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Using Delaunay triangularization to characterize non-affine displace-
ment fields during athermal, quasistatic deformation of amorphous
solids†

Weiwei Jin,a Amit Datye,a Udo D. Schwarz,ab Mark D. Shattuck,c and Corey S. O’Hern∗ade f

We investigate the non-affine displacement fields that occur in two-dimensional Lennard-Jones models
of metallic glasses subjected to athermal, quasistatic simple shear (AQS). During AQS, the shear
stress versus strain displays continuous quasi-elastic segments punctuated by rapid drops in shear
stress, which correspond to atomic rearrangement events. We capture all information concerning
the atomic motion during the quasi-elastic segments and shear stress drops by performing Delaunay
triangularizations and tracking the deformation gradient tensor Fα associated with each triangle α.
To understand the spatio-temporal evolution of the displacement fields during shear stress drops,
we calculate Fα along minimal energy paths from the mechanically stable configuration immediately
before to that after the stress drop. We find that quadrupolar displacement fields form and dissipate
both during the quasi-elastic segments and shear stress drops. We then perform local perturbations
(rotation, dilation, simple and pure shear) to single triangles and measure the resulting displacement
fields. We find that local pure shear deformations of single triangles give rise to mostly quadrupolar
displacement fields, and thus pure shear strain is the primary type of local strain that is activated
by bulk, athermal quasistatic simple shear. Other local perturbations, e.g. rotations, dilations, and
simple shear of single triangles, give rise to vortex-like and dipolar displacement fields that are not
frequently activated by bulk AQS. These results provide fundamental insights into the non-affine
atomic motion that occurs in driven, glassy materials.

1 Introduction
The mechanical response of amorphous solids, such as colloidal
and metallic glasses, is extremely complex. For example, dur-
ing shear, compression, and other bulk mechanical tests, amor-
phous solids display collective spatio-temporal dynamics includ-
ing stress localization, shear banding, and fracture.1–6 In crys-
talline solids, the motion of atoms near topological defects (such
as point defects, dislocations, and grain boundaries) and the in-
teraction between these defects control the mechanical response
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of the system.7 However, it has been difficult to identify the struc-
tural “defects” that determine the mechanical response in amor-
phous solids.8

Early work by Argon,9 and extensive further studies by Falk
and Langer,10 have emphasized the importance of shear transfor-
mation zones (STZs), which are clusters of atoms (or particles)
that move cooperatively with much larger displacements than the
surrounding atoms, in amorphous solids undergoing applied de-
formations. Subsequent studies have attempted to characterize
the size, shape, activation, and evolution of STZs in amorphous
solids during applied deformation.4,8,11–18

There are numerous open questions concerning the definition
and interpretation of STZs in amorphous solids. First, are STZs
the structural “defects” that control mechanical response in amor-
phous solids, similar to topological defects in crystalline solids,
or are STZs the atomic flow fields that result from yet unde-
tected structural defects? The majority of recent studies argue for
the former case, i.e., STZs should be classified as the fundamen-
tal defects that control the mechanical response of amorphous
solids.13,19–30

During quasistatic loading, the stress response of amorphous
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solids first shows elastic behavior for small strains, followed by
sudden drops in stress caused by atomic rearrangement events.
This behavior is repeated, i.e., smooth quasi-elastic increases in
stress followed by rapid stress drops, with further increases in
strain. Non-affine collective atomic displacements can occur in
the quasi-elastic regions, but the non-affine motion is much larger
during the stress drops and it has been extremely difficult to
predict at what strains the stress drops occur and the resulting
non-affine atomic motion.19,20,24–26,28,29 Several groups have at-
tempted to predict “soft spots" in amorphous solids, i.e., regions
of large non-affine displacements resulting from mechanical in-
stabilities that occur during athermal quasistatic shear.24–27,31–34

Methods that incorporate higher-order spatial derivatives of the
dynamical matrix can predict soft spots further from the instabil-
ity than first-order methods,24–26,31,34 but the accuracy of these
methods is limited by the magnitude of the stress drop. To gain
further insight into the non-affine displacement fields resulting
from large stress drops, in this article, we follow the evolution
of the system along minimal energy paths as it evolves from the
mechanically stable state before to that after the instability.

In this article, we address several important, open questions
concerning the mechanical response of amorphous solids by de-
veloping a novel methodology for characterizing non-affine de-
formation. We focus on a simple two-dimensional (2D) model of
Cu50Zr50 metallic glasses35 undergoing quasistatic simple shear.
We decompose the system into Delaunay triangles, which enables
us to calculate exactly the deformation of each triangle at the
next strain step in terms of the deformation gradient tensor and
the reference triangles at the current strain step. We find several
key results. First, using a nudged elastic band method36–40 to
evolve the system from the mechanically stable (MS) state before
a stress drop to the resulting MS state after the stress drop, we
study the evolution of the non-affine displacement field during
stress drops. We find that quadrupolar structures form, move,
and dissolve during the stress drops. In addition, we apply small
perturbations (dilation, rotation, simple and pure shear) to single
triangles in the system, and characterize the resulting non-affine
displacement fields following energy minimization in terms of
fields set up by point-charges, vortices, dipoles, and quadrupoles.
Rotation and simple shear of single triangles give rise to mostly
vortices, dilations of single triangles give rise to mostly dipolar
fields, and pure shear deformations of single triangles give rise
to mostly quadrupolar fields. Since we find that quadrupolar dis-
placement fields predominate during globally applied quasistatic
simple shear, these results show that local pure shear deforma-
tions of single triangles are the main defects that are excited dur-
ing bulk, quasistatic simple shear deformations.

The remainder of the article is organized as follows. In Sec. 2,
we describe the Lennard-Jones model, the thermal quenching
protocol used to generate the zero-temperature glasses, and the
athermal, quasistatic simulations of simple shear. In Sec. 3, we
present our main results including the accuracy of predictions of
the displacement field using the non-affine velocity, the evolution
of the non-affine displacement field during stress drops, and the
response of the system to local perturbations of single triangles.
We provide the conclusions and promising future research direc-

tions in Sec. 4. We also include three appendices. In Appendix I,
we describe deformations of the local triangles in terms of a ro-
tation matrix, the strain tensor, and its invariants. We then relate
these quantities to D2

min, which is frequently used to characterize
non-affine displacements10, in Appendix II. In Appendix III, we
describe four order metrics to characterize the resulting displace-
ment fields after applied deformations.

2 Methods
We focus on a simple 2D binary Lennard-Jones model for
Cu50Zr50 metallic glasses. Atom types A (Zr) and B (Cu) inter-
act via the truncated and force-shifted, pairwise Lennard-Jones
(LJ) potential:

Uαβ (ri j)=

 φαβ (ri j)−φαβ (rc)− (ri j− rc)
dφαβ

dri j

∣∣∣
ri j=rc

, ri j < rc,

0, ri j ≥ rc

,

(1)
where ri j is the center-to-center separation between atoms i and
j, the cutoff distance rc = 2.5σαβ , α, β = A, B, and

φαβ (ri j) = 4εαβ

[(
σαβ

ri j

)12
−
(

σαβ

ri j

)6
]
. (2)

The parameters σAA = 1.0, σBB = 0.7975, σAB =(σA+σB)/2, εAA =

1.0, and εBB = 0.5584 were chosen to match the sizes and cohesive
energies of Zr and Cu.41 We set εAB = (εAA + εBB)/2−∆Hmix us-
ing the heat of mixing ∆Hmix from experiments.42 The mass ratio
for CuZr alloys is mA/mB = 1.435. In the following, we display
the data using LJ units, where lengths, times, stresses, and tem-
peratures are given in units of σAA, σAA

√
mA/εAA, εAA/σ2

AA, and
εAA/kB, respectively.

Each system consists of N = 3600 atoms (half A and half B) in
a square cell with area A and periodic boundary conditions. We
have also carried out studies with N = 8100 and 14400 to assess
system-size effects as shown in the Electronic Supplementary In-
formation (ESI). The systems are first equilibrated at high temper-
ature T = 5.0 (with pressure P = 10) in the liquid state well above
the melting temperature and then cooled (at fixed pressure) to
low temperature T = 0.005 using a fast cooling rate of 0.08 to
form disordered, glassy states. The first peak in the radial distri-
bution function satisfied g(r1)< 6 for all low-temperature glasses
studied. The Nosé-Hoover thermostat and barostat were used
to control the temperature and pressure. The low-temperature
glasses were then decompressed to reach zero pressure and min-
imization of the total potential energy U = ∑i> j U(ri j), using the
conjugate gradient method, was applied to reach zero tempera-
ture. We then subject each glassy sample to athermal, quasistatic
simple shear (AQS) deformations20. Specifically, we apply an
affine simple shear strain δγ = 2×10−6 to the current atomic po-
sitions, xi and yi, such that the new positions satisfy x′i = xi +δγyi

and y′i = yi in concert with Lees-Edwards boundary conditions43.
After each applied simple shear strain, we perform energy mini-
mization and repeat the process for a total strain of γ = 0.3. All
of the simulations were conducted using the LAMMPS molecular
dynamics simulator.44

We calculate the stress tensor Σµν of the system, where µ, ν = x,
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y, using the virial expression:43

Σµν =
1
A

N

∑
i> j=1

ri jµ fi jν , (3)

where ri jµ is the µth component of the separation vector~ri j point-
ing from atom i to atom j and fi jν is the νth component of the
interparticle force ~fi j on atom i from atom j. The other important
quantities, i.e., the strain tensor to characterize the deformations
of the Delaunay triangles and order metrics to describe the struc-
ture of the atomic displacement fields, are defined in Appendices
I and III, respectively.

3 Results
In this section, we describe the results from the simulations of 2D
binary Lennard-Jones glasses undergoing athermal, quasistatic
simple shear. We first show the shear stress versus simple shear
strain for single zero-temperature samples. The shear stress first
increases linearly with strain, until a plastic, atomic rearrange-
ment occurs, causing a discontinuous drop in the shear stress.
After the stress drop, there is a quasi-linear increase in the shear
stress followed by another stress drop. The quasi-linear increases
in shear stress, punctuated by discontinuous drops, continue over
the full range of strain. We show that the non-affine atomic mo-
tion during the quasi-linear segments can be accurately predicted
using linear response, while the error in predicting the non-affine
motion during the stress drops increases with their magnitude. To
better understand the collective motion during stress drops, we
implement a nudged elastic band method to identify intermedi-
ate states as the system traverses the minimum energy path from
an unstable state to a new potential energy minimum. We charac-
terize the deformation of the system using the strain of individual
Delaunay triangles. We compare the Delaunay triangle represen-
tation of local strain to D2

min, which has been used frequently to
characterize non-affine particle motion during AQS. Lastly, we in-
vestigate the displacement fields that arise in response to all pos-
sible local perturbations of Delaunay triangles and compare them
to the displacement fields that occur during bulk AQS.

3.1 Shear stress versus shear strain

In Fig. 1 (a), we plot the shear stress Σxy as a function of the im-
posed simple shear strain γ for a single sample during continuous
AQS in the forward direction. As found in previous studies, Σxy

versus γ possesses quasi-linear elastic segments that are punctu-
ated by discontinuous drops in the shear stress.16,19,20,45,46 Ser-
rated stress-strain curves have been observed in experiments of
compressed metallic glasses at low strain rates.47–49 To unam-
biguously identify all of the shear stress drops, we also perform a
series of one-step backward AQS steps, with the same δγ as that of
AQS in the forward direction, at each γ. This method yields a pair
of mechanically stable configurations at the same applied strain
γ, one from forward AQS and one from one-step backward AQS,
as shown in Fig. 1 (b). At most strains, the shear stress from for-
ward AQS, Σxy(γ), is the same as that for one-step backward AQS,
Σ′xy(γ). The shear stress of the two configurations is different at
the discontinuous stress drops. In the inset to Fig. 1 (b), we plot

(a)

(b)
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Fig. 1 (a) Shear stress Σxy versus simple shear strain γ for a single zero-
temperature configuration during athermal, quasistatic shear (AQS). (b)
Close-up of the data in (a). The black-filled squares indicate AQS in the
forward direction, and the red open circles indicate one-step backward
AQS from the configuration with a strain value immediately above it. The
shear strains γs and γe give the start and end of a quasi-elastic segment
with no discontinuous stress drops. Inset: The shear stress difference
∆Σxy = |Σxy(γ)−Σ′xy(γ)| between a configuration obtained through AQS
in the forward direction, Σxy, and that obtained through AQS in the
backward direction from the strain value immediately above it, Σ′xy, sorted
in ascending order.

the magnitudes of the shear stress differences ∆Σxy = |Σxy−Σ′xy|
in ascending order for the AQS trajectory in Fig. 1 (a). For the
continuous, quasi-elastic segments, the magnitudes of the shear
stress differences satisfy 10−16 < ∆Σxy < 5× 10−11. There is a
gap of roughly six orders of magnitude between the small shear
stress differences caused by errors in force balance (in the contin-
uous quasi-elastic segments) and the true stress drops that satisfy
5× 10−5 < ∆Σxy < 0.23. Immediately after a stress drop, a quasi-
elastic segment begins at γs and ends at the next stress drop at
γe.

Within linear response, the non-affine atomic motion during
AQS can be predicted using

Hi j
d~r j

dγ
=−~Ξi, (4)

where ~r j = (x j,y j) gives the coordinates of the jth atom, Hi j =
∂ 2U

∂ ri∂ r j
is the Hessian matrix, and ~Ξi =

∂ 2U
∂~ri∂γ

is the force on atom i
that is induced when the system is subjected to an affine simple
shear deformation.20 Using Eq. 4, the predicted atomic positions
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(xp
i ,y

p
i ) at the next strain γ +δγ are

xp
i = xi +δγyi +δγ

dxi

dγ
, (5)

yp
i = yi +δγ

dyi

dγ
. (6)

After applying Eqs. 5 and 6 iteratively, we can estimate the tar-
get atomic positions at the end of each quasi-elastic segment (at
γe) using the reference atomic positions from the start of each
segment (at γs). In addition, we can predict the target atomic
positions after each shear stress drop using the reference atomic
positions before the shear stress drop.

We can obtain the error in the predicted atomic positions
by calculating the magnitude-squared of the difference (∆R)2 =

|~Rp − ~Rs|2/N between the predicted atomic configurations ~Rp

and those directly from the AQS simulations, ~Rs, where ~R =

(x1,y1, . . . ,xN ,yN). In Fig. 2, we show a scatter plot of (∆R)2 ver-
sus the magnitude of the difference in shear stress ∆Σxy between
the target and reference configurations for quasi-elastic segments
and shear stress drops. For most systems, we obtain extremely
accurate predictions for the atomic positions at the ends of the
quasi-elastic segments, (∆R)2 ∼ 10−8 using δγ = 2× 10−6. (For
a few quasi-elastic segments, the predictions generated Hessians
with negative eigenvalues, which give larger values of (∆R)2.) In
contrast, (∆R)2 ∼ ∆Σ2

xy scales quadratically with the magnitude of
the shear stress difference for the shear stress drops, and (∆R)2

does not decrease with decreasing δγ. Thus, predictions of the
atomic positions after stress drops are only accurate for extremely
small stress drops using this method. In the next section, we will
introduce an approach for predicting the non-affine aotmic mo-
tion during large stress drops.

1 E - 5 1 E - 4 0 . 0 0 1 0 . 0 1 0 . 11 E - 1 1

1 E - 9

1 E - 7

1 E - 5

0 . 0 0 1

0 . 1

(∆R
)2

∆Σ x y

2
1

Fig. 2 The magnitude-squared of the difference between the predicted
target and reference configurations (∆R)2 = |~Rp − ~Rs|2/N as a function
of the magnitude of the shear stress difference ∆Σxy between the target
and reference configurations. Data for the quasi-elastic segments (shear
stress drops) are shown as black squares (red triangles). The start of
each quasi-elastic segment is used as the reference to predict the target
configuration at the end of the quasi-elastic segment. The reference
and target configurations for the shear stress drops correspond to those
immediately before and after the stress drop.

In Fig. 3 (a) and (b), we display the non-affine displacement
fields near the beginning and near the end of a particular quasi-
elastic segment. In both displacement fields, we find Eshelby-

like quadrupolar structures.1,20,26,50 During this quasi-elastic seg-
ment, the quadrupolar structure on the right side of the image
in (a) dissolves with increasing strain and a new one on the
left side of the image forms in (b). Movies of the evolution of
the non-affine displacement fields during quasi-elastic segments
are shown in the ESI. We find that even though complex collec-
tive atomic motion occurs frequently during the quasi-elastic seg-
ments, the displacement fields at the ends of the quasi-elastic seg-
ments can be predicted accurately using the configurations at the
start of the quasi-elastic segments and Eqs. 5 and 6.

In Fig. 3 (c), we show the non-affine displacement field calcu-
lated using the last configuration of a quasi-elastic segment and a
configuration immediately after the shear stress drop that ended
the previous quasi-elastic segment. We identify two distinctive
quadrupolar structures in the displacement field. However, if
we employ Eqs. 5 and 6 to predict the non-affine displacement
field using the last configuration of the previous quasi-elastic seg-
ment, we obtain the displacement field in Fig. 3 (d), which only
includes a single quadrupolar structure. The non-affine displace-
ment fields in Fig. 3 (c) and (d) are clearly different. These results
emphasize again that the approach of using the atomic configura-
tion immediately before a shear stress drop plus linear response is
not sufficient to accurately predict the atomic configuration after
shear stress drops.

(a)

(d)(c)

(b)

Fig. 3 Non-affine displacement fields normalized to unity for quasi-elastic
segments and shear stress drops. The non-affine displacement fields in
(a)-(c) were obtained by comparing atomic configurations separated by
δγ in a quasi-elastic segment. The displacement fields in (a) and (b)
correspond to configurations at 0.32 and 0.999 of the length of a par-
ticular quasi-elastic segment, respectively. The displacement field in (c)
corresponds to a shear stress drop, and the configurations before and
after the shear stress drop were used to calculate the displacement field.
(d) The non-affine displacement field predicted using Eqs. 5 and 6 and
the atomic configuration before the shear stress drop in (c).

3.2 Minimum energy paths during shear stress drops
As shown in the previous section, if the shear stress drop is large,
one cannot predict the atomic configuration after the stress drop
using linear response applied to the atomic configuration immedi-
ately before the stress drop. In this section, we describe a nudged

4 | 1–12Journal Name, [year], [vol.],

Page 4 of 12Soft Matter



0 6 0 1 2 0 1 8 0 2 4 00 . 2 7 2

0 . 2 7 6

0 . 2 8 0

0 . 2 8 4
Σ x

y

I m a g e  i n d e x

Σ x y

- 2 . 1 9 1 8 5

- 2 . 1 9 1 8 4

- 2 . 1 9 1 8 3

- 2 . 1 9 1 8 2

- 2 . 1 9 1 8 1

U

U

Fig. 4 The shear stress Σxy (solid black line) and the total potential
energy U (solid red line) as a function of the index of roughly equally
spaced images in ∆R along the minimal energy path from the configu-
ration immediately before to that after the shear stress drop in Fig. 3
(c).

elastic band (NEB) method to obtain the atomic configurations
that occur along a minimal energy path between the configura-
tion before the shear stress drop and the new mechanically sta-
ble configuration after the drop.36–40 A series of configurations
(called images) is generated by linearly interpolating in config-
uration space between the initial and final mechanically stable
states. To do this, springs are added between successive images
to ensure equal spacing ∆R between the images. The total force
acting on each atom in image i is the sum of two contributions,

~Fi = ~F⊥i +~F‖i , (7)

where ~F⊥i is the force arising from the interatomic potential en-
ergy,

~F⊥i = ~∇U(~Ri) · τ̂iτ̂i−~∇U(~Ri), (8)

and ~F‖i is the spring force between successive images,

~F‖i = k(|~Ri+1−~Ri|− |~Ri−~Ri−1|)τ̂i, (9)

where τ̂i =~τi/|~τi| is the normalized local tangent of image i,

~τi =
~Ri−~Ri−1

|~Ri−~Ri−1|
+

~Ri+1−~Ri

|~Ri+1−~Ri|
, (10)

k = 1 is the spring constant that ensures the images are equidis-
tant in configuration space, and ~Ri is the atomic configuration
for image i. An optimization algorithm using a Verlet integration
scheme is used to move the image configurations such that ~Fi = 0
for all i.36

In Fig. 4, we plot the shear stress Σxy and total potential energy
U as a function of the image index along a minimal energy path
for the shear stress drop in Fig. 3 (c). Σxy and U evolve continu-
ously from the values immediately before the shear stress drop to
those after. ∆R and ∆Σxy between successive images are controlled
by the total number of images, n. We chose n such that ∆R∼ 10−8

and ∆Σxy ∼ 10−5 between successive images. In contrast, the av-
erage shear stress drop 〈∆Σxy〉 ≈ 10−2 for forward AQS. Using this
method, we will calculate the non-affine displacement field and
the local strain tensor by comparing successive images in the next

section.

3.3 Evolution of the displacement field

To characterize the local strain field during AQS, we perform De-
launay triangulation using the atom centers as the vertices at each
strain γ. Local strains at the atomic scale are then characterized
through deformations of the triangles. Note that triangles in two
spatial dimensions (2D), or tetrahedra in 3D, represent the largest
grouping of atoms for which the deformation of the system can be
measured without any loss of information about the atomic mo-
tion. Specific details concerning the definition of the strain tensor
from the Delaunay triangulation are provided in Appendix I.

In Fig. 5 (a), we show the von Mises strain εvm
α of each trian-

gle α by comparing the two triangulations before and after the
shear stress drop in Fig. 3 (c). The triangles with relatively high
von Mises strain coincide with the locations of the quadrupolar
structures in Fig 3 (c). However, as discussed in the previous
section, to develop the ability to predict the atomic configura-
tions after shear stress drops, we must understand the evolution
of the atomic configurations along minimal energy paths during
the shear stress drops. Thus, we also calculate the von Mises
strain of each triangle as the system moves along a minimal en-
ergy path from the beginning to the end of shear stress drops.
In Fig. 5 (b)-(d), we show the von Mises strain for each triangle
near the beginning, middle, and end of the minimal energy path
associated with the shear stress drop in Fig. 3 (c). The regions
of large von Mises strain in panel (a) and those in panels (b)-
(d) do not coincide. Moreover, the large strain regions in (b)-(d)
dissolve and other large-strain regions form along the minimal
energy path.

To further illustrate the evolution of the large-strain regions as
a function of image index along a minimal energy path during
shear stress drops, we break up the atomic configurations into
subsystems. We consider triangles within rectangular sections (as
shown in Fig. 5 (a)) with height 7σAA and equal-sized bins in
the horizontal direction with width σAA. The average von Mises
strain for the ith bin in a given rectangular section is

〈εvm〉i =
ni

∑
α=1

Aiα

Ai
ε

vm
α , (11)

where ni is the total number of triangles within the ith bin, Aiα is
the area of triangle α that is included in the ith bin, Ai is the area
of the ith bin, and εvm

α is the von Mises strain of triangle α. In
Fig. 6, we show the average von Mises strain for each bin (along
the vertical axis) in the rectangular subsystems in Fig. 5 (a) as a
function of the image index along the minimal energy path (along
the horizontal axis). Note that the sizes of the rectangular regions
are scaled so that the images appear in a square format.

We make several observations about the evolution of the strain
field during the shear stress drop depicted in Fig. 5 (a). First,
regions of large-strain form and dissolve during the shear stress
drop. In Fig. 6 (a), a large-strain region forms near the initial
image and ends near image 70. Another large-strain region begins
to form near image 220. In Fig. 6 (b), two nearby large-strain
regions form near image 100; the top one dissolves around image
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(a)

(d)(c)

(b)

0 0.188 0 0.002

0 10 20 30 40 50 60
0

7

23

30

Fig. 5 The von Mises strain εvm
α of each triangle α during the shear stress

drop in Fig. 3 (c). (a) The von Mises strain calculated by comparing the
Delaunay triangulations immediately before and after the shear stress
drop. Evolution of the strain for the triangles within the two rectangular
boxes along the minimal energy path is shown in Fig. 6. (b)-(d) The von
Mises strain at image indexes λ = 10, 110, and 230 at early, intermediate,
and end stages of the minimal energy path during the shear stress drop.
The reference triangulations are from images λ−1. The color scales from
blue to red indicate increasing von Mises strain (over the range [0,0.188]
for (a) and [0,0.002] for (b)-(d)).

140, and the other dissolves around image 180. Second, the large-
strain regions do not form and dissolve abruptly. For example, one
side of the large-strain region in Fig. 6 (a) dissolves before the
other. Similarly, one side of one of the large-strain regions forms
before the other in Fig. 6 (b). These results imply the existence
of a wave speed for the evolution of large-strain regions during
shear stress drops. A more complete visualization of the spatio-
temporal evolution of the large-strain regions during this shear
stress drop is included as a movie in the ESI.

Previous studies of AQS applied amorphous solids have shown
that although the particle dynamics is reversible, significant non-
affine motion frequently occurs during the quasi-elastic seg-
ments.51,52 We find that quadrupolar structures in the non-affine
displacement fields also appear during quasi-elastic segments (as
shown in Fig. 3 (a) and (b)). Thus, we find similar results for the
spatio-temporal evolution of large non-affine strain regions dur-
ing quasi-elastic segments and during stress drop. In Fig. 7 (a),
we show the von Mises strain for each triangle by comparing the
triangulations at the beginning and end of the quasi-elastic seg-
ment depicted in Figs. 3 (a) and (b). When the configurations at
the beginning and end of the quasi-elastic segment are compared,
the large-strain regions are randomly distributed throughout the
system. In contrast, if we compare configurations separated by
small simple shear strain increments δγ, we can track the spatio-
temporal evolution of the large-strain regions. For example, if we
focus on the regions of the system that feature the two quadrupo-
lar structures in Figs. 3 (a) and (b) (i.e., the rectangular boxed
region in Fig. 7 (a)), we find that a region of large strain forms
near image 30 and ends near 50 and another large-strain region
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Fig. 6 The average von Mises strain 〈εvm〉i in each bin i (vertical axis)
for the (a) bottom and (b) top rectangular regions in Fig. 5 (a) as a
function of the image index (horizontal axis) along the minimal energy
path during the shear stress drop in Fig. 5 (a). The color scale for 〈εvm〉i
increases from blue to red over the range [0,0.001]. The solid white lines
highlight the spatio-temporal evolution of two of the large-strain regions.
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Fig. 7 (a) The von Mises strain εvm
α for each triangle for the quasi-elastic

segment in Fig. 3 (a) and (b). The strain is obtained by comparing the
triangulations from the start and end of the quasi-elastic segment. (b)
Evolution of the average von Mises strain 〈εvm〉i (bin index versus image
index) for triangles within the rectangular boxed region in (a) during the
same quasi-elastic segment in (a), which includes the two quadrupolar
structures of the non-affine displacement field in Fig. 3 (a) and (b). The
strain is obtained by comparing the triangulations from configurations
separated by δγ. The range of the color scales is [0,0.1] for (a) and
[0,0.001] for (b).

begins to form near image 120. Note that the rest of the system
is quiescent with extremely small strain. Movies of the spatio-
temporal evolution of the large-strain regions during quasi-elastic
segments are included in the ESI.

3.4 Advantage of triangle representation of displacement
field

Numerous prior studies have employed D2
min to characterize the

non-affine displacement fields of amorphous materials during ap-
plied strain;4,10,18,32,53–55 D2

min measures the deviation of the dis-
placement of each atom and its neighbors from a local affine
deformation.10 (See Appendix II for the definition of D2

min and
the deformation gradient tensor Gi associated with each atom i.)
In this section, we compare measurements of non-affine atomic
motion using the deformation gradient tensor Fα associated with
each Delaunay triangle α and the deformation gradient tensor Gi,
associated with each atom i, obtained by calculating D2

min (i.e.,
minimizing the local non-affine motion).

The deformation gradient tensor Fα is defined for each triangle
α, however, Gi is defined for each atom i. To make the compari-
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son between the two quantities, we calculate the average triangle
deformation gradient tensor associated with each atom i:

F i =
ni

∑
α=1

Aiα

Ai
Fα , (12)

where ni is the number of Delaunay triangles connected to atom i,
Aiα is the area of each triangle α associated with atom i, and Ai =

∑α Aiα . In Fig. 8, we show that each of the four components (xx,
xy, yx, and yy) of the average triangle deformation gradient tensor
F i is linearly related to the corresponding component of Gi (with
a coefficient close to 1). Thus, the deformation gradient tensor
Gi associated with D2

min is an average of the triangle deformation
gradient tensor over all triangles that include atom i as a vertex.

An advantage of using Fα is that it is the most local deforma-
tion gradient tensor that can be defined for an atomic system. To
illustrate this feature, consider the atoms numbered 1, 2, 3, and 4
in Fig. 9 (a) and (b) and the local rotation ω, which is an invari-
ant of the deformation gradient tensor as discussed in Appendix I.
These atoms belong to triangles with both positive and negative
rotation angles (using the triangle deformation gradient tensor
in Fig. 9 (b)), which results in a near-zero value for the rotation
when D2

min is calculated for each atom. (See Fig. 9 (a).) Similarly,
atoms 1, 2, 5, and 6 possess near-zero hydrostatic strain (Fig. 9
(c)) when using D2

min to define Gi, since these atoms belong to
triangles with both positive and negative volume changes, εhyd

(Fig. 9 (d)). Thus, all information concerning local atomic defor-
mation is stored in the deformation gradient tensor Fα for each
Delaunay triangle α; calculating D2

min results in a loss of informa-
tion.
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Fig. 8 Probability distributions of the components of the average triangle
deformation gradient tensor F i and the deformation gradient tensor Gi
associated with D2

min for atom i using the same data in Fig. 12: (a)
P(F ixx,Gixx), (b) P(F ixy,Gixy), (c) P(F iyx,Giyx), and (d) P(F iyy,Giyy). The
probability increases from blue to red on a log10 scale.

(a)

(d)(c)

(b)

Fig. 9 (a)-(d) Comparison of the invariants (rotation angle ω, top row,
and εhyd , bottom row) of the deformation gradient tensors Gi (left col-
umn) associated with each atom i and Fα associated with each triangle
α. The color scale for values of ω and εhyd increases linearly from blue
to red.

3.5 Response to local perturbations
As shown in previous sections, quadrupolar displacement fields
occur during both the quasi-elastic segments and the abrupt shear
stress drops in systems undergoing athermal, quasistatic simple
shear. Do other types of displacement fields occur during AQS? In
this section, we apply four types of perturbations (rotation, dila-
tion, simple and pure shear) to individual triangles in the system
and characterize the structure of the resulting displacement fields.
(See Fig. 10 (a).) After performing a given perturbation, we fix
the displaced atoms in the selected triangle and perform poten-
tial energy minimization for the rest of the system. To ensure
linear response, we set small magnitudes for the perturbations:
the rotation angle θ ∼ 10−8 rad and the atomic displacements for
the other perturbations d ∼ 10−8. We characterize the response
of the system by comparing the resulting displacement fields to
idealized vortex, dipolar, and quadrupolar displacement fields, as
shown in Fig. 10 (b)-(d).

We consider four order metrics, each defined within the range
0 to 1, to characterize the displacement field in response to the
local perturbations. The “circulation” Γ measures the degree to
which the displacement field rotates around a point, the “flux” Φ

describes the magnitude of the flow outward/inward of the dis-
placement field, and the bond-orientational order parameters, ψ2,
and ψ4,56 quantify the extent to which the displacement fields are
oriented in a single direction or in two perpendicular directions.
Mathematical expressions that define the four order metrics are
provided in Appendix III. Displacement fields with large values of
Γ and small values of Φ, ψ2, and ψ4 are identified as vortex-like
structures, displacement fields with small values of Γ and large
values of Φ, ψ2 and ψ4 correspond to dipolar structures, and dis-
placement fields with small values of Γ, Φ, and ψ2, but large val-
ues for ψ4 correspond to quadrupolar structures.

As shown in Fig. 11, the local perturbations applied to the zero-
strain glasses give rise to a wide range of defects in the displace-
ment field. Rotation (Column (a)) and simple shear (Column (b))
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(a) (b)

(c) (d)

Fig. 10 (a) Four types of perturbations applied to single triangles: rota-
tion (upper left), dilation (upper right), simple shear (lower left), and pure
shear (lower right). The response of the perturbations can be compared
to idealized (b) vortex, (c) dipolar, and (d) quadrupolar displacement
fields. The order metrics described in Appendix III are calculated in the
annular region between the two red circles.

applied to single triangles give rise to vortex-like structures (with
moderate values of Γ). In contrast, dilations (Column (c)) applied
to single triangles induce dipole-like structures with elevated val-
ues of Φ, ψ2, and ψ4. Pure shear of single triangles gives rise to
quadrupolar structures with large values of ψ4.

Which of the local perturbations does bulk, quasistatic simple
shear flow activate? To address this question, we focus on the im-
ages along minimal energy paths during shear stress drops. For
each image during the minimal energy path, we identify the disk
region (with radius 5.5σAA) surrounding a given triangle with the
largest average von Mises strain. We then calculate the four order
metrics for the non-affine displacement field between successive
images in an annular region surrounding this triangle (with in-
ner radius 5.5σAA and outer radius 11σAA). In Fig. 12, we show
the probability distributions, P(Φ,Γ), P(ψ2,Γ), and P(ψ4,Γ), for
232 shear stress drops. The defects that occur during bulk, qua-
sistatic simple shear are similar to those generated by local pure
shear in Fig. 11 (d). Thus, local pure shear deformations of single
triangles are the main defects that are activated during bulk, qua-
sistatic simple shear, giving rise to mainly quadrupolar non-affine
displacement fields.

4 Conclusions and future directions
In this article, we studied the non-affine atomic motion that oc-
curs in a 2D Lennard-Jones model of metallic glasses subjected to
athermal, quasistatic simple shear (AQS). The shear stress versus
strain curve consists of continuous, quasi-elastic segments punc-
tuated by abrupt shear stress drops, which correspond to atomic
rearrangements. Using a novel method to define the deformation
gradient tensor associated with triangular elements from Delau-

nay triangularization and by following minimal energy paths dur-
ing shear stress drops, we obtained several key results concern-
ing the mechanical response of amorphous materials. First, we
showed that collective structures in the non-affine displacement
fields that occur during the quasi-elastic segments are similar to
those that occur during stress drops. Quadrupolar displacement
fields, which are the most common collective structures, form and
dissolve both during the quasi-elastic segments and during shear
stress drops. Second, we emphasized that the common procedure
of using only the mechanically stable configurations immediately
before and after a stress drop to define the non-affine displace-
ment field is problematic since the system can move significantly
in configuration space during the stress drop. By following min-
imal energy paths during the shear stress drops, we tracked the
spatio-temporal evolution of multiple quadrupolar structures in
the system using successive configurations that differ by a small
amount in stress. Third, we compared the deformation gradient
tensor Fα associated with each triangle α to the atomic defor-
mation gradient tensor Gi defined by D2

min, and show that Gi is
an average of Fα over adjacent triangles. Thus, an advantage of
using Fα with triangular elements is that it is the largest group-
ing of atoms in 2D that captures all information concerning the
atomic motion. Lastly, by studying the response of the system to
perturbations of single triangles, such as rotation, dilation, sim-
ple and pure shear, we demonstrated that vortex-like, dipolar, and
quadrupolar displacement fields can be triggered. Local rotation
and simple shear perturbations generate vortex-like displacement
fields; local dilation generates dipolar displacement fields; and lo-
cal pure shear generates quadropolar displacement fields. Since
bulk AQS typically gives rise to quadrupolar displacement fields,
these results emphasize that bulk AQS activates mainly local pure
shear strains of triangles.

These results raise several important, open questions for future
research. First, we showed that bulk, quasistatic simple shear
gives rise to local pure shear strains of triangles, which generate
quadrupolar displacement fields. Can vortex-like or dipolar dis-
placement fields be generated by other bulk deformations, such
as uniaxial tension, and spatially non-uniform deformations, such
as indentation? A microscopic theory for the non-affine displace-
ment fields in amorphous should be able to calculate the fraction
of each type of triangle strain that is activated for a given macro-
scopic deformation. If so, the theory will be able to predict the
resulting non-affine displacement field for a given applied macro-
scopic deformation. In addition, the methodology introduced in
this article can be generalized to 3D using Delaunay tetrahedral-
ization to uniquely define the deformation gradient tensor for
each tetrahedron with atoms at its vertices. Other studies will
include monitoring the evolution of the displacement fields dur-
ing applied strain at finite strain rates and non-zero temperature,
which are essential for making comparisons to experimental stud-
ies of glasses.
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Fig. 11 Probability distributions of different combinations of the order metrics, P(Φ,Γ) (top row), P(ψ2,Γ) (middle row), and P(ψ4,Γ) (bottom row),
for the non-affine displacement fields in response to four different perturbations: Column (a) rotation, Column (b) simple shear, Column (c) dilation,
and Column (d) pure shear. The data is obtained from uniformly sampling 570 unstrained glasses. The color scale from blue to red indicates increasing
probability on a linear scale.

Appendix I: Deformation of triangular elements
Each Delaunay triangle includes three vertex atoms with a to-
tal of six degrees of freedom. Motion of each triangle can be
decomposed into three parts: translation of its geometric cen-
ter, rotation about its geometric center, and changes in the shape
of the triangle. Let ~r0

i and ~rn
i (i = 1,2,3) be the Cartesian coor-

dinates of the three vertex atoms of the reference and the de-
formed triangular element α, respectively. The translation vector
~uc =

1
3 ∑

3
i=1(~r

n
i −~r0

i ) corresponds to two degrees of freedom. The
vector~r0

i j =~r0
i −~r0

j connects two vertices i and j of the reference
triangle, while ~rn

i j =~rn
i −~rn

j connects the same pair of atoms of
the deformed triangle. The deformation gradient tensor Fα trans-
forms the edge vector ~r0

i j into ~rn
i j. Fα can be obtained using any

two of the three edges of the triangular element α, e.g.,

Fα =

[
xn

i2 xn
i3

yn
i2 yn

i3

][
x0

i2 x0
i3

y0
i2 y0

i3

]−1

, (13)

where triangle α has vertices i, 2, and 3 as shown in Fig. 13. Fα

contains the remaining four degrees of freedom. The deformation
gradient tensor Fα can be decomposed into a rotation matrix Rα

and a symmetric matrix Uα : Fα = RαUα . The matrix Rα repre-

sents a rotation with an angle of ωα about the z-axis.

The local Green-Lagrangian strain tensor Eα is defined for each
triangle α as Eα = (FT

α Fα − I)/2 = (UT
αUα − I)/2, where I is the

identity matrix. Eα can be decomposed into the sum of hydro-
static and deviatoric strains as follows

Eα = ε
hyd
α I +E ′α . (14)

The hydrostatic strain,

ε
hyd
α =

trEα

2
=

(ε11 + ε22)

2
, (15)

is closely related to the volume change of the triangle, while the
deviatoric strain tensor E ′α is related to shear deformations at con-
stant volume. The von Mises strain is defined as

ε
vm
α =

√
1
2

tr(E ′2α ). (16)
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Fig. 12 Probability distribution of different combinations of the order metrics, (a) P(Φ,Γ), (b) P(ψ2,Γ), and (c) P(ψ4,Γ), for the non-affine displacement
fields of all images along the minimal energy paths for 232 shear stress drops. The color scale from blue to red indicates increasing probability on a
linear scale.

Appendix II: Relation between D2
min and triangle de-

formation gradient tensor

The D2
min quantity introduced by Falk and Langer10 provides a

measure for the deviations of atomic motion from local affine de-
formation. Suppose we define the deviation,

D2
i =

ni

∑
j=1
|~rn

i j−Gi~r0
i j|2, (17)

where ni is the number of neighboring atoms surrounding a refer-
ence atom i (e.g. using a distance cutoff set by the first minimum
in the radial distribution function). D2

i is minimized by finding
the best-fit local deformation gradient tensor,

Gi = XiY−1
i , (18)

where

Xi =
ni

∑
j=1

~rn
i j(~r

0
i j)

T (19)

and

Yi =
ni

∑
j=1

~r0
i j(~r

0
i j)

T . (20)

The rotation angle ωi and other invariants, such as the von Mises
εvm

i and hydrostatic ε
hyd
i strains associated with atom i can be ob-

tained from the deformation gradient tensor Gi after minimiza-
tion.

To define the triangle deformation gradient tensor, we first per-
form a Delaunay triangularization for the N atoms. The reference
atom i and its neighbors j ( j = 1,2, ...,ni) are shown in Fig. 13.
The deformation of the separation vector ~ri j between reference
atom i and its neighbors can be expressed as

~rn
i j = Fj~r0

i j, (21)

where Fj is the deformation gradient tensor of the triangle with
vertices i, j, and ( j+1)′ and ( j+1)′=( j+1) mod ni. Thus, we can
relate the deformation gradient tensors Gi and Fj by substituting

! 1

23

"!

Fig. 13 A reference atom i and its neighboring atoms j ( j = 1,2, ...,ni)

identified by Delaunay triangularization and indexed in counterclockwise
order. Adjacent pairs of neighbors together with the reference atom i
form the Delaunay triangles associated with atom i.

Eq. 21 into Eq. 18:

Gi =
ni

∑
j=1

FjW j, (22)

where the weighed matrix

W j =~r0
i j(~r

0
i j)

TY−1
i . (23)

Appendix III: Order metrics for non-affine displace-
ment field
In Sec. 3.5, we described the response of the system to local per-
turbations of individual triangles. In particular, we calculated sev-
eral order metrics that characterize the displacement field in an
annular region surrounding the perturbed triangle as shown in
Fig.10 (b)-(d). We set the inner and outer radii to be 5.5σAA and
11σAA, respectively. Changing the values of the radii does not al-
ter the key features of the order metrics. In this Appendix, we
provide the mathematical expressions that define the four order
metrics discussed in the main text.

To calculate the average “circulation” of the displacement field
within the annular region, we define

Γ =
1
C

∣∣∣∣∣ na

∑
j=1

r̂c jxv jy− r̂c jyv jx

∣∣∣∣∣ , (24)
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where na is the number of atoms located within the annular re-
gion, r̂c j is the unit vector pointing from the center of the per-
turbed triangle to the center of atom j, ~v j is the displacement
vector of atom j, and C = ∑

na
j=1 |~v j|. We define the average “flux”

of the displacement vectors through the annular region as

Φ =
1
C

∣∣∣∣∣ na

∑
j=1

r̂c j ·~v j

∣∣∣∣∣ . (25)

To characterize dipolar- and quadrupolar-like displacement fields,
we measure the weighted local bond-orientational order parame-
ters,56

ψk =

∣∣∣∣∣ na

∑
j=1

s j

C
eikθ j

∣∣∣∣∣ , (26)

where k = 2 for dipolar and 4 for quadrupolar structures, θ j

is the angle between ~v j and the x-axis, and s j =
∣∣r̂c j ·~v j

∣∣. For
idealized (a) vortex, (b) point charge, (c) dipolar, and (d)
quadrupolar fields, these definitions give the following values
(Γ,Φ,ψ2,ψ4): (a) (1,0,0,0), (b) (0,1,0,0), (c) (0,0.7,0.7,0.8), and
(d) (0,0,0,0.8). The idealized quadrupolar field is obtained from
a single Eshelby circular inclusion with radius 4σAA, Poisson’s ra-
tio ν = 0.343, and 0.09 for the coefficient of the traceless eigen-
strain1 and the idealized dipolar field is obtained by weighting
this quadrupolar field by cos2ζ , where ζ is the angle between the
quadrupolar field and one of the principal directions of the eigen-
strain tensor of the Eshelby inclusion.
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