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Abstract 

The simultaneous excitation and measurement of two eigenmodes in bimodal atomic 

force microscopy (AFM) during sub-micron scale surface imaging augments the number 

of observables at each pixel of the image compared to the normal tapping mode. 

However, a comprehensive connection between the bimodal AFM observables and the 

surface adhesive and viscoelastic properties of polymer samples remains elusive. To 

address this gap, we first propose an algorithm that systematically accommodates 

surface forces and linearly viscoelastic three-dimensional deformation computed via 

Attard’s model into the bimodal AFM framework. The proposed algorithm simultaneously 

satisfies the amplitude reduction formulas for both resonant eigenmodes and enables the 

rigorous prediction and interpretation of bimodal AFM observables with a first-principles 

approach. We used the proposed algorithm to predict the dependence of bimodal AFM 

observables on local adhesion and standard linear solid (SLS) constitutive parameters as 

well as operating conditions. Secondly, we present an inverse method to quantitatively 

predict the local adhesion and SLS viscoelastic parameters from bimodal AFM data 

acquired on a heterogeneous sample. We demonstrate the method experimentally using 

bimodal AFM on polystyrene-low density polyethylene (PS-LDPE) polymer blend. This 

inverse method enables the quantitative discrimination of adhesion and viscoelastic 

properties from bimodal AFM maps of such samples and opens the door for advanced 

computational interaction models to be used to quantify local nanomechanical properties 

of adhesive, viscoelastic materials using bimodal AFM. 

                                                             
* Corresponding Author. E-mail: raman@purdue.edu 
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1. Introduction 

The continuing need for sub-micron scale compositional imaging of complex material 

surfaces has led to the increased use of multi-frequency AFM methods. Bimodal AFM is 

a popular subset of multi-frequency AFM methods1 that provides additional information 

channels beyond the traditional Amplitude-Modulated AFM (AM-AFM) or tapping mode. 

AM-AFM usually requires a trade-off between greater compositional contrast and greater 

imaging forces which may be detrimental for the fragile samples.2 Bimodal AFM can 

enhance achieved compositional contrast while applying gentle imaging forces without 

damaging the surface.3-8 In bimodal AFM the microcantilever is excited at its fundamental 

eigenmode frequency along with an additional small amplitude “perturbation” excitation 

of a higher flexural eigenmode (secondary eigenmode) (Figure 1)1, 9. The resulting tip 

motion occurs at different timescales, a slow timescale corresponding to that of the 

fundamental mode and a fast timescale corresponding to the higher excited eigenmode. 

The lock-in amplifiers demodulate and measure the averaged amplitude and phase of tip 

motion at the two excitation frequencies.  

 

Figure 1. (a) Bimodal AFM simultaneously excites the first and a higher eigenmode of the 
microcantilever. (b) The resulting tip trajectory is assumed to be the sum of two harmonics 
whose steady-state amplitudes and phases change due to the tip-sample interaction and 

the microcantilever properties. In this figure, i  is the excitation frequency and iA  and i  

are the amplitude and phase lag relative to the excitation force of the thi mode, 
respectively.  Z  and d (t)  are the distance of the microcantilever base and tip with respect 

to the undeformed surface level, respectively. q (t)  is the microcantilever tip deflection. 
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Bimodal AFM scans of a surface are characterized by three observables at each pixel in 

addition to the topography, regardless of the feedback control loops used. There are 

many ways to configure the feedback control loops to operate bimodal AFM 7, 10, 11. In the 

most direct and commonly used configuration, the amplitude of the first mode is similarly 

regulated at a fixed setpoint amplitude by adjusting the Z distance and the slow-timescale 

averaged phase of the fundamental mode and the amplitude and phase of the secondary 

mode are allowed to respond to changes in local surface properties (AM-AM)12. In the 

other common feedback loop arrangement, AM-FM, the first mode’s amplitude is 

regulated by adjusting the Z distance. However, the secondary mode’s averaged phase 

lag is held fixed by changing the excitation frequency through a Phase Locked Loop (PLL) 

and its amplitude is maintained constant by adjusting the excitation magnitude. Here the 

secondary mode’s excitation amplitude provides a measure of the tip-sample dissipation. 

During imaging, the slow-timescale averaged phase lag of the fundamental mode and 

frequency shift and dissipation of the secondary mode at each pixel are recorded. Finally, 

in FM-FM, two PLLs and drive modulation are used to regulate the slow-timescale 

averaged amplitudes and phases of both modes 10.  The three observables for these most 

common implementations of bimodal AFM: AM-AM, AM-FM, and FM-FM are listed in 

Table 113. The required feedback loops for these bimodal AFM configurations are different 

and the associated control schemes become more complicated in the order listed in Table 

1. 

Table 1. Three observables of the most common modalities of bimodal AFM. 

 Observable # 1 2 3 

 Mode # First mode Secondary mode Secondary mode 

Config. 1 AM-AM Phase  1  Phase  2  Amplitude  2A  

Config. 2 AM-FM Phase  1  Freq. shift  1f  Drive  2D  

Config. 3 FM-FM Freq. shift  1f  Freq. shift  1f  Drive  2D  

Quantitative bimodal AFM on polymeric surfaces requires the pixel-by-pixel inversion of 

three observables of the mode to extract quantitative maps of local polymer properties. 

Garcia et al. used an energy balance theory method to link the bimodal AM-FM 
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observables to the material viscoelastic properties.14, 15 The method is based on a simple 

Hertzian contact model for tip-sample interaction force with ad hoc addition of a Kelvin-

Voigt viscoelastic element without any surface forces (adhesion). In another work7, the 

ad hoc tip-sample viscoelastic model approach14 was extended to a fractional calculus-

based method to calculate the material viscoelastic properties. Proksch et al.16 used the 

Oliver and Pharr method17 to link the tip-sample interaction stiffness to the contact radius. 

They calculated the tip-sample interaction using a Hertz model’s elastic generalization 

and neglect the velocity-dependency of the tip-sample interaction force and long-range 

surface forces. All these prior-tip sample interaction models have the advantage that 

when combined with energy balance laws for each mode, they offer simple closed-form 

expressions that allow the inversion of bimodal AFM observables to quantitative 

estimates of the local elastic/viscoelastic properties.  

However, one of the major shortcomings of these prior inversion approaches is that they 

utilize simple or ad hoc tip-sample models which are limited in their ability to represent tip 

contact with soft, adhesive, and viscoelastic surfaces. Specifically: (a) ad hoc viscoelastic 

models are unable to accurately predict the tip-detachment from the surface7, 18, 19 and 

are unable to predict surface relaxation post-detachment (b) they can lead to artifacts 

such as the presence of apparently attractive forces20 even if the model does not contain 

attractive forces, and (c) they do not include attractive/adhesive forces. These 

shortcomings can lead to artifacts in estimated parameters, especially on soft viscoelastic 

adhesive samples. In one example, a bimodal AFM map inversion based on an ad hoc 

viscoelastic model7 led to an effective viscosity prediction for PS domain in a PS-LDPE 

blend to be 4 times greater than the viscosity for the LDPE domain when measured in the 

same scan. This ratio of predicted damping characteristics7 for stiff PS, which is glassy at 

room temperature, and soft LDPE which is rubbery at room temperature is not physically 

acceptable. 

Among all the available continuum mechanics-based tip-sample interaction models for 

polymer samples, Attard’s model21, 22 is arguably the most accurate model to capture the 

physics of the interaction between a rigid axisymmetric tip and a polymer surface. The 

model accounts for finite range surface forces as well as the sample’s full three-
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dimensional viscoelasticity with arbitrary constitutive linear viscoelastic relations. Attard’s 

computational approach, which is based on the Boussinesq solution for a semi-infinite 

half-space 23 and introduces temporal and radial discretization, uses a completely 

different methodology when compared to the classical contact models. Attard’s model 

has significant advantages relative to models that use an ad hoc approach to add 

viscoelasticity to DMT or Hertz based models: 

1. Hertz- and DMT-based models with ad hoc Kelvin-Voigt elements assume a 

certain dependence of contact area on indentation depth regardless of history of 

deformation. The history dependence of the contact area was studied by Ting24 

but his approach does not include surface forces. Attard’s model inherently 

addresses this dependence since it solves a 3-dimensional linear viscoelastic 

deformation problem without assumptions on contact area evolution. As a result, 

the detachment of the tip from the surface is correctly computed, unlike in the ad 

hoc viscoelastic models. 

2. Hertz and DMT approaches with ad hoc Kelvin Voigt viscoelasticity are generally 

unable to predict viscoelastic dissipation when the tip oscillates in the attractive 

regime. Since Attard’s model includes surface forces it allows for the viscoelastic 

surface to deform and relax and dissipate energy even if the tip oscillates in 

attractive regime with the surface. 

3.  A viscoelastic surface will continue to relax as the oscillating tip detaches and 

moves away from the surface. This is an expected surface behavior that is not 

predicted by ad hoc Kelvin Voigt elements added on to classical contact mechanics 

models. 

4. Finally as shown elsewhere20 ad hoc Kelvin Voigt modifications of classical contact 

mechanics models can lead to artifacts such as the creation of negative tip-sample 

interaction forces even in the absence of surface forces. Attard’s model 

systematically includes both general surface force models as well as linear 3-

dimensional viscoelasticity of the sample surface and avoids these artifacts. 

Converting bimodal observables to quantitative properties based on the Hertz/DMT 

models with ad hoc Kelvin Voigt viscoelasticity may provide less inaccurate results on stiff 
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samples with low adhesion and low viscoelasticity. However, to establish a relationship 

between bimodal AFM observables and local physical properties of soft, adhesive, and 

highly viscoelastic materials it may be desirable to use more accurate models such as 

Attard’s model.  

However, Attard’s model is computationally expensive due to the presence of iterative 

loops and spatial (radial) and temporal discretization. Moreover, Attard’s computational 

approach requires a priori knowledge of the tip trajectory relative to the surface as an 

input to compute the history of surface deformation and interaction forces during the 

contact time. Thus, its implementation in all dynamic AFM methods is not directly possible 

since the resonant probe’s amplitude and phase at a given distance of the unperturbed 

cantilever from the sample are in fact the output of the tip-sample interaction and the 

cantilever dynamics. For both these reasons, it has been challenging to use Attard’s 

model to make predictions for dynamic AFM modes.   

In this work, we develop an algorithm including Attard’s model to link the surface 

properties of an adhesive and viscoelastic sample to associated AM-AM bimodal AFM 

observables. The algorithm has several advantages: (1) it can easily be adapted to other 

implementations of bimodal AFM such as AM-FM or FM-FM bimodal operation, (2) it 

simultaneously satisfies the amplitude reduction formulas for both excited modes in AM-

AM bimodal AFM, and (3) it requires the computation of tip-surface interaction and 

surface deformation history which is implemented here using an accelerated 

computational approach20 for Attard’s model which is more than two orders of magnitude 

faster than the original implementation21, 22.  

We use the proposed algorithm to illustrate the dependence of the bimodal AFM 

observables on the properties of adhesive, viscoelastic surfaces modeled by Lennard 

Jones pressure and SLS viscoelastic constitutive relations. Then, we present an 

approach to invert the three bimodal AFM parameters using a linear regressive model 

based on the forward computations carried out over a vast range of sample parameters 

selected by the Latin hypercube sampling method25. The computational regressive 

model, applicable for the specific cantilever and operating conditions, then relates 

physical properties of the local polymer such as adhesion, long- and short-term elastic 
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moduli, to the three AM-AM bimodal AFM observables via a computed 3 by 3 matrix. The 

three observables measured at each pixel can then be converted to quantitative estimates 

of these physical properties via matrix inversion at each pixel and that relates the 

observables to physical polymer properties. Thus, this approach can quantitatively 

discriminate between adhesion and viscoelastic properties which is normally considered 

very challenging for adhesive viscoelastic samples. The approach is demonstrated using 

experimental measurements using AC160 cantilevers on a PS-LDPE sample. The 

resulting quantitative maps of adhesion, long- and short-term elastic moduli are in line 

with ones reported in literature 14, 26, 27.  

2. Theory 

We model the transverse vibrations of the microcantilever, w(x,t) , with Euler-Bernoulli 

partial differential equation (PDE) for a beam with a rectangular cross-section, as follows:  

 c c hydro c c ts c directA w(x,t) F w(x,t),w(x,t) E I w (x,t) F (d,d) (x L ) F (x,t) ,        (1) 

where, x , t , c , cA , cE , cI , and cL  are the longitudinal distance from the base of the 

microcantilever, time, the linear density, cross-sectional area, elastic modulus, area 

moment, and tip location distance from the base of the microcantilever, respectively. 

w(x,t)  and w(x,t)  are the first and second derivatives of w(x,t)  respect to t , respectively 

and w (x,t)  is the fourth derivative of w(x,t)  with respect to x . d  and d  are the tip-

sample gap and its velocity relative to the undeformed surface level as shown in Figure 

1.  hydro hydroF (w(x,t),w(x,t)) F (x,t)  is the uniformly distributed hydrodynamic force per unit 

length computable in the frequency domain using Sader’s method 28,  acting on the 

oscillating microcantilever. The tip-surface interaction force, tsF (d,d) , which acts locally at 

the tip location is described with a Dirac delta function,  . The direct microcantilever 

excitation 29, i.e. via photothermal, magnetic, or Lorentz for excitation, exerts a spatio-

temporal distributed force per unit length, directF (x,t) . Dither piezo excitation will be 

included through the boundary conditions as described later in this section. The absolute 

deflection of the microcantilever is composed of the Z-piezo motion, Z(t) , the dither-piezo 
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motion, y(t) , and the transverse vibration in the non-inertial frame attached to the base, 

u(x,t) : 

w(x,t) Z(t) y(t) u(x,t) .    (2) 

 

Substituting Eqn. (2) in the beam PDE, Eqn. (1), the equation of motion can be cast into 

the moving reference frame attached to the base of the microcantilever: 

 

 

c c hydro c c

ts c direct c c

A u(x,t) F y(t) u(x,t) Z(t),y(t) u(x,t) Z(t) E I u (x,t)

F (d,d) (x L ) F (x,t) A y(t) Z(t) ,

       

     
 (3) 

and the corresponding boundary conditions, ignoring the tip-mass effect become: 

c cu(0,t) 0, u (0,t) 0, u (L ,t) 0, u (L ,t) 0.       (4) 

 

For bimodal operation, excitation forces are applied at two eigenfrequencies of the 

microcantilever, i 1 , or fundamental mode frequency, and i 2  or secondary mode 

frequency. The secondary mode is often the second eigenmode of the microcantilever, 

but it can instead be any higher-order eigenmode.  As a result, we can combine the net 

external excitation on the microcantilever as the sum of direct excitation and inertial 

excitation: 

2

drive,i direct c c

i 1

F (x,t) F (x,t) A y(t) ,


    (5) 

 

where drive,iF (x,t)  are the net forcing functions at the two different drive frequencies. 

Therefore, we discretize Eqn. (3) using Galerkin’s method to project the dynamics onto 

the microcantilever’s eigenmodes: 

2

i i

i 1

u(x,t) (x) q (t) ,


   (6) 

 

where i(x)  and iq (t)  describe the microcantilever eigenmodes of free vibration and the 

associated generalized coordinates, respectively. The mode shapes are normalized so 
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that 
i c(L ) 1   for each of the eigenmodes30 and the generalized coordinates represent 

the tip motion in each eigenmode: 

2 2 2

c c i i hydro i i i i

i 1 i 1 i 1

2 2

c c i i ts c drive, i

i 1 i 1

A (x) q (t) F (x) q (t), (x) q (t)

E I (x) q (t) F (d,d) (x L ) F (x,t) .

  

 

 
     

 

     

  

 

 (7) 

 

Next, we use the biorthogonality of 
i(x)  terms to extract the discretized equations of 

motion of excited modes by multiplying Eqn. (7) once with 
1(x)  and then with 

2(x) , 

and then integrating respect to x. The resultant ODEs are: 

 

c c

c c

L L 2 2
2

c c i i hydro i i i i i

i 1 i 10 0

L L 22

c c i i ts i drive, i

i 10 0

A (x)dx q (t) F (x) q (t), (x) q (t) (x)dx

E I (x) dx q (t) F (d,d) (x) F (x,t) dx .

 



   
            

 
      

 

  

 

 (8) 

In order to simplify the hydroF  term, we note that in bimodal AFM operation the cantilever 

response generally combines harmonic motion at two discrete frequencies. Under these 

conditions it is reasonable to approximate the Fourier transform of hydroF 28 as follows: 

   
2

j t 2 2 j t

hydro hydro c i i
t t

i 1

F x F x,t e dt b ( ) (x) q (t) e dt ,
4

 
   

 



          (9) 

where,  , cb , and ( )   are the air mass density, nominal width of the microcantilever, 

and the dimensionless complex-valued hydrodynamic function, respectively and 
2j 1  . 

  includes an imaginary and a real dimensionless component, i  and r , respectively31. 

The hydrodynamic force per unit length on the microcantilever can be converted into two 

frequency-dependent parameters: effective modal damping, ĉ( ) , and added mass, 

M̂( ) 28. However, since the excitation forces in bimodal operation are applied on relatively 

narrow frequency ranges, the frequency dependence of ĉ( )  and M̂( )  is weak and we 

can safely express them as follows:  
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*

i i
ˆm M( ) ,   

*

i i
ˆc c( ) ,   

(10) 

where i, (i 1, 2)  are the air mass-loaded natural frequencies of the two modes defined 

as 32: 

 
  

c cL L2
2

c c i c c i

0 02

i

c c c r i

E I (x) dx A (x)dx

,
1 / 4 b h ( )

   
        

    
     

 
 

(11) 

where, ch is the nominal thickness of the microcantilever. Since employed drive,iF (x,t)  for 

excited modes are harmonic, we write it down as a multiplication of a forcing magnitude 

and a harmonic term: 

drive,i drive,i i
ˆF (x,t) F (x) cos( t) .    (12) 

Combining Eqn. (8) and (12) and rearranging to include experimentally observable 

parameters, the beam’s PDE reduces into two coupled ODEs as follows: 

1 1 1 ts 11 1 12 22

1 1 1 1 1 1

2 2 2 ts 21 1 22 22

2 2 2 2 2 2

1 1 1 1 1
ˆ ˆq (t) q (t) q (t) F (d,d) F cos( t) F cos( t) ,

Q k k k

1 1 1 1 1
ˆ ˆq (t) q (t) q (t) F (d,d) F cos( t) F cos( t) ,

Q k k k

      
 

      
 

 (13) 

where, 

cL

kl l drive,i

0

F (x) F (x) dx , k, l 1, 2 ,    (14) 

and ik , i i2 f   , and iQ  are equivalent stiffness, natural frequencies (rad/s), and quality 

factor of the thi  mode ( i 1, 2 ), respectively. In this article, we will focus on the case where 

i i̂   . Solutions of Eqn. (13) show that the effect of klF  on tip motion when i j  is 

negligible and can be ignored. Then, we express the discretized ODEs by re-writing the 
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excitation magnitudes in terms of the oscillation amplitudes in absence of the tip-sample 

interaction:  

01
1 1 1 ts 12

i i i 1 1

02
2 2 2 ts 22

2 2 2 2 2

A1 1 1
q (t) q (t) q (t) F (d,d) cos( t) ,

Q k Q

A1 1 1
q (t) q (t) q (t) F (d,d) cos( t) ,

Q k Q

    
 

    
 

 (15) 

where, 1 2d(t) Z q (t) q (t)   , and 0iA  is the “free” oscillation amplitude of the thi  mode, 

which is the forced steady-state amplitude in the absence of tip-sample interaction. Eqn. 

(15) represents the tip dynamics in bimodal AFM when the excitation frequencies exactly 

coincide with the natural frequencies.  The method needs to be adapted if there is any 

intentional detuning between excitation and natural frequencies.  

To derive amplitude reduction equations for bimodal AFM, we assume that the tip motion 

can be expressed as the sum of two harmonics at two different excitation frequencies, 

i.e.: 

1 2 1 1 1 2 2 2q(t) q (t) q (t) A cos( t ) A cos( t )        , (16) 

where iA  and i  are the steady-state tip oscillation amplitude and phase lag of the thi  

mode relative to its corresponding modal excitation force13, 33. This assumes that any slow 

time-scale amplitude and phase modulation leading to sidebands around the excited 

modes are considered negligible for amplitude reduction. It is also assumed that higher 

harmonics of the excited modes play a negligible role in the amplitude reduction at the 

two excitation frequencies, a condition generally met for air or in vacuum applications 

when higher eigenfrequencies are not integer multiples of the excited modes 34-36.   

Next, we substitute 1q (t)  and 2q (t)  from Eqn. (16) into Eqn. (15): 

 

 

1
1 1 1 01 1 ts

1

2
2 2 2 02 2 ts

2

k
A sin( t ) A cos( t) F (d,d) ,

Q

k
A sin( t ) A cos( t) F (d,d) .

Q

      

      

 (17) 
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 Then, we multiply Eqn. (17) with 
iq (t)  and integrate with respect to time over 0 to c 1n T . 

The coefficient cn  represents the number of slow time-scale periods that the mode 

parameters are computed and averaged over. This yields: 

   

   

c i c 1

c i c 1

n T n T

ts,i ts i ts i i i

c i c 10 0

i 0i i
i

i

n T n T

i
ts,i ts i ts i i i i

c c 10 0

i i 0i i
i

i 0i

1 1
V F d,d q (t)dt F d,d A cos( t )dt

n T n T

k A A
cos( ) ,

2Q

1 T
E F d,d q (t)dt F d,d A sin( t )dt

n n T

k A A A
sin( ) .

Q A

     

 

        

 
  

 

 

 

 (18) 

Here, iT , ts,iV , and ts,iE  are the time period, the average value of the virial (conservative 

interactions), and dissipation (non-conservative interactions) associated with the thi  mode 

during each interaction cycle37. ts,iV  and ts,iE  are computed and averaged over many time-

periods of the fundamental mode ( c 1n T ). This mimics the experimental conditions where 

lock-in amplifiers average these quantities for the two excited modes over the slow 

timescale. If the ratio of excitation frequencies is equal to the ratio of two integer numbers, 

the resultant bimodal tip trajectory is periodic, and it simplifies the parameters’ calculation. 

However, the driving frequencies of the microcantilevers are generally incommensurate38 

and the tip motion can be quasi-periodic39.   

The amplitude reduction and phase lag formulas for the first and secondary modes are 

then attained by eliminating i  in Eqn. (18): 

 

2
ratio i i i i
i 2

20i 2
i i

ts,i ts,i

i

A k A Q
A ,

A
k A

2 V E
Q


 

 
    

 

 

(19) 

2

1 i i i ts,i

i

ts,i

k A Q E
tan ,

2 V

  
 

 
 (20) 
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where, i 1, 2  and ratio

iA  is the amplitude ratio for the thi  mode i 0iA A .  

The tip-sample interaction force ( tsF ) in Eqn. (18) can, in principle, be calculated using 

any appropriate contact model. Here, the AFM tip-surface interactions on viscoelastic 

polymers are computed using the accelerated Attard’s model with a SLS constitutive 

model for viscoelasticity, except otherwise specified. The creep compliance function of 

the SLS constitutive model is:  

t0

0

E E1 1
e ,

E(t) E E E

 

 


   (21) 

that includes a single relaxation time, which governs how fast the instantaneous modulus 

of the sample changes from 0E  (short-term modulus of the sample) to E
 (long-term 

modulus once the material is completely relaxed). Attard’s three-dimensional 

viscoelasticity model correlates the radial time-dependent sample surface deformation, 

u (r,t) , to its rate of change, u (r,t) , through its interaction with an axisymmetric rigid tip21:  

 
0 0

1 1
u(r,t) u(r,t) u (r,t) k(r,s) p(h(s,t)) s ds ,

E




   

   (22) 

where p(h(r,t))  is the interaction force per unit area (pressure) between the tip and the 

surface. p(h(r,t))  is a function of h(r,t)  which is the radial time-dependent gap between 

the axisymmetric tip and the deformed sample at time t  and radius r  from the central 

axis. In this work, we calculate p(h(r,t))  based on the Lennard-Jones pressure equation: 

 3 6 6

0p(h(r,t)) H 6 h(r,t) z h(r,t) 1 ,    (23) 

where 0z  and H are the intermolecular equilibrium distance and Hamaker constant, 

respectively. Also, u(r,t)  and p(h(r,t)) are time derivatives of u(r,t)  and p(h(r, t)), 

respectively. The long-time deformation of the surface, u (r,t)
 , is defined as: 

0

1
u (r,t) k(r,s) p(h(s,t)) s ds ,

E







    (24) 
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and the kernel of the integral, k(r,s) , can be expressed in terms of the complete elliptic 

integral of the first kind40, K , as shown below: 

2 2

2 2

4
K(s r ) s r

r
k(r,s)

4
K(r s ) s r

s


 

 
 


. (25) 

Attard’s model parameters and the associated computational methods are elaborated 

elsewhere20.  

 

Figure 2. The algorithm proposed in this work for predicting instrument observables in 
bimodal AFM through simultaneous compliance of the amplitude reduction formulas for 
both driven modes.  Subscripts 1 and 2 for the parameters denote the first and secondary 
excited modes. The secondary mode is often the second eigenmode of the 
microcantilever, but it can instead be any higher-order eigenmode. The subscript “g ” 

denotes a guessed value for a parameter and the subscripts “ ” and “ ” represent the 

number of iterations of each loop of the algorithm. 

 

To embed Attard’s model into the bimodal AFM framework, we propose an algorithm 

(Figure 2) that can predict the Z  distance and associated 1 , 2A , and 2  for a given ratio

1A
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, 01A ,  and 02A . In this algorithm, we assume the cantilever is simultaneously excited 

exactly at two of its eigenfrequencies (i=1 and i=2) and the relevant parameters are 

labeled accordingly. The algorithm simultaneously satisfies the amplitude reduction 

formulas (Eqn. (19)) for both excited modes and computes the resulting bimodal phases 

(Eqn. (20)). g AM AFMZ Z


  is the initially guessed Z value using a previously proposed 

algorithm for AM-AFM20. Z


  and 
i,A


  are the adjustments made to Z  and iA  at each 

iteration, respectively which are applied to the guessed values to facilitate the 

convergence process. These values ( Z


  and i,A


 ) are updated at each iteration to 

achieve accelerated convergence. When both loops are satisfied as directed by the 

algorithm, all bimodal AFM parameters such as Z , indentation, second mode amplitude, 

energy dissipations, and virials are recorded for the given set of input parameters. A 

tolerance (“tol” as shown in Figure 2) of 210 which facilitates a reasonable accuracy is 

used to fulfill the condition of the algorithm. 

3. Verification of the amplitude reduction algorithm 

To verify Eqn. (19) and (20), the predictions from the proposed algorithm are compared 

to experimental data from literature13 extracted on a stiff (silicon) elastic sample and 

simulation results from the AMAC (amplitude modulated approach curves) tool of VEDA 

(Virtual Environment for Dynamic AFM) which includes explicit microcantilever dynamics 

in bimodal AFM41. The interaction force  tsF  is calculated using the DMT (Derjaguin, 

Muller, and Toporov) model42, and the surface and interaction parameters13 are 

mentioned in the caption of Figure 3. The results from the algorithm show an excellent 

agreement with the experimental and simulation data. In these simulations, the tip 

oscillates in the attractive regime ( 1 90  ). 
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Figure 3. Validation of Eqn.’s (19) and (20) against previously published bimodal AFM 
experimental data 13 and simulation results extracted using the AMAC tool of VEDA 41 on 

a Silicon sample illustrates excellent agreement. The ratio

1A  range used for these 

simulations is between 0.1 and 0.9. The employed parameters in these simulations are 

as follows: 01A 10 nm , 02A 1nm , 20H 9.03 10 J  , 1k 0.9 N/ m , 2k 35.2 N / m , 

1f 48.913 kHz , 2f 306.194 kHz , 1Q 255 , and 2Q 1000 13. 

To examine the accuracy of the model predictions when the tip-surface interaction is in 

the repulsive regime, we conducted another set of simulations on a softer elastic surface 

whose parameters are mentioned in the caption of Figure 4.  The interaction force  tsF  

is calculated using the DMT model. The predictions from the proposed algorithm (Figure 

4) again show excellent consistency with the results of VEDA tools for this scenario in 

which the oscillation regime is repulsive ( 1 90  ) (Figure 4).  
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Figure 4. Validation against bimodal AFM simulation results extracted using the AMAC 
tool of VEDA 41 on an elastic sample illustrates perfect agreement with the proposed 
algorithm. The used values for material properties, microcantilever, and DMT model 

parameters are: 01A 50 nm , 02A 1nm , 2 1f f 6.26 , E 1GPa , and 20H 7.55 10 J  . 

The 1Ar  range used for these simulations is between 0.1 and 0.9.  

 

4. Computational results  

To predict the dependence of bimodal AFM observables on adhesive and viscoelastic 

properties of local polymeric domains using the proposed Attard’s model, we conduct a 

set of simulations using typical viscoelastic polymer properties43. The values for 

operational parameters and the cantilever properties are chosen in range with what is 

commonly used for bimodal AFM experiments on polymers. In this set of simulations, 

different creep (retardation) times ( )  ranging between 53.2 10 s  and 103.2 10 s  are 

employed in the simulations while all other parameters are held fixed. This range for   

was chosen to span timescales ranging from much smaller to much larger than tip-surface 

interaction time. Olympus AC160-R3 microcantilever property values calibrated 

experimentally are used in these simulations: 1f 280 kHz , 1k 28.1N / m , 1Q 430 , 

2f 1593 kHz , and 2Q 600 . The calibration methods are explained in the experimental 

section. 01A  and 02A  are selected to be 50 nm  and 1nm , respectively. We specifically 
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chose a small 02 01A A  ratio to avoid crosstalk between modes as suggested by others 

33, 36, 44, 45. The surface properties used are listed in Table 2.  

Table 2. The surface properties that are used to predict the dependence of bimodal AFM 

observables on local adhesive and viscoelastic polymer properties using the proposed 

algorithm.  

  0E  E
  H 0z    

varies 2.0 GPa  0.5 GPa  205 10 J  0.28 nm  0.49  

Simulation results for observables, ts,iV , and ts,iE ( i 1, 2 ) of bimodal AFM are illustrated 

in Figure 5 as a function of ratio

1A  (solid lines, horizontal axis at the bottom) and   (dotted 

lines, horizontal axis on the top). As discussed elsewhere 20, the calculated values for 1  

(Figure 5-a), which depend on the average dissipated energy during each interaction 

cycle46, are a function of the ratio between the interaction time (the duration on which the 

tip experiences surface forces) and the effective relaxation (or creep) time for viscoelastic 

samples. When   contact time or    contact time, the polymer is either nearly 

completely relaxed or relaxes very little during the interaction time, respectively. In both 

these cases, minimal hysteresis occurs during tapping cycles. However, when   value 

gradually changes between these two extremes, energy dissipation during each 

interaction cycle appears, rises to its maximum, and then gradually vanishes. This 

phenomenon leads to the non-monotonic behavior of 1  and ts,1E  vs.   for a fixed ratio

1A  

in Figure 5 (a and e) as observed previously for tapping mode20 on viscoelastic and 

adhesive surfaces. 
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Figure 5. Study of the bimodal AFM observables’ sensitivity to the effective creep time of 

the polymer    and amplitude ratio of the first mode ratio

1(A ) . The prediction values 

connected with dotted and solid lines share the same ratio

1A  and  , respectively, as 

specified in the legend. The range  of selected   values is between 32 s  to  
 43.2 10 s  

and the selected ratio

1A  values are between 0.1 to 0.9. The horizontal axis for the dotted 

and solid lines are located at the top (log scale) and bottom of the graphs, respectively. 
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Figure 5 provides key insights into the sensitivity of bimodal AFM observables to local 

changes in   while scanning a hypothetical sample where other parameters such as 


E  

and 
0E  are held constant. While 1

 changes more sensitively with ratio

1A  than 2
, when 

the main difference between two adjacent domains on the surface is their associated 

effective relaxation time, 2
 can discriminate much more effectively between regions 

where   is much smaller or much larger than the contact time. A clue to the underlying 

reasons for this behavior can be found in Figure 5 f and h which show that across the five 

orders of magnitude changes in   studied, the range of computed values for ts,2V  is much 

smaller than the range of ones attained for ts,2E  . When combined with the fact that 

 2

2 2 2k A Q  2

1 1 1k A Q  due to the amplitude difference between modes, the resulting 2
 

(Eqn. (20)) thus depends proportionally more on ts,2E  and ts,2V  compared to the 

dependence of 1
 on ts,1E  and ts,1V . For these reasons 2

 appears more sensitive than 

1
 to changes in  .  In addition, the amplitude of the second mode (

2A ), as depicted in 

Figure 5 (b), monotonically changes with relaxation time. As illustrated, for the same first 

mode amplitude setpoint, when  contact time and the sample’s elastic modulus is ~ 


E (softer), 

2A  is larger than when  contact time and the sample’s elastic modulus is 

~ 
0E  (stiffer). In both of these cases, since the energy dissipation due to viscoelasticity is 

 0 , according to Eqn. (18), 
2A  is correlated to 2

 as follows:  2 02 2A A sin( )  and 

therefore, 2
 and 

2A  are directly related. 

When 02(A indentation depth 1), the interaction time in bimodal AFM is mainly 

dictated by the first mode frequency and is not substantially influenced by the secondary 

mode frequency. Therefore, as long as 02(A indentation depth 1), our previous studies 

on the relaxation mode(s) of a polymer sample that contributes the most to energy 

dissipation during a tapping cycle of AM-AFM 20 is indeed applicable to bimodal AFM. 

Thus, the relaxation behavior of the sample when examined by such configuration of 

bimodal AFM can be represented by constitutive models with one single effective 

relaxation time, like SLS, Kelvin-Voigt, or Maxwell models. However, the Kelvin-Voigt 
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model exhibits no stress relaxation when the surface is under a constant strain and the 

Maxwell model does not lead to surface restoration to its original state after the applied 

stress is removed. Hence, hereinafter we select to use the SLS model with a fixed 

relaxation time to model the viscoelastic response of the evaluated polymeric samples in 

this article. The assessed samples’ viscoelastic behavior is properly represented by 

selecting adjusted 0E  and E


 values. Particularly about tapping mode AFM, 

microcantilever’s fundamental mode resonances are usually of the order of magnitude of 

100’s of kHz with tip oscillation time periods of the order of 10’s of microseconds. As we 

have described in prior work20, in gentle tapping conditions the tip-sample interaction time 

often is of the order of magnitude of 1/10th of the tip oscillation period, or of the order of 

microseconds. Our prior work20, also shows that the relaxation mode that has the most 

effect on AFM observables is in the range of /10th of the tip-sample interaction time, or of 

the order of 0.1 microseconds. Furthermore, our prior work20 also describes that the AFM 

observables change significantly only when the relaxation time used changes by several 

orders of magnitude. This justifies the use of 0.1 microseconds as the correct order of 

magnitude of the substrate relaxation time that most affects the AFM observables and will 

be used henceforth in this article.A comprehensive study of the dependence of bimodal 

AFM observables on local adhesive and viscoelasticity parameters for a fixed   is 

presented in Figure 6. The microcantilever properties, 01A , and 02A  of these simulations 

are identical to the ones used for Figure 5 and the ratio

1A  is 0.5. The simulation results for 

various viscoelasticity model parameters and two different surface adhesions are 

presented in Figure 6. The identical parameters used for these simulations are: R 3 nm

, ratio

1A 0.5 , and   0.1 s . The Poisson ratio ( ) for the LDPE and PS domains are 

chosen as the nominal values provided by the manufacturer, 0.49  and 0.35 , 

respectively. 0E  and E
  values for the simulations are selected based on the Latin 

hypercube sampling method.  
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Figure 6. Study of the bimodal AFM observables’ dependence on the surface adhesion 

(quantified as 2

0HR 6z ) and viscoelasticity level. The first row (a-c) and second row (d-f) 

simulations have smaller and larger adhesions associated with   20H 1 10 J  and 
  20H 7 10 J , respectively. The selection of 

0E  and 


E  in the performed simulations are 

done based on the “Latin hypercube sampling” method. The used material and interaction 

parameters are stated in the text. In these conducted simulations  R 3 nm , ratio

1A 0.5 , 

  0.49 , and   0.1 s  

As seen in Figure 6, the hysteresis due to surface adhesive forces is larger when E
  

and/or adhesive forces are relatively smaller and larger, respectively. Furthermore, while 

2  is generally more sensitive to changes in surface viscoelasticity, the surface adhesion 

is better resolved via 1 . The higher sensitivity to the magnitude of surface adhesion of 

1  in comparison with 2  can be explained through the tip velocity-dependency of the 

energy dissipation as expressed in Eqn. (18). Therefore, since the adhesive forces 

between tip and surface during the interaction time occur when the tip experiences the 

largest first mode velocities, their contribution toward first-mode dissipation weighs more 

than equally-in-size repulsive forces. This relation holds either during approach or 

retraction off the surface. However, in terms of the secondary mode energy dissipation 

contributions, there is no such relation between the tip secondary mode velocity and the 

adhesive forces.  
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5. Material viscoelasticity and adhesive properties estimation  

We next explore utilizing the proposed computational approach to post-process the 

experimental observables and estimate the surface adhesive and viscoelastic properties. 

Since the accelerated Attard model does not provide a closed-form solution, finding a 

correlation between the experimental data and the surface properties is challenging. Here 

we present a data analytics approach to connect the bimodal AFM observables to the 

material’s properties through an inverse model.  

The data analytics approach requires a comprehensive set of simulations with an 

appropriate range for 0E , E


, surface static adhesion, and tip radius (R ) values for 

known AFM microcantilever properties and operating conditions (
1k , 

2k , 
1Q , 

2Q , 
01A , 

ratio

1A , ratio

2A ). Assuming the employed cantilever's fundamental frequency is in the order of 

100’s of kHz, we select 10 s    for the SLS model with the same reasoning described 

in the previous section. The inclusive bimodal AFM observables database with known 

input parameters facilitates a regression-based analysis to identify and recognize the 

existing dataset patterns. We used a method based on the multivariate linear regressions 

to estimate 
0E , E


, and surface static adhesion from the measured 

1 , 
2 , and 

2A  

values at each pixel. To minimize the precision loss due to using linear regression, the 

range of E


 used for generating the simulation results dataset is selected in accordance 

with the reported quasi-static material stiffness. TheR  process utilized can be 

represented as a conversion matrix and vector, as follows: 

1 1 2 3 0 1

2 4 5 6 2

2 7 8 9 3

c c c E d

c c c E d

A c c c Adh d



       
      
        

             

 (26) 

To better describe the utilized mapping process, the calculated ic  and id  constants for 

PS and LDPE polymer samples are listed in Table 3. ِDue to the large stiffness difference 

between PS and LDPE, using a single simulation results dataset that covers this large 

stiffness range is a time-consuming process. Furthermore, using linear regression to 

figure out the constant terms of the conversion matrix/vector over a large range for 
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stiffness parameters may not lead to a proper approximation accuracy. Therefore, we 

prepared two dedicated sets of simulation result datasets for PS and LDPE in which, the 

selected ranges for 


E values are 1-3 GPa and 0.2-0.6 GPa, respectively. These ranges 

are chosen based on the reported quasi-static stiffness of these materials over which 

conducting stable simulations is achievable. The 
0E  range for each of these datasets is 

selected accordingly. The Poisson ratio ( ) for the LDPE and PS are chosen as the 

nominal values provided by the manufacturer, 0.49  and 0.35 , respectively.  

Table 3. The coefficients of the conversion matrix and vector as described in Eqn. (26) 
determined through linear regression on simulation results. The tip radius estimate is 8.7 
nm. 

 
1c  (GPa) 

2c  (GPa)  3c GPa nm  
4c  (GPa) 

5c  (GPa)  6c GPa nm  

PS 0.89 6.81 -0.21 0.14 -33.72 0.15 
LDPE 0.23 2.41 -0.07 0.07 -1.24 -0.003 

 
7c  (nN) 

8c  (nN) 
9c  (Pa) 

1d  (GPa) 
2d  (GPa) 

3d  (nN) 

PS 0.18 -1.62 -0.14 -22.54 8.36 -0.08 
LDPE 0.008 0.69 -0.02 -4.06 -0.49 0.99 

 

 

6. Experiments 

To validate the performance of the described inverse approach, we acquired a set of 

experimental bimodal AFM data on a polymer blend sample and used it to estimate its 

viscoelastic and adhesive properties. The bimodal AFM experiments are performed using 

a commercial Cypher AFM setup (Asylum Research, Santa Barbara, CA) on a fresh PS-

LDPE polymer blend which was purchased from Bruker Nano Inc. The experiments are 

performed on a  4 4 m  rectangular region with a 1024 points/line resolution level and 

a scan rate of 1 Hz. The sample is selected due to the significant mechanical difference 

between polymer domains, as the bulk nominal Young’s modulus for PS and LDPE are 2 

GPa and 0.1 GPa, respectively, as per the product description. By calibrating Olympus 

AC160 microcantilevers, the following parameters are determined: 1f 281kHz,  

2f 1.593 MHz,  1

1k 28.1Nm ,   1

2k 509.8 Nm ,  1Q 429,  2Q 600,  01A 50 nm,  and 
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02A 1nm. The calibration of the first mode stiffness was performed based on two well-

established calibration techniques: the Sader method 47 and the thermal noise method48. 

This arrangement which does not require mechanical contact with a hard sample during 

the calibration is accessible through the GetReal™ tool in the instrument software. The 

calibration of the second mode stiffness was performed using the suggested power-law 

relationship between stiffness and frequencies of the excited modes:   2

2 1 2 1k k f f


 , 

where 
2  is the calibration parameter which is empirically determined for specific 

microcantilevers49, 50. The calibration values obtained using the mentioned method were 

compared with the ones from the slope of the dynamic amplitude approach curve for the 

second eigenfrequency and the one for the quasi-static force curve for the first resonance 

mode on a fresh clean silicon sample and the agreement of the acquired values was 

satisfactory. The blueDrive photothermal excitation system excites the microcantilever at 

two eigenfrequencies (1 and 2). Modal amplitudes and phases were tuned when the 

microcantilever was within 100 nm above the surface. We specifically suggest ratio

1A  at 0.5 

for the experiments to maximize the energy dissipation during each cycle20. The 

experiments were conducted under ambient temperature and dry nitrogen flushed 

conditions to minimize the effect of capillary forces. As shown in Figure 7, The polymeric 

domains are well separated. The round shapes on the images are LDPE domains which 

are surrounded by a homogeneous PS background. We use the bimodal observables of 

each pixel of the images, i.e. 1 , 2 , and 2A , to estimate the surface nanoscale properties 

using the regression model (Eqn. (24)). 
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Figure 7. Bimodal AFM images of the PS-LDPE sample illustrate phase lag of the first 
and second mode, and amplitude of the 2nd mode from left to right, respectively. The 

associated histograms are shown in the second row. The size of the images is 4 4 m 

. 

The spatially resolved surface properties estimations using the described inverse 

approach are shown in Figure 8 and the predicted mean values for polymer domains are 

listed in Table 4. Since similar samples were previously explored by others, here we 

compare our results with their predictions. Garcia et al.14 presented a method in which 

the model parameters were first calibrated on the PS domain so that the model prediction 

for  PS stiffness becomes comparable with expected values. Then, the calibrated model 

was applied to LDPE domain leading to stiffness estimates of 0.11 0.02  GPa which 

compares well to our E


 value prediction as listed in Table 4. In their method, the 

viscoelasticity of the surface was described by a so-called “3D Kelvin–Voigt model” in 

which the surface adhesion is neglected. Meng et al.51 employed DMT model to estimate 

the PS-LDPE surface adhesion and stiffness using magnetic-drive soft probes. The 

resultant mean reduced modulus predictions for PS and LDPE phases were 0.1 and 1.8 

GPa, respectively which compare well to our results. Since each group used different 

microcantilevers to conduct experiments, we compare the predicted adhesion force 

values for PS and LDPE phases through the ratio of the mean predicted adhesions for 
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these domains. Meng et al.51 and Solgaard et al.26 reported adhesions ratios as 1.26 and 

1.2~2.0, respectively, which is in agreement with 1.29 predicted by our method. 

Therefore, the results demonstrate the capability of the inverse model based on Attard’s 

approach to make realistic predictions on the sample’s viscoelastic and adhesive 

properties based on the acquired bimodal AFM observables (i.e. 
1 , 

2A , and 
2 ).  

 

Figure 8. The estimates for adhesion force, E


 and 0E  values for the scanned polymer 

domains are predicted using the proposed algorithm. The static adhesion is calculated 

based on 2

0HR 6z . 

 

Table 4. Predicted mean viscoelastic properties for the polymer domains based on the 
acquired bimodal AFM data. The predictions are in agreement with the ones in the 
literature 14, 26, 51. 

domain 0E (GPa)  E (GPa)


 Static Adhesion (nN)  

PS 5.68 0.31  1.82 0.31  8.08 0.91  

LDPE 2.73 0.11  0.11 0.03  6.28 0.22  
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7. Conclusions 

This work features a proposed algorithm that systematically accommodates surface 

forces and linear viscoelastic three-dimensional deformation into the bimodal AFM 

framework. To establish the algorithm, we derived the amplitude reduction formulas for 

the resonant modes in bimodal AFM based on the Euler Bernoulli assumption for the 

microcantilever behavior. The algorithm simultaneously satisfies the derived amplitude 

reduction formulas for both resonant eigenmodes while the tip-surface interaction is 

computed using the accelerated Attard’s model. The algorithm enables the rigorous 

prediction and interpretation of bimodal AFM observables with a first-principles approach. 

Simulations illustrate that bimodal AFM can provide enhanced contrast between domains 

with relaxation time discrepancies in comparison with the conventional tapping mode 

AFM. The results show that 
2  channel is more responsive to the viscoelasticity level of 

the sample than 
1 . However, 

1  channel is more sensitive to the surface adhesion level 

than 2 . Furthermore, simulations showed that the phase lag and amplitude ratio of the 

secondary mode illustrates a nonmonotonic and monotonic variation versus relaxation 

time, respectively. Then, we presented an inverse regression-based method that 

quantitatively predicts the local adhesion and standard linear solid viscoelastic 

parameters from acquired bimodal AFM data. The application of this method on bimodal 

AFM data on a PS-LDPE polymer blend leads to quantitative discrimination of adhesion 

and viscoelastic properties of the sample. Taken together, the results presented here 

successfully open the way to advanced interaction models to be used to quantify local 

nanomechanical properties of soft, adhesive, and viscoelastic materials in bimodal AFM. 

However, there is still room for improvement on the model’s performance, e.g. the method 

requires computationally expensive post-processing due to the non-existence of a close-

form solution for the utilized contact model, and pre-knowledge about a sample is required 

to set the right range of 0E  and 


E .  
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