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Anisotropic Colloidal Interactions & Assembly in AC Electric Fields
Rachel S. Hendley, Isaac Torres-Díaz† & Michael A. Bevan

 Chemical & Biomolecular Engr., Johns Hopkins Univ., Baltimore, MD 21218

Abstract
We match experimental and simulated configurations of anisotropic epoxy colloidal 

particles in high frequency AC electric fields by identifying analytical potentials for dipole-field 
and dipole-dipole interactions. We report an inverse Monte Carlo simulation algorithm to 
determine optimal fits of analytical potentials by matching simulated and experimental distribution 
functions for non-uniform liquid, liquid crystal, and crystal microstructures in varying amplitude 
electric fields. Two potentials that include accurate particle volume and dimensions along with a 
concentration dependent prefactor quantitatively capture experimental observations. At low 
concentrations, an effective ellipsoidal point dipole potential works well, whereas a novel stretched 
point dipole potential is found to be suitable at all concentrations, field amplitudes, and degrees of 
ordering. The simplicity, accuracy, and adjustability of the stretched point dipole potential suggest 
it can be applied to model field mediated microstructures and assembly of systematically varying 
anisotropic particle shapes.

Introduction
Assembly of anisotropic colloidal particles on surfaces could enable novel multifunctional 

material coatings for use in diverse applications.1 Practically, anisotropic colloidal building blocks 
can create microstructured materials with directional properties (e.g., optical, mechanical, wetting, 
adhesion, thermal, etc.) that are not attainable with spherical particles. Many natural biological 
materials from plants and animals have such multifunctional directional microstructures, but 
cannot currently be fabricated in synthetic materials systems in a reliable scalable manner.2 In 
many cases, anisotropic colloidal building blocks could be assembled into target microstructures 
with the key features to enable multifunctional surface structures. External fields have been used 
to assemble colloidal building blocks primarily into liquid crystalline configurations including 
representative examples involving shear,3 electric,4 magnetic,5 acoustic,6 and other fields.7 To 
understand and design how different structures of anisotropic colloids assemble in external fields, 
it is useful to know the connections between field-mediated potentials and equilibrium 
microstructures in liquid, liquid crystalline, and crystalline phases.

AC electric field mediated assembly of anisotropic colloids is perhaps the most attractive 
field type for a number of reasons. Electric fields are relatively easy to design, shape, and control 
across a range of length scales, which can lead to scalable technologies (e.g., liquid crystal 
displays, Xerography). Because AC electric fields can be used to induce dipolar interactions in a 
broad range of materials, electric field mediated assembly does not require very specific material 
properties (e.g., magnetic, optical). Tuning AC electric field shape, frequency, and amplitude can 
be used to control position and orientations of single particles and particle ensembles,8-10 which 
offers significant control authority over assembly processes. A large number of experiments have 
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demonstrated assembly of different microstructures from particle shapes including dumbbells,11, 

12 cylinders,13, 14 capsules,15, 16 and patchy particles.17-19 In addition, tuning field shape, frequency, 
and amplitude has been shown produce controllable microstructures using spherical particles,20-22 
and to a lesser extent for anisotropic particles.15, 23 As such, a number of significant scientific 
questions and engineering challenges are directly related to measuring and modeling equilibrium 
phase behavior and dipolar interactions for anisotropic colloidal particles in AC electric fields.

Prior studies have modelled potentials of anisotropic particles in AC electric fields with 
connections to measured microstructures. Several studies have simulated configurations with 
qualitative similarities to experimentally observed states simply by separating opposite sign point 
charges at either end of ellipsoids to produce dipoles. This approach has been used to successfully 
generate configurations similar to colloidal ellipsoids assembled into microtubules24 and fibers25 
as well as phase diagrams qualitatively consistent with microscopy images of cylindrical colloidal 
particles.23 Another approach has been to discretize particles into polarizable sub-units,26 which 
has captured the projected orientation distribution of three dimensional nematic phases of 
cylindrical colloids.27 Finally, the electric potential has been computed around ellipsoidal colloidal 
particles28 as part of understanding their relative positions within chain configurations in AC 
electric fields.29 However, dipole-field and dipole-dipole theoretical potentials have not been 
directly compared with experimental observables using forms that are easily generalizable for 

Fig. 1. Overview of anisotropic particle fabrication, and coordinate system for interaction potentials, 
AC electric field mediated assembly, (a) Microfabricated photolithographic SU8 colloidal particles on 
wafer before release into solution. (b) Schematic of coordinate system used in theoretical interaction 
potentials showing parallel electrodes, electric field, and two dimensional laboratory and particle 
coordinates. (c) Optical microscopy images of AC electric field mediated assembly between electrodes 
within a thin monolayer above the microscopy slide surface at 4.1, 10, and 42 V/mm. (d) Renderings from 
Monte Carlo simulation using the stretched point dipole model at the same field conditions.
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different particle shapes, material properties, field conditions (e.g., frequency, amplitude, non-
uniformity), and microstructures (e.g., liquid, liquid crystal, crystal phases).

Here, we report an inverse scheme to determine interaction potentials for anisotropic 
colloidal particles in AC electric fields based on optical microscopy measurements. Microscopy 
experiments are performed on microfabricated epoxy tri-axial particles sedimented into quasi-two-
dimensional configurations on a microscope slide, where they are confined between electrodes via 
induced dipolar interactions with non-uniform AC electric fields (Fig. 1). Single particle dipole-
field interaction potentials were previously measured and modelled for similar anisotropic 
particles, which demonstrated position and orientation dependence vs. field amplitude and 
frequency9, 10 and reduce to previously measured potentials for spherical colloids.21, 22, 30 By 
conducting experiments at high AC field frequencies (5MHz), particles align with the field and 
concentrate at the electric field minimum at the electrode center. We vary electric field amplitude 
to simultaneously control the dipole-field and dipole-dipole potentials. Next, we develop an 
inverse Monte Carlo simulation method to determine dipole-dipole potentials by matching 
simulated and experimental pair distribution functions, orientation distributions, and concentration 
profiles within non-uniform field. Several analytical dipole-dipole potentials are investigated to 
determine the best model for capturing anisotropic colloidal phase behavior in AC electric fields.

Theory
Net Interaction Potential

The net potential energy of a colloidal particle in an AC electric field is given by,

(1)          
1,

, , , , , , , ,
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where Xi = (x,y,z) and Θi = (θ,φ,ψ) are the Cartesian position and Euler angles of particle i. The 
net potential includes particle i interacting with a gravitational field (ugrav), a substrate surface 
(upw), an applied AC electric field (udf), and all other j particles (upp). For anisotropic particles 
where the potential energy associated with elevating one end relative to the other is >5kT, the long 
axis is primarily parallel to the substrate.31 By considering the balance of electrostatic and 
gravitational interactions normal to the substrate of a cylinder, the particle’s most probable 
elevation, hm, is estimated as,31
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where m and p are the medium and particle densities, κ is the Debye length, a, b and c are the 
particle semi-axes, and g is the gravitational acceleration constant. Within the particle-wall 
interaction, εm is the dielectric constant of the medium, ψ is the surface potential of the surface and 
particle, T is the absolute temperature, and e is the elementary electron charge. By then considering 
quasi-2D states at a fixed elevation and orientations relative to the substrate, the potential energy 
simplifies to,
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where rij and θij are the relative position and orientation of particle j with respect to particle i. The 
particle-particle potential is,

(4)     , , , , , , , , ,pp dd hp
ij i i j ij ij ij i i j ij ij ij ij iju x r u x r u r       

where udd is the dipole-dipole potential, and the hard wall repulsion between particles, uhp, which 
is determined from the overlap condition for a given particle shape plus a small additive increase, 
a. This increase accounts for electrostatic interactions, as given by a perturbation theory as,32, 33

(5)    
2

1 2 1 exp /e
ij ij ij
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a u r kT dr


    

which can be estimated using the electrostatic potential for spheres with thin double layers as,34
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where rij is the center-to-center distance of the two particles.

Dipole-Field Potential
The potential energy of a uniform dielectric particle in a high frequency electric field is,28 

(7)1
2

u   p E

where E is the interacting electric field, and p is the dipole moment. Analytical dipole moment 
expressions are limited to select particle geometries where the Laplace equation can be solved via 
separation of variables and for uniform polarization fields inside particle geometries with a second-
degree surface. The dipole moment, p, is,28 

  (8)     , p Tx v x     p α A E

where vp is particle volume, α is effective polarizability, E is the applied electric field in lab 
coordinates, and AT is the rotation transformation matrix for angle θ. For a dielectric sphere, the 
particle volume is,

  (9)  3
, 4 / 3p sv a

and polarization is equal for each axis to give a scalar value of,
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where subscripts p and m denote particle and medium complex permittivities  given as,%

. (11),
,1 ,  1 A

A
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Where ω is frequency, fcm is the Clausius-Mossotti factor, and σ is conductivity for each primary 
axis rA of the particle. The net dipole-field potential energy of a dielectric sphere is then,30
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. (12)   23
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For an ellipsoid with semi-axes a, b, and c, the particle volume is,

  (13) , 4 / 3p ev abc

and the polarization for each principal axis A=(xA, yA, zA) for particle i is,28 
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which simplifies to the result in Eq. (10) when a = b = c. Here, the depolarization factor, LrA, is,

(15)
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Using Eq. (7), the net dipole-field potential of a tri-axial dielectric ellipsoid is,9
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where θi is the angle between lab x-unit vector and the particle’s principal axis applied using 
rotation matrix, AT(θ), as,10 
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A

Dipole-Dipole Potential
The point dipole potential for two spheres i and j can also be derived using Eq. (7), where 

a polarizable particle is interacting with the external electric field generated by another particle. 
The electric field generated by a dielectric polarized particle is dependent on the strength of the 
polarizing field and the distance away from that particle. When the gradient of the electric field is 
much larger than the particle size, the dipole within the particle generates a local field defined as,35 
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where θij is the angle between centers relative to the field direction. Further applications of Eq. (7) 
and the spherical dipole moment in Eq. (8) results in the point dipole-dipole potential,36

  (19)    32, , [3cos 1] 2dd
ij i ij ij s ij iju x r C a r  

  (20)
222s p m cm fC v f  E

where  fcm is the average Clausius-Mossotti factor of all axes. For anisotropic dielectric ellipsoids, 
the dipole-dipole potential for particle i and neighbor j is calculated for each axis using Eq. (7). 
Each component of the field generated, Eij, by each axis of polarized ellipsoid j at the location of 
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particle i, Eij, as, 

 (21), , ,
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where B and C are the indexes along the main axes of particle j. The ellipsoidal coordinate 𝜉 is 
solved using,

  (22)
2 2

2 2 1ij ijx y
a b 

 
 

in particle j coordinate, which leads to the dipole-dipole potential on particle i caused by particle j 
as,
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Coplanar Electrode Field
The electric field, Ef components in Eq. (8) for parallel thin-film coplanar electrodes of 

separation, d, is37
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where E0=Vpp/(πd), Vpp is the peak-to-peak voltage, d is the electrode gap and zm=c+hm is the most 
probable particle height using Eq. (2).

Materials & Methods
Particle Fabrication

Anisotropic epoxy particles were fabricated using photolithography. Omnicoat 
(MicroChem), was spin coated onto a silicon wafer to provide a sacrificial layer. On top of the 
Omnicoat, SU-8 2002 (MicroChem) was spin coated to the desired thickness. A photomask was 
used to pattern particles at an exposure energy of 80 mJ/cm2. Particles were lifted off the substrate 
with Remover PG (MicroChem), which dissolved the Omnicoat layer. Particles were rinsed with 
isopropyl alcohol and dispersed in deionized water. The particle geometry (Fig. 1a) is a rectangular 
prism capped with ellipse ends with dimensions in Table 1. Particle surface charge was maximized 
by washing with sulfuric acid to favor stability against unwanted aggregation and deposition.9, 38

Electrode Cell
An o-ring (McMaster-Carr) was coated with high vacuum grease and placed on a cleaned, 

patterned interdigitated electrodes (300 μm electrode with a 97 μm gap). The electrodes were 
cleaned by sonication in isopropyl alcohol for 30 minutes, acetone for 30 minutes, isopropyl 
alcohol for 30 minutes, rinsing with DI water, immersing in Nochromix (Godax) for 15 minutes, 
rinsing again with DI water, then dried with nitrogen. The particle dispersion is placed inside the 
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o-ring, which was sealed with a cover slip to prevent evaporation. Wires were attached to the leads 
of the electrodes, which were then connected to a function generator (Agilent 33220A).

Microscopy & Image Analysis
Position and orientation of particles between parallel electrodes were measured using an 

inverted microscope (Zeiss) with a 40x objective (Fig. 1c). Videos were captured at 5 frames/s 
using a CCD camera (Hamamatsu, Orca-ER) and Streampix (Norpix) software. Particle positions 
(x, y) and orientations (θ) were obtained in stacks of 30,000 frames using a particle tracking 
algorithm in MATLAB. The tracking algorithm (as in previous work31), in brief, was based on the 
following steps: (1) Gaussian smoothing to remove noise, (2) thresholding to differentiate (dark) 
background and (bright) foreground pixels, which was used to generate a binary image, (3) 
locating connected high intensity regions using a convex Hull algorithm to capture particle shape, 
and (4) using the resulting pixel set to determine particle centroid coordinates and endpoints to 
yield the projected long-axis dimension and lab-frame angle (θ).
Table 1. Known parameters from experiments and previous studies used to in Eq. (3) to calculate two-
dimensional potential energy landscapes in Fig. 2 and all MC simulations. Values obtained from: aoptical 
microscopy, bthin film analyzer, cmanufacturer values (MicroChem), dhandbook values,39 econductivity 
meter, fprevious experiments9, gEq. (2) and hEq.(5). 

Parameter Value Parameter Value
a, b, c (μm),b 5.0, 1.3, 0.85 d (μm)a 97
ρp (kg/m3)c 1200 εp/ε0

c 3.2
ρm (kg/m3)d 1000 εm/ε0

d 78.5
κ-1 (nm)e 30 σm (μS/cm)e 10
ψ (mV)f -50 σpx, σpy, σpz (μS/cm)f 50, 20, 20
hm (μm)g 0.25 δa (μm)h 0.13

Monte Carlo Simulations
We consider a canonical (NVT) ensemble of particles with the size and shape of the 

fabricated particles using the potential in Eq. (3) and parameters listed in Table 1.40 The particles 
are constrained in two dimensions with only rotation and translation in a plane parallel to the 
substrate (Fig. 1b). Simulations include ~70 hard particles with periodic boundary conditions in 
the direction parallel to the electrodes (Fig. 1d). Equilibrium distribution functions were obtained 
for 105 steps after equilibration starting from a rectangular lattice configuration. Hard-particle 
repulsion is based on the experimentally characterized shape (Fig. 1a), which is approximated as 
a rectangular prism with elliptical end caps as,

(25)     
 
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           
 

Where ym and xm are the geometric particle boundary mesh. A refined mesh along the particle 
perimeter is used to evaluate the overlap condition in particle coordinates as,  

 (26)
   
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, , , ,

, , , ,0
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

Page 7 of 18 Soft Matter



Hendley et al. Page 8 of 18

For the rectangular prism with elliptical end caps, the particle volume is,

  (27)   , 4 524 5p rpev abc   

Inverse Monte Carlo (iMC) Simulations
Inverse MC simulations are used in this work to determine an energy landscape, u, using 

iterative forward MC simulations that converge based on matching experimental and simulated 
density profiles (exp and sim). For each iteration k, the inverse MC algorithm compares density 
distributions between simulation and an experiment to provide a revised estimate for the energy 
landscape in the k+1 iteration as,21, 22, 41-44

 (28) 1 sim, exp0.5 1k k ku u kT  
    

In our implementation in this work, we adapt this general algorithm to adjust theoretical dipole-
dipole potentials by comparing angular pair distribution functions at the radial contact distance rc 
as,
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where the initial configuration of k+1 is the final configuration of simulation k. For concentrated 
particles, the polarization of each particle depends on the local electric field due to the applied 
external field and surrounding particles with induced dipoles.36, 45 The simplest way to account for 
such an effect is to consider a multiplicative scalar factor, fk(η), modifying the single particle 
ellipsoidal dipole-field (Eq. (16)) and dipole-dipole (Eq. (23)) potentials as,

(30)( , ) ( ) ( , )df df
k i i k i iu x f u x  

(31) , ,( ) , , , ,dd e dd e
k k k i i j ij iju f u x r   

where fk(η) is adjusted in the iMC stepper in Eq. (29). Since out of plane position and orientation 
changes are shown to be insignificant in our analysis, the dipole field potential is two dimensional 
(Fig. 2a,e). In contrast, the dipole-dipole potential is higher dimensional as the result of every 
particle coordinates relative to each other. As a result, we use the projected potential to compare 
with the projected pair distribution function in Eq. (29). To obtain the projected two-dimensional 
potential, we obtain the average probability as,

(32) 
  

   
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    
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

  

  

which is then inverted to obtain the projected potential as (for use in Eq. (29), Fig. 2b,e),

(33) 
 

 

,
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,, ,
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,
, ln

max ,
i i j
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In addition to considering a concentration dependent factor in our iMC solver, we also investigate 
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stretching or compressing the usual point dipole potential (Eq. (19)) using,

(34)
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where Mx,k and My,k, stretch or compress the usual polar radial and angular dependence and Cs is 
defined in Eq. (20) (Fig. 2 d,e). In all cases, the iMC algorithm is initialized with f0(η)=1 using the 
material properties and characterized quantities in Table 1. For the stretched point dipole case, 
initial values of Mx,0 = 0.405 and My,0 = 0.812 are obtained via a least squares fit of Eq. (34) to Eq. 
(23) using the angular contact dependence (Fig. 2d). The iMC stepper is considered to be 
converged when a desired tolerance, δk, is reached between the experimental and simulated density 
profiles given by,41
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Results & Discussion
Experimental Equilibrium Distributions

We performed experiments on microfabricated epoxy colloid particles sedimented onto a 
glass microscopy slide between parallel electrodes for observation with optical microscopy. We 
applied 5 MHz AC electric fields with different amplitudes including 4.1, 7.2, 10, 13, and 42 
V/mm. Particles do not irreversibly deposit on the substrate or aggregate due to electrostatic 
repulsion. Particles are levitated above the substrate within a quasi-2D monolayer by a balance of 
electrostatic repulsion and gravity.31 Particles sample 2D positions and orientations due to 

Fig. 2. Dipolar energy landscapes for anisotropic colloidal particles in AC electric fields. (a) Dipole-
field potential for ellipsoidal particles in a 20V/mm, 5MHz AC electric field (Eq. (12)). (b) Ellipsoidal dipole-
dipole potential (Eq. (23)) projected to two dimensions (Eqs. (32), (33)) using measured particle shape (Eq. 
(25)) and parameters in Table 1. (c) Point dipole-dipole potential (Eq. (19)) with same parameters as 
ellipsoidal point dipole except for single radius = b. (d) Stretched point dipole-dipole potential (Eq. (34)) 
from least squares fit to ellipsoidal dipole-dipole potential angular contact function. (e) Angular contact 
dependence for (green) point dipole-dipole potential, (blue) projected ellipsoidal dipole-dipole potential, 
(black) most probable dipole-dipole potential, and (red) best fit stretched point dipole-dipole potential.
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Brownian motion which are tracked in real-time and then time averaged to produce equilibrium 
distribution functions. Finite thermal sampling of z, ϕ, and ψ for similar anisotropic particles was 
previously shown to produce no significant difference between projected and higher dimensional 
representations,9 which is also the case in this work.

Fig. 3a shows representative images of particle configurations, and Fig. 3b shows particle 
center trajectories for 30 minutes. Fig. 3c shows time-averaged density profiles of particle centers 
relative to the electrode gap center. Fig. 3d shows the angular dependence of the particles’ major 
axis relative to the electric field direction (i.e., perpendicular to the parallel electrodes as seen in 
Fig. 1b). Fig. 3e shows the 2D pair distribution function for particle centers located in the vicinity 
of x=0 in the center of the electrode gap where the field is symmetric and most uniform.

For the field frequency used in this work, the preferred particle position and orientation is 
at electric field minimum parallel to the field direction. With increasing field amplitude, all data 
in Fig. 3 show particles increasingly concentrate near the electrode center and align with the field 
direction. These observations are consistent with the dipole-field potential (Eq. (16), Fig. 2a) and 

Fig. 3. Epoxy colloidal particle microstructures in nonuniform AC electric fields between coplanar 
parallel electrodes. AC electric field is 5 MHz and (left to right) 4.1, 7.2, 10, 13, and 42 V/mm. (a) 
Representative optical microscopy images of equilibrium particle configurations. (b) Particle center 
trajectories from t = 0 min (red) to t = 30 min (blue). (c) Particle position distribution relative to electrode gap 
center. (d) Particle orientation distribution relative to field direction. (e) Pair distribution function for particles 
in vicinity of electrode center (|xi|<5m) with 8-bit color scale for ρ/<ρ>=0 (blue) to 40 (red).
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previous direct single particle measurements and models of anisotropic particles in AC electric 
fields.9, 10 It is not known whether increasing particle concentration changes the infinitely dilute 
single particle dipole-field potential and how particle packing together with dipole-dipole 
potentials lead to the observed amplitude dependent configurations in Fig. 3. In the following we 
implement a novel inverse Monte Carlo (iMC) scheme to determine these interactions as a function 
of concentration and field amplitude.

Concentration Dependent Ellipsoidal Dipolar Potentials
Fig. 4 shows results from iMC simulations based on a concentration dependent correction, 

f(η), to the dipole-field and dipole-dipole potentials for ellipsoids (Eqs. (30), (31)). All other 
parameters in the model potentials are fixed to the values reported in Table 1 based on independent 
characterization and prior measurements.9 Fig. 4a shows converged simulation renderings for 
comparison with experimental images in Fig. 3a. Figs. 4b-d show distribution functions from 
experiments (Fig. 3) compared to the initial and converged iMC simulation results using the 
concentration corrected ellipsoidal dipole potentials. The converged values of f(η) are reported in 
Fig. 6 for discussion in a final analysis after consideration of additional corrections. Fig. 4e shows 
the angular dependence in the first coordination shell of the pair distributions functions and free 
energy landscapes from experiments and simulations.

For all field amplitudes investigated in Fig. 4, the concentration corrected dipolar potentials 
improve agreement with measured distribution functions compared to potentials without f(η). All 
values of f(η)<1 and monotonically decrease with increasing particle concentration, which is 
consistent with prior observations for spherical colloids in non-uniform AC electric fields.21, 22, 30 
Values less than unity indicate weaker dipole-field interactions, which results in sampling of a 
broader range of positions and orientations in lab coordinates (Figs. 4b,c). The pair distribution 
functions show less structure with values of f(η)<1, which is consistent weaker dipole-dipole 
interactions including both less dipolar repulsion along particle long axes in the field direction and 
less dipolar repulsion in perpendicular to the field direction.

The converged iMC simulation results based on concentration dependent potentials show 
good qualitative agreement with experiments at all field strengths and excellent quantitative 
agreement at lower fields. These results show that, once concentration effects and the hard core 
particle repulsion are taken into account, to first order, the dipole-field and dipole-dipole potentials 
for ellipsoids capture the behavior of liquid states well for the anisotropic particles. In more detail, 
although the anisotropic particles in this work deviate from ellipsoidal shapes, the ellipsoid 
potentials based on using the same major and minor axis dimensions work well for capturing liquid 
behavior using the concentration correction determined in Fig. 4. The concentration dependence 
is not surprising since it is predicted for spherical particles36, 45 and has been measured and shown 
to be important for their quasi-2d phase behavior in nonuniform fields.21, 22, 30

Deviations between the experimental and simulated pair distribution functions become 
more pronounced at higher fields as particles become more concentrated and ordered. At higher 
fields, stronger dipolar potentials and stronger confinement of particles at the field minimum are 
both simultaneously important, so accurate dipole-dipole and dipole-field potentials are necessary 
to capture both effects. Given the discrepancies in the pair distribution functions at the highest 
fields where ordered states are observed, it appears additional effects need to be considered beyond 
the concentration dependence of dipolar interactions.
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Stretched Point Dipolar Potentials
The functional form of the ellipsoidal point dipole (Eqs. (16), (23)) does not well capture 

the angular dependence of first coordination shell for particles in high fields, high concentrations, 
and ordered configurations, which occur simultaneously. It is not obvious how to modify the 
ellipsoid potential to perturb it in a manner that captures the additional functional dependence 
needed to match simulations to the measured pair distribution functions. An alternative anisotropic 
potential that we investigated, which retains some first principles concepts, as well as a relatively 
simple analytical form, is a point dipole potential stretched both parallel and perpendicular to the 
average direction of the particle long axis. By allowing a concentration dependence, and stretching 
in two directions, for a total of three adjustable parameters, we show in the following how such a 
potential optimized in an iMC scheme quantitatively captures all the experimental observations at 
different field amplitudes.

Fig. 4. Comparison of experiments and iMC simulations using concentration dependent dipolar 
potentials. Plots show experiments (circles) vs. iMC simulation results for ellipsoidal point dipole (Eqs. 
(30),(31)) without (green) and with (blue) concentration dependent factor, f(), for field conditions in Fig. 3. 
(a) Representative converged simulation renderings. (b) Particle position distribution relative to electrode 
gap center. (c) Particle orientation distribution relative to field direction. (d) Pair distribution for particles in 
vicinity of electrode center (|xi|<5 m) with 8-bit color scale for ρ/<ρ>=0 (blue) to 40 (red) with (top) and 
without (bottom) f(). (e) First coordination shell pair distribution. 

Page 12 of 18Soft Matter



Hendley et al. Page 13 of 18

The results of converged iMC simulations based on stretch point dipoles are reported in 
Fig. 5. Experiments show excellent agreement with the rendered simulation configurations (Fig. 
5a) and position and orientation distributions (Figs. 5b,c) for all fields and concentration profiles. 
In more detail, the position and orientation distributions for both the converged ellipsoid and 
stretched dipole potentials agree with experiments for all fields. This result is to be expected since 
the same dipole-field potential is used for both simulations that have different dipole-dipole 
potentials, which is shown to be accurate in Fig. 4. We refit the concentration dependent factor in 
the dipole-field potential in the iMC results when optimizing the new stretched point dipole-dipole 
potential, but it ultimately changed very little.

The pair distribution function (Figs. 5d,e) more directly correlates with the dipole-dipole 
contribution to the net pair potential, and therefore provides a more direct test of the optimal 
functional form. While both the ellipsoidal and stretched dipole-dipole perform equally well at low 

Fig. 5. Comparison of experiments and iMC simulations using stretched point dipolar potentials. 
Plots show experiments (circles) vs. iMC simulation results for (blue) ellipsoidal point dipole (Eqs. (31)) and 
(red) stretched point dipole (Eq. (34)), both with concentration dependent factor, f(), for field conditions in 
Fig. 3. (a) Representative converged simulation renderings. (b) Particle position distribution relative to 
electrode gap center. (c) Particle orientation distribution relative to field direction. (d) Pair distribution for 
particles in vicinity of electrode center (|xi|<5m) with 8-bit color scale for ρ/<ρ>=0 (blue) to 40 (red) with 
(top) and without (bottom) f(). (e) First coordination shell pair distribution. 
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fields in quasi-2D conditions, the stretched point dipole produces significantly better agreement 
with experiments at high fields. In particular, at the highest fields tested (13 and 42 V/mm), the 
stretched point dipole potential more accurately captures the full 2D pair distribution (Fig. 5d) and 
the angular contact distribution (Fig. 5e). While small quantitative differences persist in the 
magnitude of the density fluctuations in the crystal state, all other distribution functions are 
qualitatively and quantitatively captured for all fields tested. In addition, the small differences 
between simulations and experiments observed in the crystalline state at the highest field are also 
within the limits of uncertainty of the measurements. Practically, finite particle size polydispersity, 
shape non-uniformity, and spatial resolution limits (on particle positions and orientations) 
collectively produce some uncertainty in the experimental results and their comparison with 
models. Ultimately, the agreement between the simulation results based on the stretch point dipole 
and the experiments essentially agree in all cases within the limits of uncertainty of the 
measurements.

Analysis of Converged Potentials
The converged ellipsoidal pair potentials and adjustable parameters vs. field amplitude 

reveal several emergent features (Fig. 6). The projected two dimensional ellipsoidal energy 
landscapes (Eqs. (31), (34)) (Fig. 6a) show overall increasing amplitude with increasing field 
strength. While the concentration dependent prefactor, f(η), decreases with increasing 
concentration associated with increasing field strength (Fig. 6b), the field dependent amplitude of 
the dipole potential still increases overall. The optimal ellipsoidal and stretched point dipoles are 
also shown to have nearly identical f(η) dependences, showing this result is general for both dipole-
dipole potentials. The decreasing value of f(η) is expected based on the influence of concentrating 
dielectric particles on the local electric field,36, 45 although the magnitude of the reduction for 
anisotropic particles is greater than prior measurements of spherical colloids (Fig. 6b).21, 22, 30 

Like prior findings for spherical colloidal particles,21, 22, 30  no dependence of potentials on 
particle configuration at a given concentration was detected for the anisotropic prism particles in 
this work. In short, a simple scalar correction based only on concentration (not configuration) 
consistently accounts for the magnitude of dipole-field and dipole-dipole potentials fit to all 
experiments in our iMC scheme. By considering experimentally determined f(η) for spheres and 
the anisotropic particles in this work, the range of f(η) appears to vary for shapes with aspect ratios 
from ~1-4. Because similar trends are observed for both aspect ratios, one could speculate that 
other convex particle shapes could be modeled using such a concentration dependent factor, which 
may depend on aspect ratio.

The optimized stretching parameters, Mx and My (Fig. 6c), show slightly increased 
magnitudes/ranges compared to the ellipsoidal point dipole (given the inverse relationship between 
Mx, My and magnitude, Eq. (34)). Attraction along the particle long axis shows a small monotonic 
increase with increasing particle concentration (and increasing field), whereas repulsion along the 
particle short axis shows a smaller decrease with increasing particle concentration (and increasing 
field). The differences in stretching attraction and repulsion along the particle major and minor 
axes yields potentials with different angular dependences and zero interaction occurring at 
different angles (Fig. 6d). The resulting change in the angular dependence of the contact pair 
potential most directly correlates with the field dependent changes in the contact pair distribution 
functions in Figs. 3-5. Although the change to the contact pair distribution function is most obvious 
in the crystalline state at the highest field, subtle changes to the potential and pair distribution 
function are also observed in concentrated liquid crystalline states.

Page 14 of 18Soft Matter



Hendley et al. Page 15 of 18

The resulting change in the angular dependence from the ellipsoidal point dipole model 
accounts for several complex phenomena that are to be expected for the non-ellipsoidal particle 
shape investigated in this work. The ellipsoid dipole model is calculated based on the electric field 
at the surface of a uniformly polarized ellipsoid,28 which is obviously not the case for the particles 
in this work. Additionally, for a given center-to-center distance, the prism-like particles in our 
work have a larger contact region with more polarized material in closer proximity. We speculate 
that the stretched dipole model accommodates different edge and corner curvatures not accounted 
for by the ellipsoidal dipole and could therefore be adapted to other superellipse shapes 
intermediate between rhombuses, ellipses, and rectangles. Future investigations of systematically 
varying particle shapes could reveal trends for how stretched dipole parameters depend on 
geometric properties of different anisotropic particle shapes.

Finally, our models do not include the influence of neighboring dipoles on each particle’s 
final induced dipole moment. Prior modeling work considering self-consistent dipole-dipole 
moments for both anisotropic particles and particles with corners has shown stronger interactions, 
particularly in end-to-end configurations.26 The three parameters we introduce into our stretched 
point dipole model optimized via an iMC scheme effectively account for these effects. Future work 
on different particle shapes in AC electric fields could consider multipole potentials46 as a route 
towards more accurate and general potentials, but our results for a single particle shape do not 
obviously require the additional analytical complexity. Additional investigation of other field 
conditions, multicomponent systems, and non-equilibrium conditions could reveal broader 
applicability of the simple analytical model in this work.

Fig. 6. Optimal net pair potentials and parameters from converged iMC simulations. (a) Net pair 
potentials, in units of kT, from superposition of hard core repulsion (dashed line) and stretched dipolar 
potentials (spectrum color scale) for orientation aligned with field for conditions in Fig. 3. Particle shape 
shown in white. (b) Concentration dependent prefactor, f(), for ellipsoid (blue) and stretched point (red) 
dipoles with (inset) grey region showing upper bound for aspect ratio 1 spheres21 and lower bound for 
aspect ratio ~4 shapes in this work. (c) Dipole stretch factors for (blue) initial fit to ellipsoid potential and 
(red) after optimization via iMC fitting. Error bars indicate uncertainty between the experimental and 
converged simulated pair correlation functions. (d) Dipolar contact potential in first coordination shell for 
each voltage for (dashed) ellipsoidal dipole and (solid) stretched point dipole.

Page 15 of 18 Soft Matter



Hendley et al. Page 16 of 18

Conclusions
By quantitatively matching experimental and simulated configurations of anisotropic 

colloidal particles in high frequency AC electric fields, we identified analytical potentials for 
dipole-field and dipole-dipole interactions that accurately capture equilibrium microstructures. We 
tracked position and orientation of triaxial epoxy particles as a function of field amplitude to 
construct equilibrium distribution functions for non-uniform liquid and liquid crystal 
microstructures. We then implemented a novel inverse Monte Carlo simulation algorithm to 
determine optimal fits of analytical potentials for both dipole-field and dipole-dipole potentials. 
Our findings show that using an accurate particle volume and axis dimensions in an ellipsoidal 
dipole model along with a concentration dependent correction captures liquid and low density 
liquid crystals microstructures. To match experiments and simulations at all conditions including 
the highest fields, concentrations, and ordering, we developed a novel stretched point dipole 
potential form that provided the ability match the first coordination shell angular dependence in 
the pair distribution function. The analytical simplicity, accuracy, and adjustability of the stretched 
point dipole potential suggest it can be applied to model microstructures and assembly of 
systematically varying anisotropic particle shapes in AC electric fields in future work.
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