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Data-driven Coarse-grained Modeling of Non-
equilibrium Systems†

Shu Wang,a‡ Zhan Ma,a‡ and Wenxiao Pana∗

Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-
grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up predic-
tion of main features of the system for many applications. However, it usually experiences significantly
altered dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that
can faithfully preserve dynamics, previous efforts mainly focus on equilibrium systems. In contrast,
various soft matter systems are known out of equilibrium. Therefore, the present work concerns non-
equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium
dynamics and is generally applicable to any non-equilibrium process and any observable of interest.
To this end, the dynamic equation of a CG variable is built in the form of the non-stationary general-
ized Langevin equation (nsGLE), where the two-time memory kernel is determined from the data of
the auto-correlation function of the observable of interest. By embedding the nsGLE in an extended
dynamics framework, the nsGLE can be solved efficiently to predict the non-equilibrium dynamics
of the CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the
memory kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimiza-
tion process is proposed for the parameterization, which integrates the differential-evolution method
with the Levenberg–Marquardt algorithm to efficiently tackle a non-convex and high-dimensional
optimization problem.

1 Introduction
When we study various soft matter systems, such as polymers,
biomolecules, and colloid suspensions, full atomistic simulations
based on all-atom molecular dynamics (MD) can be computa-
tionally demanding because many degrees of freedom and high-
dimensional Hamiltonian equations are involved, limiting the sys-
tem size and time scale accessible in the simulations. If only
certain main features of the system are of interest, we can fo-
cus on a small set of observables that characterize those fea-
tures. For example, considering a system of biomolecules or pro-
teins, one is interested in the collective motion of specific groups
of atoms to understand a biological mechanism1,2. Therefore,
coarse-grained (CG) modeling can be established, which projects
a high-dimensional fine-grained system onto a smaller set of vari-
ables (CG variables) and constructs the equation of motion that
governs the dynamics of CG variables. By solving a reduced-
dimension equation, CG modeling is computationally more effi-
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cient than full atomistic simulations and hence allows to access
larger length scales and longer-time effects in practical applica-
tions. The CG dynamic equation can be established by system-
atically integrating out “irrelevant" degrees of freedom such as
detailed information of the molecules and/or the solvent sur-
rounding the molecules. Along this line, most previous stud-
ies concentrated on systems at equilibrium, where the general-
ized Langevin equation (GLE)3,4 has been established to describe
the equilibrium dynamics of CG variables and applied in various
CG models5–11. However, many soft matter systems are known
out of equilibrium, e.g., molecular self-assembly driven by time-
dependent temperature protocols12–15, dynamics of DNA under
an applied force16, and polymer dynamics in a flow17. There-
fore, it is of more interest in practice to be able to properly de-
scribe the non-equilibrium dynamics of CG variables. To this end,
the non-stationary generalized Langevin equation (nsGLE)18–20

has recently been established as a promising mathematical frame-
work for CG modeling of non-equilibrium systems, which pro-
vides the equation of motion for the CG variables subject to non-
equilibrium processes. In principle, the nsGLE can be rigorously
derived using time-dependent projection operators18,21. It does
not require time scale separation, i.e., the CG variable can be any
observable of interest, whether slow or fast relative to the dynam-
ics of unresolved degrees of freedom. Similarly to the GLE, the

Journal Name, [year], [vol.],1–9 | 1

Page 1 of 9 Soft Matter



nsGLE implicitly incorporates the kinetic effects of unresolved de-
grees of freedom through a memory term and a fluctuating force
term. However, different from the GLE, the memory kernel in
the nsGLE is a two-time function to account for the dependence
on the initial conditions of non-equilibrium processes. Although
theoretically sound, applying the nsGLE to practical CG modeling
encounters the following challenges. First, determining the mem-
ory kernel from data can involve numerical differentiation, which
needs to be regularized to ensure a stable and accurate solution.
Second, since the non-stationary memory kernel is a two-time
function, giving an explicit form of the fluctuating force such that
the memory and fluctuating force obey a fluctuation-dissipation
like relation18,19 is a challenging task. Third, directly solving the
nsGLE can be computationally expensive because the convolution
of memory requires the historical information of CG variables at
every time step, and the fluctuating term is difficult to compute,
which overshadows the benefit of CG modeling.

The present work aims to address the challenges of applying
the nsGLE to CG modeling of non-equilibrium systems, and our
contributions include the following. First, we propose a numer-
ical method that can efficiently and stably determine the mem-
ory kernel from the data of the auto-correlation function of the
observable of interest. For prediction beyond the time range of
the data set, the memory kernel is extrapolated via the Gaus-
sian process regression. Second, by approximating the mem-
ory kernel in a two-time exponential expansion, we prove the
equivalence of the nsGLE and an extended Markovian process.
By embedding the nsGLE in an extended dynamics framework,
we provide a specific form of the fluctuating force such that the
memory and fluctuating force satisfy the fluctuation-dissipation
relation, and in the meanwhile avoid the expensive convolu-
tion of memory, rendering the CG modeling computationally effi-
cient. Third, to parameterize the exponential expansion approx-
imating the memory kernel, we propose a systematic approach
via data-driven optimization. In particular, we propose a hy-
brid optimization process that leverages the differential-evolution
and Levenberg–Marquardt algorithms for non-convex and high-
dimensional optimization. Finally, for validation, we apply the
proposed methodology to a representative non-equilibrium sys-
tem: a star-polymer melt in a heating process. Star-polymer melts
have been used as typical benchmark systems for validating CG
models5,7,22,23. The methodology proposed in this work is ap-
plicable to CG modeling of various non-equilibrium soft matter
systems, for which only data accessible in either simulations or
experiments for the reference Hamiltonian system are needed.

2 Non-stationary generalized Langevin
equation

Without loss of generality, we denote a CG coordinate (mass-
scaled) as R̂(t) of d dimension and the corresponding momentum
as P̂(t). The nsGLE can then be written as Eq. (1) and holds for
any reference time τ 18,19:

dP̂(t)
dt

= 〈F̂(t)〉−
∫ t

τ

dt ′′K̂(t ′′, t)P̂(t ′′)+ ˆ̃Fτ (τ, t) , (1)

where the three terms in the right-hand side correspond to the
mean force, a friction term, and a fluctuating force term, respec-
tively. Note that the friction term is associated with a two-time
memory kernel K̂(t ′′, t), which accounts for the dependence of
non-equilibrium dynamics on initial conditions18. In the original
nsGLE18–20, 〈·〉 refers to an average over ensembles given by a
distribution of initial states in phase space. In this work, we inter-
pret Eq. (1) as a stochastic process considering unknown initial
states, which is an assumption that our work draws on. If we

choose the normalized momentum P(t) = P̂(t)−〈P̂(t)〉√
〈|P̂(t)|2〉−〈P̂(t)〉2

as the

CG variable, the nsGLE can be simplified as:

dP(t)
dt

=−
∫ t

τ

dt ′′K(t ′′, t)P(t ′′)+ F̃τ (τ, t) . (2)

Here, note that F̃τ (τ, t) depends on the reference time τ. In prac-
tice, we need to specify a reference time to solve the nsGLE. With-
out loss of generality, we define τ = 0 in this paper and hence
obtain:

dP(t)
dt

=−
∫ t

0
dt ′′K(t ′′, t)P(t ′′)+ F̃(t) , (3)

where F̃(t) = F̃0(0, t) is the fluctuating term. The memory kernel
and fluctuating force satisfy:

K(t ′′, t) =
〈F̃(t ′′) · F̃(t)〉
〈|P(t ′′)|2〉

, (4)

which is the fluctuation-dissipation relation that holds for non-
stationary processes19. In this paper, we neglect any correlations
between CG particles and between different dimensions of the
CG variable, and hence the memory kernel is regarded as a scalar
function.

2.1 Determine the memory kernel

To determine the two-time memory kernel K(t ′′, t), we rely on the
following property of the fluctuating term for any given τ1 and
τ2

19:

F̃τ2(τ2, t) = F̃τ1(τ1, t)+
∫

τ1

τ2

dt ′′K(t ′′, t)P(t ′′) , (5)

which can be easily obtained by substituting τ = τ1 and τ = τ2

into Eq. (2), respectively, and then subtracting the two resulting
equations. Multiply both sides of Eq. (3) by P(t ′) and simplify the
resulting equation using Eq. (5) with τ2 = 0 and τ1 = t ′. Taking
the trajectory-average and using the orthogonality of P(t ′) and
F̃t ′(t ′, t) as 〈P(t ′) · F̃t ′(t ′, t)〉= 018 finally lead to:

−D(t ′, t) =
∫ t

t ′
C(t ′, t ′′)K(t ′′, t)dt ′′ , (6)

where C(t ′, t) = 〈P(t ′) ·P(t)〉 is the auto-correlation function of the
momentum; D(t ′, t) = ∂C(t ′,t)

∂ t is the force-momentum correlation
function. The memory kernel K(t ′, t) can then be determined by
solving Eq. (6) in discrete setting if we have the data of C(t ′, t)
and D(t ′, t) at discrete time instances. In our work, since we have
chosen the normalized momentum P as the CG variable to sim-
plify the nsGLE, as noted in Eq. (3), it is more convenient to de-
termine D(t ′, t) by numerical differentiation of C(t ′, t) than to di-
rectly obtain D(t ′, t) as the normalized force-momentum correla-
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tion function. Considering that the numerical differentiation may
be sensitive to data noise and unstable, a regularization, via the
Tikhonov regularization24,25, is enforced in this work, for which
the regularization parameters can be determined using the quasi-
optimality criterion26,27, as discussed in Supplementary Informa-
tion. Once we obtain the data of C(t ′, t) and D(t ′, t) at discrete
time instances, Eq. (6) is discretized into the following linear sys-
tem by applying the midpoint quadrature rule28:

∆tCnKn =−Dn (7)

for every discrete time tn = n∆t, where Cn ∈ Rn×n with Ci, j
n =

1
2 (C(t ′i , t j−1)+C(t ′i , t j)) for i≤ j (otherwise, Ci, j

n = 0), Kn ∈Rn with
Ki

n = K(t ′
i− 1

2
, tn), and Dn ∈ Rn with Di

n = D(t ′i−1, tn). Given suffi-

ciently smooth data of Cn and Dn, Eq. (7) can be solved stably.
Note that the resulting linear system from discretizing the first-
kind Volterra equation is not guaranteed to be well-conditioned.
Upon larger data noise and condition numbers, the linear system
in Eq. (7) may need to be regularized, e.g., via the Tikhonov reg-
ularization24,25, to ensure stable solutions.

In literature, the non-stationary memory kernel is computed
using a different approach, where Eq. (6) is first integrated in
terms of t. Taking the derivative with respect to t ′ on the re-
sulting equation leads to a Volterra equation of the second kind,
which is then numerically solved by an iterative procedure29 or
via matrix inversion30. The solution obtained is finally converted
into the memory kernel by taking the derivative with respect to
t. The entire process involves numerical differentiation twice, for
which the data are smoothed using the Bézier surfaces method30.
Our method directly solves Eq. (6), requires numerical differen-
tiation once to obtain D(t ′, t) from C(t ′, t), and uses the Tikhonov
regularization24,25 to stabilize the numerical differentiation and
possibly ill-conditioned linear system.

Using the method described above along with the data of C(t ′, t)
for 0≤ t ′ ≤ t ≤ tdata, we can determine the memory kernel K(t ′, t)
up to tdata. In the case that we need to forecast the dynamics
beyond the range of data, we can employ the Gaussian process
regression (GPR) to extrapolate the memory kernel K(t ′, t) up to
tpred, denoted as Kpred(t ′, t). The furthest extrapolation time tpred
depends on the standard deviation (uncertainty level) of GPR. In
particular, define x = [t ′, t]T ∈ R2 and x∗ = [t ′∗, t∗]T ∈ R2 as the
inputs for training and prediction, respectively, with 0 ≤ t ′ ≤ t ≤
tdata and 0≤ t ′∗ ≤ t∗ ≤ tpred. The Gaussian process model is given
by: K(t ′, t)∼G P[m(x),Σ(x,x∗)] with m(x) the mean function and
Σ(x,x∗) the covariance function. Here, the covariance function is
assumed a squared exponential form with the hyper-parameters
determined by minimizing the negative log marginal likelihood31

via the Quasi-Newton optimizer L-BFGS32. A key advantage of
GPR is that the uncertainty bounds of prediction can be derived
from the hyper-parameters, and hence a measure for uncertainty
at t∗ ≥ tdata can be defined as:

σ
∗(t∗) =

∑
t ′<t∗
|σ̂(Kpred(t ′∗, t∗))|2

∑
t ′∗<t∗

|Kpred(t ′∗, t∗)|2
, (8)

with σ̂(Kpred(t ′∗, t∗)) the standard deviation of GPR at t∗> tdata for

all t ′∗ ≤ t∗. From it we can determine the furthest extrapolation
time tpred by: σ∗(tpred)≤ ζGPR, with ζGPR the desired tolerance of
uncertainty in GPR.

2.2 Extended dynamics

After the memory kernel K(t ′, t) is constructed, the next task is
to specify the fluctuating force in Eq. (3), and we thus obtain an
effective CG description in the form of nsGLE. The resulting ns-
GLE can then be solved to predict the non-equilibrium dynamics
of the process. However, determining the fluctuating force from
the fluctuation-dissipation relation in Eq. (4) is difficult. And di-
rectly solving Eq. (3) requires storing historical information and
is computationally expensive. To circumvent these difficulties, we
first approximate the memory kernel K(t ′, t) by an exponential ex-
pansion, noting that the memory is usually a decaying function
generally with oscillations:

K(t ′, t)≈
N

∑
i=1

αi(t)αi(t ′)exp(−ai

2
(t− t ′))

[bi cos(qi(t− t ′))+ ci sin(qi(t− t ′))] ,

(9)

where ai, bi, ci and qi are the parameters to be determined, satis-
fying ai ≥ 0, bi ≥ 0 and |ci| ≤ aibi

2qi
; and according to desired accu-

racy, N can be truncated to a finite number. Rewrite Eq. (9) into
a matrix form:

K(t ′, t) =−Apsα(t)e−(t−t ′)Assα(t ′)Asp . (10)

Here, α(t) ∈ R2N×2N is a time-dependent parameter matrix com-
posed of αi(t); Aps ∈ R1×2N , Asp ∈ R2N×1, and Ass ∈ R2N×2N are
parameter matrices whose elements are comprised of the param-
eters: ai, bi, ci and qi in Eq. (9). The specific forms of the param-
eter matrices are provided in Supplementary Information. Given
Eq. (10), the following extended dynamics:(

Ṗk(t)
Ṡk(t)

)
=−

(
0 Apsα(t)

α(t)Asp Ass

)(
Pk(t)
Sk(t)

)

+

(
0 0
0 Bs

)(
0

ξ(t)

)
,

(11)

is equivalent to the nsGLE in Eq. (3) with the fluctuating force
given by:

F̃k(t) =−
∫ t

0
Apsα(t)e−(t−t ′)Ass Bsξ(t ′)dt ′

−Apsα(t)e−tAss Sk(0) .

(12)

Here, Eqs. (11)–(12) are written for each dimension (Pk) of
the CG variable P(t) ∈ Rd×1 with k = 1,2, . . . ,d; Sk ∈ R2N×1 is
an auxiliary variable vector, whose initial state Sk(0) satisfies

〈Sk(0)〉 = 0 and 〈Sk(0)ST
k (0)〉 =

〈|P(t ′)|2〉
d I; ξ ∈ R2N×1 is a vector

of uncorrelated Gaussian random variables with 〈ξi(t)〉 = 0 and
〈ξi(t)ξ j(0)〉 = δi jδ (t), where ξi and ξ j denote the different ele-
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ments of ξ; and the matrix Bs ∈ R2N×2N satisfies:

BsBT
s =
〈|P(t ′)|2〉

d
(Ass +AT

ss) . (13)

The fluctuating force given in Eq. (12) satisfies the fluctuation-
dissipation relation in Eq. (4), as explained in Supplementary In-
formation, where a detailed proof of the equivalence between
Eqs. (11) and (3) is also provided. The nsGLE is thereby con-
verted to the extended dynamics that avoids convolution of mem-
ory and hence is much cheaper to solve than the original nsGLE.
A similar idea was proposed for solving the GLE in the context of
equilibrium dynamics7,9,10,33,34. For non-equilibrium processes,
Stella et al. has proposed a Markovian embedding for the nsGLE
by approximating the memory kernel as a two-time exponential
expansion35. We note two distinctions between their work and
ours: 1) our expansion includes both sin and cos oscillators to
represent more general oscillating behaviors of the memory ker-
nel; 2) while the functions α(t) and α(t ′) can be analytically de-
rived from the atomistic Hamiltonian for the particular problem
considered by Stella et al.35, they are unknown in general and
need to be determined, e.g., via parameterization as proposed in
the following section.

2.3 Parameterize the memory kernel

To determine the parameters in the expansion (Eq. (9)) approx-
imating the memory kernel, we propose a data-driven optimiza-
tion process. Rewrite Eq. (9) as K(t ′, t) = ∑

N
i=1 αi(t)αi(t ′)βi(t− t ′)

with βi((t−t ′))= exp(− ai
2 (t−t ′))[bi cos(qi(t−t ′))+ci sin(qi(t−t ′))],

and {ai,bi,ci,qi} ∈ λβ . Without prior knowledge, αi can be ap-
proximated by a general polynomial as: αi(t) = ∑

M
j=0 pi jt j, where

M is the polynomial’s order, and {pi j} ∈ λα are the coefficients.
To determine the parameters λ = {λα ,λβ }, we solve the follow-
ing optimization problem:

λ∗ = argmin
λ

Π(λ) , (14)

where Π(λ) is the objective function and defined as: Π(λ) =
‖K(t ′,t,λ)−Kpred(t ′,t)‖1

‖Kpred(t ′,t)‖1
with ‖ · ‖1 the L1 norm. Since Π(λ) is gener-

ally non-convex, the optimization could easily fall into some local
minima. Using different random initial guesses can alleviate this
issue in some degree; however, it requires the numbers of initial
guesses and independent optimization processes to increase ex-
ponentially with the dimension of λ. Even for a moderately high-
dimensional parameter space, the computational cost can be pro-
hibitive. Thus, we employ a hybrid optimization process leverag-
ing the differential evolution (DE)36 and Levenberg–Marquardt
(LM)37,38 algorithms. The hybrid method is computationally ef-
ficient and can effectively avoid falling into local minima. In par-
ticular, the DE is used to narrow down appropriate initial guesses
of λ, and the LM is then used to find the nearby minimum.

Before the optimization process, we first determine the poly-
nomial’s order M in the approximation of αi(t). Letting t ′ = t in
Eq. (9), we obtain K(t, t) = ∑

N
i=1 biα

2
i (t). Since K(t, t) is propor-

tional to α2
i (t), we can approximate K(t, t) by a 2M-order poly-

nomial. Noting that any continuous function can be approxi-

mated by an expansion of Legendre polynomials39, we next ex-
pand K(t, t) with increasing order of Legendre polynomials. To
proceed, we map t ∈ [0, tpred] to t̄ ∈ [−1,1] by t̄ = 2t−tpred

tpred
since Leg-

endre polynomials are defined on the interval [−1,1]. K(t̄, t̄) can
then be expanded as:

K(t̄, t̄) =
2M

∑
k=0

γkLk(t̄)+
∞

∑
k=2M+1

γkLk(t̄) , (15)

with Lk(t̄) the kth-order Legendre polynomial basis. The coeffi-
cient γk can be determined from39:

γk =
2k+1

2

∫ 1

−1
K(t̄, t̄)Lk(t̄)dt̄ , (16)

where the integral can be numerically evaluated by a quadra-
ture rule, e.g., the trapezoidal rule. Due to the orthonormal-
ity and completeness of the Legendre polynomials, the terms

∞

∑
k=2M+1

γkLk(t̄) can be neglected in Eq. (15) given the tolerance

of truncation error. By such, we can determine the polynomial’s
order M in the approximation of αi(t). After that, we proceed
with the hybrid optimization process based on the DE and LM
algorithms to solve the optimization problem in Eq. (14).

The DE is a type of evolutionary algorithm for global optimiza-
tion36, whose basic idea is to reduce the objective function by
generating mutated vectors, usually called greedy search. Greedy
search converges fast but can be trapped by some local minima.
The DE overcomes this difficulty by simultaneously generating
several vectors (called population), where mutation is achieved
by comparing two vectors and then adding their difference after
weighted to a third vector. The population and mutation ensure a
thorough exploration over the searching space and avoid falling
into a local minimum. Thus, the DE is potentially capable to
solve the global optimization problems that are non-differentiable
and have multiple local minima40. Its key specifics are pro-
vided below. First, the DE draws on a population of individuals,
which are defined as the D-dimensional parameter vectors λg,k

for k = 1,2, ...,NP, where D = N(M+5), NP is the population size,
and g represents the generation. All individuals are randomly ini-
tialized as λ0,k over the searching space. Unless stated otherwise,
we assume a uniform probability distribution for all random sam-
plings. Second, the following steps are iterated until the stopping
criterion of optimization (based on the maximum number of iter-
ations gmax or the desired tolerance) is met.

1) Mutation: For each individual λg,k, k = 1,2, . . . ,NP, a mutant
vector is generated according to

vk = λg,k1 +FM · (λg,k2 −λg,k3) , (17)

where k1,k2,k3 ∈ [1,NP] are randomly chosen and distinct from
each other; FM > 0 is a scaling factor that controls the mutation,
which is called the mutation weight.

2) Crossover: A trial vector uk is created by:

uk(l) =

{
vk(l), ωl <CR
λg,k(l), ωl ≥CR

, (18)

where ωl ∈ [0,1] is a uniformly distributed random number for
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l = 1,2, . . . ,D , and CR ∈ [0,1] is the preset crossover rate.

3) Selection: To decide whether or not the trial vector uk should
become an individual of the next generation, it is compared with
the original vector λg,k by a greedy selection:

λg+1,k =

{
uk, Π(uk)< Π(λg,k)

λg,k, Π(uk)≥Π(λg,k)
, (19)

where λg+1,k is the offspring of λg,k for the next generation.
The values of the population size NP, mutation weight FM , and
crossover rate CR are set following Gämperle41.

Although the DE has demonstrated its superior performance,
e.g. robustness and fast convergence, by numerical experiments
for solving benchmark global optimization problems with dimen-
sions up to 10042, its computational cost could enormously in-
creases when refining the solution since it does not use the infor-
mation of gradients. As a result, it is challenging for the DE to ac-
curately determine the precise position of optimum with reason-
able computational cost. Therefore, we propose a hybrid method
combining the DE with a robust local optimization algorithm, the
LM37. To proceed, we set a tolerance ζDE for the DE, which is
larger than the desired tolerance ζopt for the entire optimization.
When the minimum of the objective function for the current gen-
eration in the DE Π(λ∗g) is smaller than that of the last generation
and also the preset tolerance ζDE, λ∗g is taken as the starting point
for the LM algorithm to search the nearby local minimum λ∗. If
Π(λ∗)≤ ζopt, the optimization process is terminated, and we find
the optimal parameters λ∗ = {λ∗α ,λ∗β }; otherwise, we return to
the DE and proceed to the next generation. The detailed algo-
rithm of the hybrid optimization is outlined in Algorithm 1.

Algorithm 1 Hybrid optimization

Require: Memory kernel data of Kpred(t ′, t) with 0≤ t ′ ≤ t ≤ tpred
Ensure: Optimized parameters λ∗

1: for N = 1,2, . . . do
2: Initialize NP random parameter vectors λ0,k with k =

1,2, ...,NP and set ζ = min{Π(λ0,1),Π(λ0,2), . . . ,Π(λ0,NP)}
3: for g = 0,1, . . . ,gmax do
4: λ∗g = argmin

k=1,2,...,NP
{Π(λg,k)}

5: if Π(λ∗g)< min(ζDE,ζ ) then
6: ζ = Π(λ∗g)
7: Search λ∗ by the LM with λ∗g as the starting point
8: if Π(λ∗)< ζopt then
9: Output λ∗ and terminate all loops

10: end if
11: end if
12: for k = 1,2, ...,NP do
13: Generate a mutant vector vk by Eq. (17)
14: Create a trial vector uk by Eq. (18)
15: Make the next generation λg+1,k by Eq. (19)
16: end for
17: end for
18: end for
19: return λ∗

3 Numerical example
As a proof of principle, we applied the proposed methodology to
a benchmark non-equilibrium problem: heating a star-polymer
melt. The CG coordinate was chosen at the center of mass (COM)
of a tagged star polymer immersed in the melt of other iden-
tical star polymers. The momentum (normalized) of the COM
of the tagged star polymer was the CG variable. We analyzed
the non-equilibrium dynamics of this tagged star polymer dur-
ing the heating process and constructed the dynamic equation of
the CG variable based on the nsGLE. The data of the reference
high-dimension Hamiltonian system were obtained from MD sim-
ulations, and hence, while one set of MD simulation results were
used to construct the CG dynamic equation, the other set was
used for validating the CG modeling predictions. In particular,
we collected the data of the two-time auto-correlation function of
momentum C(t ′, t) = 〈P(t ′) ·P(t)〉 from MD simulations. The con-
structed nsGLE was solved via the extended dynamics, whose pre-
dictions within or outside the range of data set used to construct
the CG model were compared with the MD simulation results. All
of the simulations were performed using LAMMPS43.

The star-polymer melt consists of 1,000 identical star polymers
including the tagged one. In the MD simulation, each star poly-
mer consists of 31 Lennard-Jones (LJ) beads, i.e. a core LJ bead
and 10 identical arms with 3 LJ beads per arm. The core LJ bead
and the LJ beads in each arm are connected by the finitely exten-
sible non-linear elastic (FENE) bonds. The inter-atomic potential
adopts the purely repulsive Weeks-Chandler-Andersen (WCA) po-
tential given by:

EWCA(r) =

{
4ε[(σ

r )
12− (σ

r )
6 + 1

4 ] r ≤ rc

0 r > rc
, (20)

where r is the distance between two LJ beads; rc = 21/6σ is the
cutoff distance. The FENE potential for the bonded interaction
between connected LJ beads is:

EFENE(r) =

{
− 1

2 kbr2
0 ln[1− ( r

r0
)2] r ≤ r0

∞ r > r0
, (21)

where kb = 3000ε/σ2 is the spring constant, and r0 = 1.5σ is the
maximum length of the FENE spring. The mass of all LJ beads
was chosen to be unity. The simulation box was a periodic cu-
bic box of length 33.8395σ . The reduced LJ units were used
herein; i.e., the units of mass, length, and energy are set as:
m = 1, σ = 1, and ε = 1, and the corresponding unit of time is
σ(m/ε)0.5 = 1. The Nose-Hoover thermostat under the canonical
ensemble (NVT) with the thermostat relaxation time 0.6 was em-
ployed with the time step ∆t = 0.001. The MD simulation was first
performed at kBT = 1.0 for 106 time steps to equilibrate the sys-
tem and then continued with the temperature continuously rising
from kBT = 1 to kBT = 2 for 15,000 time steps from t = 0.0 to
t = 15.0. With the temperature in the Nose-Hoover thermostat
varying over time, the fine-grained system corresponds to a time-
dependent Hamiltonian system. Note that the nsGLE in Eq. (3)
and the fluctuation-dissipation relation in Eq. (4) are valid for CG
modeling of time-dependent Hamiltonian systems19. From the
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MD simulations, 8,000 independent trajectories were collected to
obtain the data of C(t ′, t) (see Fig. 1), from which the CG model
was constructed. In addition, we collected 120,000 more inde-
pendent trajectories to obtain the corresponding C(t ′, t) as the
reference for validating the CG modeling predictions.

Fig. 1 Data of C(t ′, t) obtained from the MD simulations. (a) 3-D view
as a function of t− t ′ and t ′, where the data are shown in absolute values.
(b) Dependence of C(t ′, t) on t at different t ′ (solid lines), along with the
temperature (kBT ) as a function of t (dashed line).

3.1 Compute the memory kernel from data

To determine the memory kernel K(t ′, t) from the data of C(t ′, t),
the force-momentum correlation function D(t ′, t) = ∂C(t ′,t)

∂ t was
first computed via numerical differentiation regularized by the
Tikhonov regularization following the quasi-optimality principle
(see Supplementary Information) with µ0 = 0.1 and η = 0.99.
With the discrete data of C(t ′, t) and D(t ′, t) obtained, Eq. (7) was
directly solved for K(t ′, t) up to tdata. Fig. 2 presents the resulting
D(t ′, t) and K(t ′, t).

3.2 Extrapolate the memory kernel

The memory kernel K(t ′, t) computed from the MD simulation
data was then extrapolated by the GPR for longer time prediction
beyond tdata until tpred. For this numerical example, the follow-
ing modified squared exponential function was employed as the
covariance function:

Σ(x,x∗;θ) = θ
2
f exp

[
− (t− t∗)2

2θ 2
l1

− (t− t ′− t∗+ t ′∗)2

2θ 2
l2

]
,

where θ = [θ f ,θl1 ,θl2 ] are the hyper-parameters. The predicted
memory kernel, Kpred, is shown in Fig. 3, where tdata = 10, tpred =

12, and the tolerance of the GPR uncertainty was set as ζGPR =

0.008. We further compared the GPR’s predictions with the test
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Fig. 2 (a) D(t ′, t) obtained via direct numerical differentiation (solid
lines) vs. via regularized numerical differentiation by the Tikhonov reg-
ularization (dashed lines). (b) The absolute value of K(t ′, t) (on a loga-
rithmic scale) computed from Eq. (7) using the data of C(t ′, t) and reg-
ularized D(t ′, t). The zoom-in subplot provides a closer view of |K(t ′, t)|
for 0≤ t− t ′ ≤ 0.05. All the results herein are plotted at t ′ = 0, t ′ = 4, and
t ′ = 8.

data and assessed the relative error:

εr(t∗) =
∑t ′∗≤t∗ |Kpred(t ′∗, t∗)−K(t ′∗, t∗)|2

∑t ′∗≤t∗ |K(t ′∗, t∗)|2

and the uncertainty level of GPR σ∗(t∗) (defined in Eq. (8)) at
different prediction times 10 < t∗ ≤ 15. For that, Kpred(t ′∗, t∗) was
predicted by GPR using the training data within 0≤ t ′≤ t ≤ 10; the
test data K(t ′∗, t∗) for 10 < t ′∗ ≤ t∗ < 15 was obtained by solving
Eq. (7) with the data of C(t ′∗, t∗). From the results depicted in
Fig. 4, we can see that as the extrapolation time goes further, the
uncertainty level σ∗(t∗) and the relative error εr(t∗) both increase
with similar trends, which also supports the use of σ∗(t∗) as a
criterion to determine from data the furthest prediction time tpred.

More investigations were performed for assessing the ability of
GPR to extrapolate the memory kernel when using different sets
of training data. Specifically, three sets of data within 0≤ t ′≤ t ≤ 2
(Set 1), 4≤ t ′ ≤ t ≤ 6 (Set 2), and 8≤ t ′ ≤ t ≤ 10 (Set 3), respec-
tively, were compared. Fig. 5 summaries the computed uncer-
tainty of GPR σ∗(t∗) when using the three sets of training data for
prediction of the memory kernel at different extrapolation times
t∗> tdata. Although each set has the same amount of data, the pre-
diction based on each exhibits different uncertainty at the same
t∗− tdata. Using the data in earlier times resulted in larger un-
certainty in prediction. It can be due to the fact that the heating
process considered in this work displayed nonlinear temperature
rises in earlier times, which led to more complex variations in the
memory kernel as a function of time in earlier times than later.
Thus, how far the memory kernel can be extrapolated depends
on the choice of training data as well as the desired tolerance of
uncertainty.
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Fig. 3 Predicted memory kernel Kpred(t ′, t) by the GPR model. Here,
Kpred(t ′, t) is divided into two parts by a red vertical flat surface: the
left corresponds to the regression from the training data for 0≤ t ′ ≤ t ≤
tdata = 10; the right corresponds to the extrapolation from the training
data for tdata < t ′ ≤ t ≤ tpred = 12.
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Fig. 4 (a) and (b) Comparison of the GPR model’s predictions with the
test data at t ′∗ = 10 and t∗ = 12, respectively. (c) The relative error εr(t∗)
and the uncertainty level σ∗(t∗) of GPR at different extrapolation times
t∗ > tdata.
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Fig. 5 Uncertainty of GPR σ∗(t∗) in the prediction of the memory kernel
for t∗ > tdata using different sets of training data.

3.3 Parameterize the memory kernel

The parameterization of Kpred(t ′, t) was achieved using the pro-
posed hybrid optimization process, from which the approxima-
tion of Kpred(t ′, t) via the expansion in Eq. (9) was constructed
with M = 2 and N = 4. The tolerance of optimization was set
as ζopt = 0.1, and the value of the objective function correspond-
ing to the optimal parameters is Π(λ∗) = 0.092. The values of
other parameters involved in the hybrid optimization were set
as: NP = 10D , FM = 0.8, CR = 0.5, gmax = 1e6, ζDE = 0.5, and
ζopt = 0.1. The searching space of λ was set with: pi j ∈ [−1,+1],
ai ∈ [0,100], bi ∈ [0,100], qi ∈ [0,100], and ci ∈ [− aibi

2qi
, aibi

2qi
], which is

as large as physically reasonable.

The predicted and parameterized memory kernels are com-
pared in Fig. 6. The parameterized memory kernel Kparam(t ′, t)
with N = 3 is also shown. Note that the accuracy of approximat-
ing the memory kernel via the two-time exponential expansion
increases by truncating the expansion with more terms, i.e., in-
creasing N. Thus, the parameterization with larger N is more
accurate.
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Fig. 6 The parameterized memory kernel Kparam(t ′, t) with N = 3 or N = 4,
compared with the predicted memory kernel Kpred(t ′, t) at different t ′.

3.4 CG modeling predictions

From the parameterized memory kernel and Eq. (10), we assem-
bled the matrices α(t), A, and Bs for the extended dynamics.
The CG modeling predictions until tpred were obtained by solv-
ing Eq. (11) using the implicit velocity-Verlet temporal integrator.
The two-time auto-correlation function of momentum C(t ′, t) pre-
dicted by the CG model was compared with the MD simulation
results, as depicted in Fig. 7. We found good agreements. And
the CG model constructed using the parameterized memory ker-
nel with larger N is more accurate. The relative error between
the CG (with N = 4) prediction and the reference MD result is:
‖CCG(t ′,t)−CMD(t ′,t)‖1

‖CMD(t ′,t)‖1
= 0.03, where ‖ · ‖1 denotes the L1 norm of dis-

crete data; the data of CCG(t ′, t) and CMD(t ′, t) were attained from
the CG and MD simulations, respectively.
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Fig. 7 C(t ′, t) predicted by the CG model constructed from the param-
eterized memory kernel with N = 3 (dashed line) or N = 4 (dotted line),
respectively, compared with the MD simulation results (solid line) at dif-
ferent t ′. (a) C(t ′, t) on a linear scale. (b) ∼ (d) The absolute value of
C(t ′, t ′) on a logarithmic scale.

4 Conclusion
We have presented a data-driven approach for constructing CG
models of Hamiltonian systems in non-equilibrium dynamics. It
goes beyond existing literature in CG modeling, which mainly fo-
cuses on how to properly describe the equilibrium dynamics of
CG variables. Our approach has addressed the key challenges in
CG modeling of non-equilibrium systems, including how to ef-
ficiently and stably determine the non-stationary memory ker-
nel, how to give a specific form of the fluctuating force such
that the memory and fluctuating force satisfy the non-stationary
fluctuation-dissipation relation, and how to efficiently solve the
non-stationary dynamic equation of CG variables. Through the
numerical example, we have demonstrated that the CG model
can predict with desired accuracy the non-equilibrium dynamics
of the observable of interest both inside and outside the regime
of data used to construct the CG model. The approach only re-
quires the data of the two-time auto-correlation function of non-
equilibrium trajectory-averaged observable of interest, which can
be readily obtained from simulations or experiments. We antici-
pate that the methodology proposed in this work can be generally
applied to modeling high-dimensional non-equilibrium dynamics
in reduced dimensions for various soft matter systems such as
polymers, biomolecules, and colloids.
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