalized Newtonian, to thixotropic
elaso-visco-plastic. The transient and steady state velocity profiles
of the flow with these variations are presented to establish the
applicability of the nn-PINN in handling different types of gov-
erning equations. The method was consistently found to recover
the fully resolved numerical solution of the flow kinematics under
the same spatiotemporal domain. We also systematically interro-
gated the applicability and adaptability of nn-PINN to the initial
and boundary conditions and material/model parameters. Our
study of the unknown boundary condition in an inverse problem
suggests that nn-PINNs can be employed to solve for a full re-
construction of velocity and stress fields having a few data points
across the entire domain. These detailed investigations demon-
strate clearly that the proposed model can rigorously track the
ground truth solution of the constitutive equations, regardless of
the choice of model, its parameters, and initial/boundary condi-
tions. Needless to mention that benchmarking and detailed test-
ing of the model have been performed on an exhaustive list of
boundary conditions, initial conditions, noise levels, other consti-
tutive models, and flow protocols; nonetheless, and for the sake
of brevity a number of motivating examples have been selected
for presentation here.
Our findings strongly suggest that data-driven models informed
by the physical processes can make a leap in flow simulations
of complex fluids. Investigation of complex geometries/domains,
other tensorial descriptions of complex fluids, and most impor-
tantly the inverse solution of models based on data will be of par-
ticular interest and of great practical importance. For instance,
three dimensional flows in which shear-banding and vorticity-
banding occur, or complex contracting/diverging geometries are
of great relevance to many real-world flows of interest.
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Fig. 8 Velocity profiled across the spatiotemporal domain for a Maxwell fluid in various flow protocols. The model parameters are set to be
ρ = 30[kg/m3], G = 100[Pa], and η = 2[Pa.s]. The first column is the actual solutions, the second column is the nn-PINN predictions, and the last
column is the discrepancy between the predictions and actual solutions. The first row shows strain imposed flow, second row panels correspond to
stress imposed flow and the last row represents pressure driven flow.

Fig. 9 Shear stress response across the spatiotemporal domain for a Maxwell fluid in various flow protocols. The model parameters are set to be
ρ = 30[kg/m3], G = 100[Pa], and η = 2[Pa.s]. The first column is the actual solutions, the second column is the nn-PINN predictions, and the last
column is the discrepancy between the predictions and actual solutions. The first row shows strain imposed flow, second row panels correspond to
stress imposed flow and the last row represents pressure driven flow.
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Fig. 10 Velocity profiled for a Maxwell fluid in spatiotemporal domain with included wall slip at three different levels of 1%, 5%, and 10%, in the
first, second and third rows respectively. The model parameters are set to be ρ = 30[kg/m3], G = 100[Pa], and η = 2[Pa.s]. The first column is the
actual solutions, the second column is the nn-PINN predictions, and the last column is the discrepancy between the predictions and actual solutions.

Fig. 11 Predicted velocity at the bottom boundary condition with slip-
page.
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