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Selectivity between an Alder-Ene Reaction and a [2+2] 
Cycloaddition in the Intramolecular Reactions of Allene-Tethered 
Arynes 
 Anh Le† and Daesung Lee†* 

Substituent-dependent reactivity and selectivity in the 
intramolecular reactions of arynes tethered with an allene is 
described. With a 1,3-disubstituted allene moiety, an Alder-
ene reaction of an allenic C–H bond is preferred over a [2 + 2] 
cycloaddition, whereas a [2+2] cycloaddition of the terminal 
-bond of the allene is preferred with a 1,1-disubstituted 
allene. With a 1,1,3-trisubstituted allene-tethered aryne, an 
Alder-ene reaction with an allylic C–H bond is preferred over 
a [2 + 2] cycloaddition.

A wide variety of electron-deficient -systems have been employed 
as an ene-acceptor either in thermal or Lewis acid-catalyzed 
conditions.1 Due to the electrophilic nature of benzyne species,2 
they can behave as an efficient ene-acceptor3 to react with ene-
donors containing -systems such as alkynes, alkenes, and allenes 
(Scheme 1). In 2006, Cheng reported intermolecular Alder-ene 
reactions between benzyne and terminal and internal alkynes (Eq 
1),4 and the corresponding reaction with alkenes was also reported 
by Yin in 2013 (Eq 2),5 which was further extended to alkenes 
containing a polar functional group6 by employing arynes generated 
from tetraynes via hexadehydro Diels-Alder reaction.7 Recently, Lee 
and coworkers also explored the Alder ene reaction between 
benzyne and silylallenes (Eq 3).8 

In 2011, Lautens and coworkers reported intramolecular Alder-
ene reactions of arynes generated via a strong based-mediated 
elimination with aryl bromides.9 Recently, Hoye10 and Lee11 
reported the intramolecular Alder-ene reactions of arynes 
generated from tri- and tetraynes under thermal conditions. At this 
juncture, we want to further explore the scope and selectivity of 
the intramolecular Alder-ene reactions by accommodating an allene 
as the ene-donor (Eq 4).12 The main concern in this intramolecular 
reaction would be the Alder-ene selectivity between the allylic and 
allenic C–H bonds, which is expected to mainly depend on the 
substituent pattern of the allene moiety. In this communication, we 
describe the reactivity and selectivity trend of intramolecular Alder-
ene reactions that also compete with [2+2] cycloaddition of the 
terminal -system of the allene.13 
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Scheme 1. Alder-ene reactions of arynes

First, we examined the Alder-ene reaction by using 
symmetrical tetraynes 1a–1c (Scheme 2). The reaction of tetrayne 
1a that contains a three-atom tether with a gem-dimethylated 
allene14 moiety (toluene, 90 °C, 8 h) afforded 7-membered ring 
Alder-ene product 2a in 73% yield. On the other hand, tetrayne 1b 
containing a four-atom tether with a tetrasubstituted allene moiety 
did not provide either Type-I or Type-II ene reaction product, 
instead decomposition of 1b was observed. Under the identical 
conditions, however, substrate 1c containing a terminal allene 
moiety afforded only the [2 + 2] cycloadduct engaging the terminal 
-bond of the allene15 to generate 2c in 58% yield, and Alder-ene 
product was not observed.
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Scheme 2. Reactions of symmetrical tetraynes tethered with 
an allene moiety.

On the basis of the drastic change of the reaction modes 
depending on the substituent pattern in allenes, we further 
explored the general trend of the reactivity of unsymmetrical 
tetraynes 3a–3h that contain structurally different allene moieties 
(Table 1). As expected, tetrayne 3a bearing a three-atom tether 
with a gem-dimethyl allene moiety exclusively formed 7-membered 
Alder-ene product 4a in 63% yield (entry 1). In stark contrast, 
tetrayne 3b containing a 1,3-disubtituted allene16 moiety results in 
decomposition of the starting material and neither Alder-ene 
product 4b nor 4b′ of the allenic or allylic C–H bond was observed 
(entry 2). Substrate 3c containing a 1,1-disubstituted terminal 
allene also decomposed without providing either Type-I or Type-II 
ene product 4c or 4c′ (entry 3). Surprisingly, however, substrates 3d 
and 3d′ containing a 1,3-disubtituted allene with an extra 
methylene exclusively engaged in the Alder-ene reaction with an 
allenic C–H bond8 to afford 4d and 4d′ in 64 and 60% yield, 
respectively (entries 4 and 5), and the Type-1 ene product of the 
corresponding allylic C–H bond was not observed. The reaction of 
the mono-substituted allene in 3e induced the Type-I ene reaction 
of an allenic C–H bond to provide a terminal alkyne-containing 
product 4e in 55% yield (entry 6). Substrate 3f containing a 1,1-
disubstituted terminal allene, which is identical with 3e but 
containing a triethylsilyl group at the internal position of the allene

Table 1. Reactions of ynamide-tethered tetraynes tethered 
to different allene moieties 
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Entries Product Yield (%)aR

aIsolated Yield. bDecomposition of starting material. 
cDecomposition of starting material in toluene at 55 °C with 5 mol% 
of AgSbF6. 
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afford [2 + 2] cycloadduct 4f in 62% yield and no Alder-ene product 
was observed (entry 7). Both substrates 3g and 3h containing a 
1,1,3- or 1,3,3-trisubstituted allene17 moiety, respectively, afforded 
the corresponding Type-I Alder-ene products 4g and 4h in 34 and 
58% yield, respectively (entries 4 and 5). 

These examples suggest that the preference for the formation 
of different modes of Alder-ene or [2 + 2] cycloaddition depends 
subtly on the substituents on the allene moiety and the length of 
the tether between the allene and the aryne. In general, Alder-ene 
reaction of an allylic C–H bond is most favorable with trisubstituted 
allenes (entries 1, 8 and 9) whereas that of an allenic C–H bond 
becomes more favorable with monosubstituted and 1,3-
disubstitued allenes (entries 4–6). Alternatively, 1,1-disubstituted 
terminal allene induces [2 + 2] cycloaddition over an Alder-ene 
reaction (entry 7).          

Next, we explored the reactivity of arynes generated from 
triynes 5a–5f containing different allene moieties (Table 2). The 
reaction of triynes 5a and 5b bearing a gem-dimethyl-containing 
trisubstituted allene or a 1,3-disubstituted allene moiety led to only 
decomposition without generating the expected 7-membered ring 
Type-I Alder-ene product 6a and 6b (entries 1 and 2). On the other 
hand, triynes 5c with a longer tether bearing a 1,3-disubstituted 
allene moiety provided Type-I ene product 6c in 72% yield, where 
only an allenic C–H bond participated in the reaction (entry 3). As 
expected, substrate 5d bearing a gem-dimethyl-containing 
trisubstituted allene provided an 8-membered ring Type-I Alder-ene 
product 6d in 50% yield (entry 4). It is quite surprising to find that 
5e containing a 1,1-disubstituted terminal allene moiety did not 
participate in the expected [2+2] cycloaddition between the allene 
and aryne, instead the toluene moiety of NTs group participated in 
a Diels-Alder reaction to generate benzobarrelene18 6e, where the 
allene moiety remains intact (entry 5). The preference of a Diels-
Alder reaction is further demonstrated with triyne 5f devoid of the 
allene moiety, which provided benzobarrelene 6f in 58% yield 
(entry 6). Despite the identical allene moieties in tetraynes 3f and 
triynes 5e, their reaction outcomes are quite different, which 
strongly suggests that the reactivity of the putative aryne 
intermediates are intricately affected by multiple factors including 
the substituents on the aryne core moiety. In comparison, a gem-
dimethyl allene-containing propiolated triynes 5g exclusively 
provided Alder-ene reaction product 6g in marginal yields (entry 7). 
The formation of product 6g suggests that the hexadehydro Diels-
Alder reaction of 5g require higher activation barrier than the Alder-
ene reaction between the alkyne moiety and the tethered allene 
segment.  It was assumed that the low yield from this reaction is 
the consequence of the instability of the propiolate ester 
functionality at the elevated temperature. Indeed, when 1,3-diynyl 
propargyl alcohol 5h was subjected to the identical conditions, the 
corresponding Alder-ene product 6h was obtained in 62% yield 
(entry 8). 

Having recognized the significant impact of the structure of the 
tether, alkynes and allene moiety, we employed various substrates 
that contain a 1,3-diyne (7a–7f) and monoynes (7ga–7gd) tethered 
with differently substituted allene moieties to further explore the 
selectivity between the Alder-ene and a [2+2] cycloaddition (Table 
3).  Upon heating (150 °C, toluene, 12 h), all 1,3-diyne-tethered 
allenes 7a–7f provided [2 + 2] cycloadducts 8a–8f in good yields 
(entries 1–6), whereas monoynes 7ga–7gd only led to 
decomposition under the identical conditions (entries 7–10) and 
none of the expected [2 + 2] cycloadducts 8ga–8gd were observed.

Table 2. Reactivity of benzene-tethered triynes containing different 
allene moieties 
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H

aIsolated yield. bDecomposition of starting material. cDecomposition 
of starting material in toluene at 55 °C with 5 mol% of AgSbF6. 
dReaction at 150 °C for 12 h.
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Table 3. Reactivity of sulfoamide-tethered alkyne containing 
different allene moieties

R1

NTs
R

[2 + 2] cycloadduct

1

7

2
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8f
8ga
8gb
8gc
8gd

78
0b

0b

0b
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9
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Bu
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4
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Entries Product Yield (%)aR

aIsolated yield. bDecomposition of starting material

It is worthy to note the activating role of the extra alkynyl 
substituent at the terminal position of the alkyne in these [2 + 2] 
cycloadditions.19 

In summary, we have systematically investigated the 
intramolecular reaction between allenes and arynes by employing 
allene-tethered tetraynes and triynes as the aryne precursors. From 
the data accumulated in Scheme 2 and Tables 1–3, a general 
reactivity and selectivity trend has emerged (Scheme 3). Allenes 
containing gem-dimethyl group at the distal carbon exclusively 
participate in the Type-I ene reaction regardless of the substituent 
at the proximal carbon (Eq 5). 1,3-Disubstituted allene favorably 
participate in the Alder-ene reaction with an allenic C–H bond (Eq 
6), whereas 1,1,3-trisubstituted allene prefers to generate the 
Alder-ene with an allylic–H bond (Eq 7). The reaction between a 1,1-
disubstituted terminal allene and an aryne favor for a [2+2] 
cycloaddition (Eq 8). On the other hand, the reaction between 1,3-
diyne and an allene moiety provide [2+2] cycloaddition product 
irrespective of the substituent pattern of the allene (Eq 9). This 
general reactivity trend would be a useful guide for further 
investigation of aryne chemistry involving allene counterparts.
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Scheme 3. A general trend of selectivity in the intramolecular reac-
tion of allenes with an aryne
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