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Abstract

Hydrodynamic interactions generate a diffusive motion in particulates in a shear flow, which plays seminal 

roles in overall particulate rheology and its microstructure. Here we investigate the shear induced diffusion 

in a red-blood cell (RBC) suspension using a numerical simulation resolving individual motion and 

deformation of RBCs. The non-spherical resting shape of RBCs gives rise to qualitatively different regimes 

of cell dynamics in a shear flow such as tank-treading, breathing, tumbling and swinging, depending on the 

cell flexibility determined by the elastic capillary number. We show that the transition from tumbling to 

tank-treading causes a reduction in the gradient diffusivity. The diffusivity is computed using a continuum 

approach from the evolution of a randomly packed cell-layer width with time as well as by the dynamic 

structure factor of the suspension. Both approaches, although operationally different, match and show that 

for intermediate capillary numbers RBCs cease tumbling accompanied by a drop in the coefficient of 

diffusivity. Further increase of capillary number increases the diffusivity due to increased deformation. The 

effects of bending modulus and viscosity ratio variations are also briefly investigated. The computed shear 

induced diffusivity was compared with values in the literature. Apart from its effects in margination of cells 

in blood flow and use in medical diagnostics, the phenomenon broadly offers important insights into 

suspensions of deformable particles with non-spherical equilibrium shapes, which also could play a critical 

role in using particle flexibility for applications such as label free separation or material processing. 

Keywords: RBC, red-blood-cell, suspension, shear-induced gradient diffusion, tank-treading, tumbling
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1. INTRODUCTION

Shear induced diffusion is the effectively diffusive motion of suspended non-Brownian particles in the 

presence of a velocity gradient. Particles interact with each other in a shear flow and are continuously 

moved away from their trajectories giving rise to a shear induced effective diffusion. Blood, a complex 

fluid composed of red blood cells (RBCs), white blood cells, platelets and other substances is a particularly 

special suspension where shear induced diffusion plays an important role. RBCs constitute about 45% of 

blood by volume in healthy human adults (1). In blood vessels more deformable RBCs are pushed away 

from the vessel walls due to deformation induced lift while white blood cells and platelets migrate closer 

to vessel walls—a phenomenon known as margination (2-9). The shear-induced down gradient diffusion 

balances the wall effects determining the equilibrium concentration distribution of the cells (10, 11).  

Recently, shear induced diffusion has been used to isolate cells and particles directly from whole blood 

(12). The authors describe a passive microfluidic setup for continuous separation of dispersed particles from 

unprocessed whole blood with extraction efficiencies around 90% and a throughput of 106-107 cells per 

second or 6.75 ml per hour. Significance of shear induced diffusion was also noted in experiments of 

acoustophoretic focusing of dense suspensions (13). One of the objectives of this process is to separate the 

blood plasma from the cells. Karthick and Sen (13) have shown that the shear induced down-gradient 

diffusion causes the focused layer to be much wider than previously expected.

It is clear from the studies mentioned above that having accurate values of the coefficient of diffusion is 

essential for accurate analysis of microscale flow of suspensions and emulsions of deformable particles. In 

particular it is critical for designing microfluidic devices dealing with suspensions. Shear induced diffusion 

of rigid particles has been widely studied experimentally and numerically (14-24) and is well understood. 

Since shear induced diffusion is caused by particle-particle interactions, pairwise interactions between 

particles in shear flow plays an important role. For typical microscale flows such as that of blood, the inertia 

is negligible. In the absence of inertia when two perfect rigid spheres interact in shear flow, their post-

collision separation is same as the initial separation. The spheres return to their original streamlines after 

interactions due to the reversibility of the Stokes Flow equations (25). An additional symmetry breaking 

mechanism, such as surface roughness (26) or other irreversible interactions, is needed to generate 

irreversible trajectories. However, even in the absence of such irreversible effects, shear induced diffusion 

occurs in a suspension because of intrinsic chaotic nature of the sphere trajectories (27, 28). They have been 

observed in hydrodynamic interactions of as few as three particles (29). In case of deformable particles, the 

deforming boundary between the phases introduces non-linearity breaking the reversibility of the two 

particle interaction, giving rise to shear induced diffusion. There have been very few studies that measured 

shear-induced gradient diffusivity of deformable particles or drops. Grandchamp et al. (11) experimentally 

determined the gradient diffusivities in the gradient and vorticity directions in an RBC suspension. Hudson 
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(30) measured the gradient diffusivity of an emulsion of drops. The deformability of drops makes this 

system qualitatively similar to an RBC suspension. We have recently computed the gradient diffusivity in 

an emulsion of viscous drops through direct numerical simulation, obtaining values comparable to the 

previous experimental results (31, 32). Previous attempts at calculating shear induced diffusivity through 

simulations have been restricted to self-diffusivity (5, 33-35). 

In this paper we calculate the gradient diffusivity of red blood cells by simulating a sheared suspension of 

RBCs, using a front-tracking finite difference method used in our previous works (31, 32, 36-39). We 

investigate the effects of the shear and bending stiffness of a cell as well as viscosity ratio on the diffusivity. 

The methodology is an extension of our previous work for a viscous emulsion (31, 32) to RBC suspensions. 

The values of gradient diffusivity obtained is compared with the values in the literature. The initial non-

spherical shape of the RBC gives rise to an unexpected variation of diffusivity with increasing capillary 

number. We discuss and explain the emerging trends in shear induced gradient diffusivity as stiffness of 

the RBCs is varied by comparing to single cell dynamics in a shear flow. We relate the trend of diffusivity 

with the transition in RBC dynamics from tumbling to tank-treading (40-46).

2. SIMULATION DETAILS

The RBC suspension is modeled as an incompressible multiphase fluid system. The red blood cells are 

modeled as volumes of fluid each enclosed by an elastic membrane. A front tracking method is used to 

solve the multiphase incompressible mass and momentum equations:

(2) ( u)
( uu)= u ( u)
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Here u, p, ρ and μ are the velocity, pressure, density, and viscosity, respectively. The term with  mf

represents the jump in fluid stress due to the presence of the interface, which in the present case is the cell 

membrane. The cell membrane is modeled as a 2-dimensional solid hyperelastic material. Bending 

resistance is introduced using the widely-used Helfrich formulation (47). The membrane force can be 

written as:

(3),m s b f ff
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where  is the elastic force due to the in-plane shear deformation of the membrane and  is the out-of-sf bf

plane force due to bending resistance. In a hyperelastic constitutive model, the forces are determined from 

a strain energy function ( ). We use the Skalak constitutive model(48):W

(4)   24 4 2 2 2 2
1 2 1 2 1 22 2 2 1 ,

4
s

Skalak
GW C              

where  is the in-plane shear modulus and  and are the principal stretches on the membrane surface. sG 1 2

In the Skalak model, the parameter C, with a relatively large value of C =10 enforces area incompressibility 

of the membrane (38). The expression for the in-plane force is obtained by applying the principle of virtual 

work, by calculating the derivatives of the strain energy function

(5)
s

W
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x

The bending force from the Helfrich formulation is given by

, (6)2(2 )(2 2 ) 2b b o g o LBE c c           f n

where  is the bending modulus,  is the membrane local surface curvature,  is the Gaussian bE  g

curvature,  is the Laplace-Beltrami operator, and  is the spontaneous curvature of the membrane LB 0c

taken here to be zero (49). n is the unit outward normal to the surface of the RBC. We use a widely used 

equation for determining the thickness of the axisymmetric discoidal shape of an RBC (50) with radius 

m:4a 

. (7)

1
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 One obtains two non-dimensional parameters of interest: an elastic capillary number given by 

and a nondimensional bending parameter  apart from the viscosity ratio /m sCa a G  & 2ˆ /B B sE E a G

, where and are the viscosities of the hemoglobin solution in the RBC cytosol and /RBC m   RBC m

the surrounding matrix fluid. (Note that many prior studies used an effective radius  of a sphere with the 0R

same volume as the RBC ( ) as the length scale for non-dimensionalization.) Under 0 / 0.72R a 

physiological condition, typical values are N/m and J (51). In the following, we 65 10sG   1910BE 

chose these values and changed other parameters to vary Ca keeping  constant. Most of the results are ˆ
BE
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obtained for =1 except when we specifically investigated the effects of viscosity ratio variation. In this 

numerical method, all RBCs, and their interactions are resolved. This numerical method has been used by 

our group in many problems involving drops and capsules in viscous and viscoelastic fluids (52-59). We 

recently implemented bending resistance in our membrane constitutive equation and also included the 

membrane mechanics in our parallel code to allow simulations of large number of cells. We assessed the 

accuracy of our code by comparing our results with boundary element method (BEM) simulation results 

and experimental results in the literature. Figure 1(a) shows the steady-state deformation of a spherical 

capsule in an unbounded shear flow as a function of capillary number, with and without the bending 

resistance included. The reference results are from BEM simulations of Sinha and Graham (49). In Figure 

1(b), we reproduce the optical tweezer experiment of Mills et al. (60). Good agreements with these cases 

validate the computational tool. 

 

(a) (b)

Figure 1. Comparison of our simulation results with those available in literature (a) steady-state deformation vs Ca 

for a spherical capsule in shear with and without bending resistance compared with BEM simulations (49). 

(b)Validation of our method with the optical tweezer stretching experiment (60).

For studying the shear induced diffusion of RBCs, we start with a layer of 200 RBCs placed in the center 

of a computational domain (with size Lx x Ly x Lz = 14a x 28a x 14a (the effect of the domain size is 

investigated below), where a is the radius of the RBC. The RBC packings have been generated using the 

program PackLSD (61, 62). A shear flow is generated in the domain by specifying opposite velocities on 

the top and bottom wall as shown in Figure 2. The computations are carried out on a grid of 128 x 256 x 
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128 points. Each RBC surface is discretized using 10580 linear triangular elements. The RBCs are initially 

randomly packed in a thin layer of about 0.25Ly with a volume fraction of 30%. The distribution of cells is 

homogeneous in the flow (x) and vorticity (z) directions and shear induced gradient diffusion is computed 

in the velocity-gradient direction (y). 

      

(a) (b)

Figure 2. (a) Schematic of the layer of randomly placed red blood cells in simple shear flow. (b) Cut-away section 

showing the triangular surface discretization of an individual red blood cell.

3. THEORY OF SHEAR-INDUCED DIFFUSIVITY

We compute the gradient diffusivity using two independent analyses of the simulation results explained in  

detail in our earlier work on shear induced diffusion in an emulsion of viscous drops (31, 32). Only a brief 

description of the theory is presented here for completeness. The first method is a classical continuum 

approach where we model the RBC concentration as an unsteady one-dimensional diffusion equation in the 

y-direction. 

,  (8)( )cD
t y y
   


  
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where  is the local RBC volume fraction,  the coefficient of diffusivity, and   ,y t  2
2cD a f &

2f

is the dimensionless diffusivity in the gradient direction (11, 25, 63, 64). Similar to the classical diffusion 

equation, Eq. (8) admits a self-similar solution, in non-dimensional variables :'/ , 't t y y a &

(9)1/3 2 1/3
2 2( ) ( ') ( / 6), '/ ( ') .f t b y f t       

Here,  is the similarity variable and b is a free parameter. The half-width of the  profile satisfies  w ( ')y

(10)3 3
2 0 / (4 2), ,', 9 ( , ')o oNw w Kt K f N y t dy       

where is the initial width and  is a conserved quantity related to the number of drops. We fit the 0w oN

equation for the half width to the half-width obtained from the 3D simulations to obtain . The details of 2f

this fitting procedure can be found in our previous work on drop emulsions (31, 32). To obtain a smooth 

concentration profile , we approximate each RBC as a sphere of the same volume and compute the ( , )y t

concentration at a resolution of one-tenth of the equivalent sphere radius.  

The second method uses the rate of decay in the auto-correlation of the dynamic structure factor to estimate 

the diffusivity. It has been used in dynamic light scattering (DLS) experiments performed on suspensions. 

In DLS experiments, a monochromatic laser is scattered from a sample volume containing multiple particles 

(scatterers) is analyzed to compute the diffusivity and thereby the size of the particles. In case of a dilute 

system of non-interacting scatterers, the autocorrelation of the fluctuation decays exponentially and the 

decay time is inversely proportional to the diffusivity. Leshansky and Brady (22) extended this analysis to 

shear induced diffusion of concentrated suspensions. The scattered response at wavenumber (non-k

dimensionalized by a) from scatterers located at  is proportional to the intermediate N ( '), 1, 2,...t N  x

scattering function 

. (11)( ( ') (0))

, 1

1( , ')
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i tF t e
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Using the property of the Dirac delta function, the number density of the scatterers (here RBCs) and its 

spatial Fourier transform can be written as 

. (12)
1 1

ˆ( ', ') ( ' ) ( , ')
N N

in t n t e 


 

 

 

    k xx x x k

Page 7 of 24 Soft Matter



8

Therefore, measures the autocorrelation of the fluctuation  *ˆ ˆ( , ') 1 / ( , ') ( ,0)F t N n t nk k k '( ', ')n tx

(where ) at wavenumber  for a statistically homogeneous system, as the constant 0( ', ) '( ', ')n t n n t x x k

background would not contribute to the autocorrelation. However the current system (Figure 2a) is not 0n

homogeneous, but evolves from a nonhomogeneous initial condition of a packed central layer of RBCs. 

Leshansky and Brady (22) showed that the number density satisfies an advection diffusion equation in a 

shear flow  ( is the average flow and is the velocity gradient tensor):   U Γ x& U Γ&

. (13)2( ) cn n n
t


     


U Γ x D&

In spite of the advection terms in equation (13), in a simple shear due to the orthogonality of the (= ) k ˆky

vector to the velocity field, one obtains a simple relation for the diffusivity in the gradient direction (22):  

 . (14)
2

1 (ln )
'

c
yy

d
k

D F
dt

 

As noted in(31), one of the novelties of our work lies in the use of dynamic structure factor approach to a 

non-homogeneous system. The non-homogeneity is assumed to not affect the result at the limit of , 0k 

where we see an asymptote for (14) offering an estimate of the gradient diffusivity. We will see that this 

value of gradient diffusivity when appropriately scaled by an average volume fraction, matches with the 

one obtained by the layer-width computation from assuming the classical diffusion equation (8) .

4.  RESULTS AND DISCUSSION

Cell dynamics
The diffusivity in an RBC suspension would depend on the individual dynamics and orientation of a single 

cell, as will be clear in the discussion below. To describe the orientation of an RBC, we find an ellipsoid 

with the same moment of inertia as the RBC. The axis about which the moment of inertia is highest is taken 

to be the orientation vector of the RBC. It is well known that RBCs depending on their stiffness displays 

primarily two different behaviors: tumbling or flipping and tank treading (46, 65), with additional motion 

superimposed on them giving rise to the complex dynamics of swinging (43), breathing and their various 

combinations especially during transitions between the two behaviors (49, 66). In case of stiff cells, i.e., 

small capillary number (as well as large viscosity ratio ), the orientation vector does not deviate much 

relative to the initial undeformed orientation and coincides with the axis of symmetry of the cell, i.e., normal 

to the flat part of the RBC (Figure 3b). They tumble with the orientation vector rotating in the flow-gradient 
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plane while precessing (rolling component) (41) out of plane. This dynamics has been understood in terms 

of the Jeffrey’s orbits (65). In case of large capillary numbers, the RBCs deform extensively and exhibit a 

tank-trading motion, with a steady shape, similar to a viscous drop in the x-y plane, where a material point 

on the cell membrane rotates around the cell (46). As a result, the orientation vector is normal to the 

extension axis. 

(a) (b)

Figure 3(a) Distribution of the orientation of the RBCs is visualized by plotting the intersection of normal vectors to 

each RBC with the surface of a unit sphere seen from the gradient direction at different times ( = 0.75,150,225) for 't

different capillary numbers, for all cases. (b) Schematic of the orientation for each RBC as seen from the ˆ 0.01bE 

vorticity direction and its intersection with the unit sphere.

In Figure 3 we plot the snapshots of distribution of the orientation of the RBC population at different times 

on a unit sphere for sheared RBC suspensions at three different capillary numbers (Ca =0.01,0.20 and 0.40, 

and ). The flow is in the x-direction (left of the figure) and the velocity gradient in the y-direction ˆ 0.01BE 

(out of the plane). At t = 0, the distribution of the orientation is relatively uniform in direction and identical 

(same initial configuration) for each of the capillary numbers. For the stiffest case of Ca = 0.01, we see 

distribution of the points remain random except slight bias towards the central region. Figure 3(a) and the 

supplementary movie showing the evolution of the orientations with time indicate that the cells exhibit 

tumbling or flipping dynamics at this low value of Ca = 0.01. The flipping/tumbling in the x-y plane gives 

rise to the orientation vector continuously rotating giving rise to the plot in Figure 3 (a). For Ca = 0.20, the 

orientations are distributed in a narrow vertical band in the center. Looking at the supplementary movie for 

this case (67), we identify a combination of tank-treading, rolling, and tumbling cell dynamics. The tank-
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treading motion contributes to concentration of the orientation at slightly left of center (45 degree to the 

extensional axis) in the x-z plane, a process that dominates at Ca=0.40, where we see a very narrow 

distribution, indicating that nearly all the cells are in the tank-trading regime. Below, we will see how these 

different cell motion regimes affect the shear induced gradient diffusivity of RBC suspensions.

(a)

(b) (c)

Figure 4 (a) Paths of RBCs at Ca=0.10, =0.01. (b) Snapshot of the RBCs at different points in the simulation. (c) ˆ
bE

Concentration profile of the RBCs reaches a self-similar state and becomes parabolic. Inset shows collapse of the 

concentration profile in the similarity space.
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Shear induced diffusion

Figure 4 (a) shows the paths of RBCs (Ca=0.1, ). All analyses in this paper are based on such ˆ 0.01bE 

paths. In this relatively dense suspension, unlike in the Brownian motion of a dilute gas, individual 

interactions cannot be separated; immediately after an encounter, an RBC approaches others. Figure 4 (b) 

shows snapshots of the layer of RBCs at three different times, with the width of the layer increasing due to 

shear induced diffusion. A supplementary movie showing this simulation is provided (67). The 

concentration profile of the RBCs is plotted for a few different times in Figure 4(b). The shape of the 

profiles is parabolic as expected from the analytical solution. Figure 4(b) inset shows the collapse of all the 

curves on to a single curve when plotted using the similarity variables from Equation (9).

Effects of domain size
We examine the effects of the domain size on the measured gradient diffusivity. Tables 1 and 2 show the 

effect of the domain size in the flow and gradient directions respectively on the gradient diffusivity of the 

red blood cells for the case of Ca=0.05 and  verifying that our choice of  Lx x Ly x Lz = 14a x ˆ 0.01bE 

28a x 14a is sufficient. The choice of 200 RBCs proved sufficient for obtaining the linear scaling needed 

to obtain the diffusivity. For an viscous emulsion of drops, we found 70 drops were adequate (31). 

Table 1 Effect of changing the domain size in the flow direction

Domain size, x y zL L L  Diffusivity

14a x 28a x 14a 0.276 ± 0.012

28a x 28a x 14a 0.281 ± 0.020

42a x 28a x 14a 0.283 ± 0.017

Table 2 Effect of changing the domain size in the gradient direction

Domain size, x y zL L L  Diffusivity

14a x 21a x 14a 0.258 ± 0.017

14a x 28a x 14a 0.276 ± 0.012

14a x 42a x 14a 0.280 ± 0.011
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Effects of Capillary number
Using the theory and methods outlined earlier we calculate the gradient diffusivity of RBCs as a function 

of cell stiffness (elastic capillary number Ca). The viscosity ratio is restricted to unity in this section. In 

Figure 4(a), we provided RBC suspension in three different times for Ca =0.1   Figure 5 shows the 

progression of the shear induced diffusion for one smaller (Ca = 0.01) and one larger (Ca =0.5) capillary 

number. Corresponding movies are provided in supplementary materials (67). The width of the layer of 

RBCs can be seen to increase with time. As we noted before the tumbling motion in the lower capillary 

numbers transitions to primarily tank-trading motion at the higher value. 

Figure 5 Snapshots of the RBCs from simulations for two different capillary numbers showing the individual cells 

diffusing.

Figure 6(a) shows the cube of the width of the RBC layer increasing linearly in time for various capillary 

numbers. The slope of these lines is proportional to diffusivity and is used to calculate f2. In Figure 6(b) f2 

is plotted as a function of Ca. Although the capillary number for a drop based on the interfacial tension is 

very different from the one for an RBC based on the membrane elasticity, in the same figure we also plot 

f2 for a viscous emulsion computed in (31) showing comparable values for both. Using the dynamic 

structure factor described before, the wavenumber dependent gradient diffusivity is plotted in Figure 7(a) 

showing that the values of diffusivity asymptote for small values of the wavenumber. This asymptotic value 

is the macroscopic or bulk gradient diffusivity of the RBCs. As noted in our previous publications(31, 32), 

even though the approaches are operationally very different, they show very similar curves. Note that the 

non-dimensional diffusivity  computed from the dynamic structure factor is typically 2
2

c
yyD a f &:

appropriate for a homogeneous system with a constant . Here one can use an average 0.075 to bring   :

the two curves to roughly coincide, a phenomenon also observed in our prior work on shear induced 
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diffusion of drops (31). As the capillary number is increased, the deformability of the cells increases. The 

increased deformability leads to a larger irreversibility of the cell interactions giving rise to a larger 

diffusivity. 

    

(a)                                                                  (b)

Figure 6 (a) Cube of the width of RBC vs time shows the linear growth which confirms the 1/3rd scaling that is expected 

in shear induced diffusion. (b) f2 vs. Ca calculated from the rate of increase of the RBC layer thickness.

(a)                                                                      (b)

Figure 7 (a) Wavenumber dependent diffusivity calculated using the dynamic structure factor approach for a few 

different Ca showing asymptotic behavior in the limit of .  (b) The asymptotic value ( ) of wavenumber 0k  0k 
dependent diffusivity is the bulk gradient diffusivity, plotted here as a function of Ca.

An interesting observation from Figure 6(b) is the dip in diffusivity for the intermediate values of capillary 

number, where the diffusivity decreases before increasing again towards the end of the range considered. 

Page 13 of 24 Soft Matter



14

Diffusivity seems to reduce as Ca increases from Ca = 0.15 till Ca =0.30. The diffusivity for viscous drops 

plotted in the same figure also increases with Ca, reaches a higher peak and decreases but unlike RBCs 

doesn’t again increase. The results for drops were limited to Ca=0.35 due to breakup beyond this value.

In view of the complexity of the multiple RBCs interacting with each other, we turn to single cell dynamics 

in search of an explanation of the observed trend of the shear induced diffusivity. For the viscous drops, the 

nonmonotonic variation with capillary number (Figure 6b) was explained in terms of pair-interactions of 

drops (31). For the RBCs with a non-spherical rest shape, pairwise interactions depend on the orientation 

of RBCs which continuously change as two RBC approach each other rendering such an analysis unhelpful. 

Prior work on calculating shear induced self-diffusivity through pairwise interaction (35) was restricted to 

a physical parameter space where the cell dynamics does not depend on the initial orientation, i.e. tank-

treading at large capillary numbers. 

RBCs are known to exhibit different kind of motion, tumbling, breathing, tank-trading and their various 

combinations with variation of capillary number as has been recently observed through careful detail 

computation (66) and experiments (40). We show that these different cell dynamics give rise to the above 

non-monotonic behavior of the diffusivity.  Cell interactions which give rise to the shear induced diffusivity 

is characterized by the cell dimension and orientation. We compute a quantity that describes the extent of 

the deformed size of the RBCs. For drops, considering that they assume an elliptical shape in shear, Taylor 

suggested a deformation measure, called the Taylor deformation parameter  using ( ) / ( )D L B L B  

the major (L) and minor (B) axes of the ellipsoid. For an RBC, with an initial discoidal shape, we find the 

major and minor axis of a solid ellipsoid with the same moments of inertia as the RBC and compute D. The 

deformation parameter averaged over all RBCs in the suspension as a function of capillary number is plotted 

in Figure 8(a) along with the diffusivity as a function of the elastic capillary number. Note that the D is also 

changing with time, therefore it is also averaged over the time. Initially, there is a plateau with the value of 

deformation parameter equal to that of the undeformed RBC shape. In this regime the cells being quite rigid 

exhibit solid-like tumbling motion. On further increasing the capillary number, the average deformation 

decreases. This counter intuitive result can be explained by looking at the actual cell geometry. In the 

intermediate regime of capillary number, RBCs exhibit various transient breathing motions (breathing-

tumbling and breathing-swinging) (66) where cells deform into and out of a compact folded up 

configuration. The effective size of the cell in this configuration is lower than that of the undeformed cell 

and hence the deformation is reduced.  In Figure 8(b), we plot the deformation of an isolated RBC in a 

shear flow with the cell axis initially parallel to the flow direction. It shows a very similar behavior to that 

of the value averaged over the RBC suspension (Figure 8a). In the same figure, RBC shapes corresponding 

to three different Ca values were shown; we notice the transient breathing motion of a single RBC for the 

intermediate capillary number. The diffusivity and the average deformation curves show a slight non-
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monotonicitya decrease for intermedia values of Ca and subsequently an increase (Figure 8a) 

indicating that the transition of the RBC dynamics form the tumbling motion at lower Ca to tank-treading 

at higher Ca with transient motion in between gives rise to the non-monotonic variation of deformation 

which in turn leads to a similar variation in diffusivity. 

(a)                                                                          (b)

Figure 8 (a) f2 and average deformation parameter vs. capillary number for the RBC suspension in shear flow. (b) 

Deformation parameter vs. capillary number for an isolated red blood cell in shear flow. RBC shapes for three different 

Ca values: tumbling (TU), tank trading (TT), and in the intermediate transition regime, continuously changing shapes. 

To further illustrate the effects of this transition, we compute tumbling frequency by investigating the 

individual RBC orientation. During tumbling, the orientation angle to the flow direction of an RBC 

undergoes rough periodic motion, from which we compute a tumbling frequency.  In Figure 9(a) we plot 

tumbling frequency as well as orientation angle averaged over all RBCs in the suspension (also averaged 

over time).  At low capillary numbers we notice a non-zero tumbling rate with slight increase with capillary 

number, before precipitously decreasing with increasing capillary number at about Ca =0.15 and becoming 

zero at Ca = 0.4 as tumbling transitions eventually into tank-treading, the transition marking the regime of 

the dip in shear diffusivity. A similar shear rate driven cross-over was previously observed from lattice 

Boltzmann simulations of sheared dense suspensions of RBCs (68). Contemporaneously, in Figure 8(b), 

we show that the orientation averaged over all RBCs changes from very close to zero (random orientation) 

during tumbling to -73o during tank treading.
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(a) (b)

Figure 9 Tumbling rate and f2 vs. Ca (a) and RBC Orientation angle vs. Ca (b) in an RBC suspension in shear flow  

(a) (b)

(c) (d)
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Figure 10 (a) Effect of bending modulus on the diffusivity of RBCs for two different Ca. (b) Gradient diffusivity in 

RBCs as a function of viscosity ratio for stiff (Ca=0.05) and soft (Ca=0.3) cases. (c) Tumbling rate as a function of 

viscosity ratio for the two capillary numbers. (d) Distribution of the orientations of the cells visualized on the surface 

of a sphere for three different viscosity ratios at t’=200. 

Effects of bending parameter and viscosity ratio
We investigated the underlying physics of shear induced diffusion by varying the capillary number but 

keeping the nondimensional bending parameter and viscosity ratio (kept at unity) constant. Note that ˆ
BE 

under physiological condition typically = 5 (with blood plasma viscosity = 1.2mPa-s, and that of  Plasma

the hemoglobin solution inside =6mPa-s) (49, 66).  However, in vitro experimental investigations of RBC

RBC dynamics have been performed in a suspending medium of Dextran solutions of different 

concentrations with different  leading to a wide range of .  (Note that Minetti et al. (40) and Fisher and m 

Korzeniewski (44) indicated that at room temperature = 10mPa-s. Grandchamp et al (11) assumed a RBC

value of 3.9 mPa-s for their in vitro experiments. A direct measurement by Koter (69) yielded 4.38 mPa-s 

at room temperature with slight increase with increasing temperature). In Figure 10 (a) we plot the non-

dimensional gradient diffusivity of RBCs as a function of the cell bending modulus. We perform 

simulations for a range of bending moduli for two different capillary numbers, Ca=0.05 and Ca=0.3 

corresponding to a relatively low and a high in-plane elasticity. For the lower capillary number of Ca=0.05, 

corresponding to a tumbling case, there is initially a significant reduction in diffusivity as is increased ˆ
bE

from 0 to 0.005 but further change does not have much effect. For the higher capillary number Ca=0.3 in 

the tank treading regime, increasing the bending modulus does not have much of an effect on the diffusivity 

except a slight increase. The effect of viscosity ratio on the gradient diffusivity is plotted in Figure 10 (b) 

for Ca=0.05 and 0.30. There is an overall reduction in the diffusivity as viscosity ratio is increased which 

is expected due to reduced deformation. For the stiffer Ca=0.05 case, increasing the viscosity ratio does not 

affect their deformability in any appreciable manner, but for Ca=0.3, the deformation shows a significant 

decrease (deformation not plotted for brevity). In Figure 10(c), the tumbling rate of the cells as a function 

of viscosity ratio shows a very slight decrease for the low Ca (stiff cells), but a steady rise for the more 

deformable cells as the viscosity ratio is increased. To further understand this phenomenon, we plot the 

distribution of the orientation of the RBCs as in Figure 3(a) by plotting the intersection of normal vectors 

to each RBC with the surface of a unit sphere seen from the gradient direction at one time instant. For the 

stiffer cell (Ca=0.05), the direction is uniformly spread indicting tumbling with significant precession 

(rolling component) which didn’t change with changing viscosity ratio. On the other hand, for the more 

flexible Ca=0.3 case, the effect of viscosity ratio change is prominent. For the smallest viscosity ratio, one 
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sees tank treading (clustering at left of center), which changes to tumbling at higher viscosity ratios. In fact, 

their clustering in the equatorial region indicates lack of precession in tumbling. As we noted before, one 

cannot exactly compare capillary numbers for a drop with the elastic capillary number for a capsule. 

Nevertheless, we plot the values of diffusivity in a viscous emulsion for the same capillary numbers in the 

same figure (Figure 10b). 

Comparison with previous studies of shear induced diffusivities
As noted in the Introduction, shear induced diffusivities for suspensions of rigid particles have been studied 

far more widely than those of deformable particles or drops. The first reported study of shear induced 

gradient diffusion for deformable drops was experimentally measured by King and Leighton (70) resulting 

in what the authors thought to be too low a value ( = 0.018-0.1 for Ca = 0.167-0.922) due to the presence 2f

of surfactants added to stabilize the drops against coalescence. Hudson (30) overcame this problem and 

accurately measured  to be about ~0.2 (for Ca = 0.02, 0.05 and 0.4). These values matched very well with 2f

the values that we obtained for a viscous emulsion in our recent computational study (31). Grandchamp et 

al. (11) have experimentally measured RBC diffusion in a rectangular high-aspect-ratio microfluidic 

channel (with RBCs suspended in a PBS buffer solution,  ) which allowed a direct observation  ~ 6 10

of diffusion in the vorticity direction obtaining a value of ~0.12. By shifting the stream of RBCs to the 3f

channel edge and applying a few simplifying assumptions they also indirectly obtained diffusivities both in 

the vorticity (  ) and the velocity gradient directions: ~0.07 and ~1.7. Note that recognizing that the 3f 3f 2f

discoidal shape effectively increases the volume of interaction while tumbling, Grandchamp et al. rescaled 

the volume fraction (replacing  by  ) to obtain a smaller value ~0.77, closer to  3(4 / 3) / RBCa V  2f 2f

~0.2 found by Hudson for a viscous emulsion (11).  

Goldsmith and Marlow (65), in their experimental study of the motion of ghost RBCs flowing through a 

tube, noted difference in behavior between soft and hardened RBCs in conformity with behavior seen here. 

They measured shear induced self-diffusivity in this system to be . A slightly lower value was 2 ~ 0.1sf

measured by another group (71).  Computationally, self-diffusivity for deformable drops and particles has 

been computed in the dilute limit using pair-dynamics between two particles. For both an drops and vesicles 

 were obtained by Loewenberg and Hinch (63) (drops: ) and  Zhao 2
2 ~ (10 )sf O 

2sf  2 22 10 4 10   

and Shaqfeh (72) (vesicles: ) respectively. However for RBCs, Omori et al. (35) using a 2sf  22.81 10

similar pair-dynamics obtained restricted to the tank treading regime (they used the effective 3
2 ~ (10 )sf O 

sphere radius as a length scale rather than a). Experimentally, Lima et al. (71)  measured 0R
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m2/s, for a RBC dispersion through glass capillaries with =2-12 s-1 and =0.35 122 5 10yyD  : & 

resulting in an . Omori et al. pointed to RBC migration, Brownian motion, and finite 2 0.03 0.2sf :

volume fraction in the experiment as the possible causes for the difference of their computation from the 

experimental measurement. These self-diffusivity values could be compared to our computed result of 0.3 

for the gradient diffusivity. Typically the gradient diffusivity is higher than the self-diffusivity by a factor 

of 6 in case of hard sphere  suspension as noted by da Cunha and Hinch (25) (a theoretical ratio of  8 was 

also noted in (70)). 

5. CONCLUSIONS

We have shown how the red blood cell dynamics affect the shear-induced gradient diffusivity by performing 

a detailed study of the dynamics of concentrated RBC suspensions in a shear flow, with initially the cells 

being concentrated in a packed layer in the middle of the flow domain. The cell concentration profile as 

well as a novel dynamic structure factor based approach was used to compute the gradient diffusivity. It 

has been noted that decreasing cell stiffness results in cell dynamics transitioning from stiff cells primarily 

tumbling in shear to flexible cells tank trading. That in turn resulted in the gradient diffusivity rising in the 

tumbling region and then decreasing in the transition region before again rising in the tank-trading regime. 

We have carefully established the connection between the cell dynamics and the trend in gradient diffusivity 

by investigating the average tumbling frequency, cell deformation and inclination. We briefly investigated 

the effects of bending resistance and viscosity ratio on the gradient diffusivity and compared with 

experimental and computational results from the literature. As noted in the Introduction, shear induced 

diffusivity is an important component in determining the microscopic structure as well as the macroscopic 

behaviors of a suspension. The change in diffusivity with changing stiffness and correspondingly individual 

cell dynamics varying from tumbling to tank-trading could be used as an important marker for diagnosis of 

diseases that results in altered RBC flexibility such as malaria (73) and sickle cell anemia (74). However, 

we also should note the challenges in such diagnostic applications due to the heterogeneity of the RBC 

properties (cell geometry, viscosity, and membrane characteristics) even in a healthy population. The close 

relationship between stiffness and diffusivity for non-spherical cells such as RBCs is important in 

margination of cells including that of circulating tumor cells (CTC). The margination of CTCs have been 

hypothesized to aid in their eventual arrest on the endothelial lining of a vessel resulting in cancer metastasis 

(75, 76).     
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