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Nano-Chevron Quantum Dot for Spin-Qubit Applications 
John Tiessena and Junxia Shia†

We study the theoretical properties of a parabolic hBN/MoS2/hBN heterostructure quantum dot potential generated via 
electrostatic gates and its interaction with a Cobalt nano chevron. We demonstrate that such an example system can 
undergo electric dipole spin resonance for a single electron isolated to the K’ valley within the MoS2 monolayer, and such a 
system can achieve pi-rotation times of approximately 5.5 ns under the influence of a 20.89 GHz driving field. Our proposed 
system requires operating conditions easily achievable with current experimental methods and would allow for the all-
electrical control of a spin-qubit within an MoS2 device. Our results show that such a system is experimentally feasible and 
would have comparable properties to that of more traditional silicon based spin-qubits. Furthermore, the design of the 
device can be applied to other material systems beyond MoS2 and Cobalt. In theory, the proposed structure could make use 
of any 2D material that experiences strong proximity exchange interactions with other magnetic materials, which makes our 
proposed design highly general. 

Introduction 
One of the main problems related to scaling silicon quantum dot 
(QD) designs is that they often require a laterally varying 
magnetic field.1-4 This creates a position-dependent Zeeman 
splitting required to couple the spin qubit to an alternating 
electric field, which in turn is used for qubit manipulation and 
operation in electric dipole spin resonance (EDSR).2 The 
generation of the positionally varying magnetic field is 
accomplished via the deposition of micromagnets, which 
generate the desired magnetic field.3-5 However, the scalability 
is inherently limited and the design faces several obstacles, 
according to studies related to foundry fabricated silicon QDs.6 
Therefore, finding an alternative way to generate the 
positionally dependent Zeeman splitting would greatly simplify 
the design of semiconductor based QDs and would be most 
desirable.

Another issue with semiconductor-based qubits and QDs is that 
they need to be highly tunable. Due to the inherent variability 
of semiconductor production, being able to tune the relevant 
properties of thousands of qubits individually through all 
electrical means is critical. Currently, this is achieved by finding 
the right spot between micromagnets where the 
inhomogeneous magnetic field is of the correct form to allow 
for EDSR.4

To get around some of these problems, we propose an MoS2 
spin-qubit making use of the proximity exchange interaction to 
achieve a highly tunable spin-qubit, whose position can be well 
known and whose properties can be tuned using all electric 
means in multiple ways. Based on the way this quantum dot is 
constructed, we will refer to it as a nano-chevron quantum dot 
(NC-QD). Such a quantum dot is inherently more scalable and 
has unique advantages when compared to other semiconductor 
based QD designs.

Results and discussion
Quantum Dot Qubit Setup

The proposed qubit makes use of the proximity exchange interaction 
to control the spin-splitting within the K’-valley of the conduction 
band of MoS2. The proximity exchange interaction has been an active 
area of research over the last few years, with researchers using 
various proximity interactions mainly to study and manipulate the 
properties of two-dimensional materials.7 Due to the atomic scale 
thickness of 2D materials, proximity interactions can have a strong 
effect on the electronic properties of 2D materials when paired with 
an appropriate magnetic material. The effects of proximity 
interactions on 2D materials have been demonstrated in detailed 
numerical calculations8-13 as well as experiments.14-17 In this study, 
we employ TMDC/magnet heterostructures and take advantage of 
the magnetic proximity exchange interaction between them to 
design qubits. In these TMDC/magnet heterostructures, the TMDC 
layer acts as if it is under the influence of a magnetic field of 
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approximately 10 Tesla,18 although the magnetic field in these 
structures is directly measured to be less than 1 Tesla.19

It is precisely this interaction that we aim to take advantage of in our 
device design. Due to the short-range of proximity exchange 
interactions,6 patterning an appropriate magnetic material on top of 
a TMDC can be used to introduce a symmetry breaking perturbation. 
This in turn can be used to create spatial separation between the 
spin-up and spin-down wavefunctions, analogous to what has been 
done with slanting Zeeman potentials, and can therefore allow for 
EDSR.2, 3, 20

Our proposed system consists of a heterostructure with a monolayer 
of MoS2 which is sandwiched by monolayers of hBN, on top of which 
a ferromagnetic (FM) Cobalt (Co) nano-chevron (NC) is placed. The 
ferromagnet is not limited to Co, as will be discussed later. The band 
structure of the MoS2 directly below the Co is shifted via proximity 
exchange interactions.9 Due to the short-range of the proximity 
exchange interaction, we approximate this as a step-function shift in 
the energies of the spin-up and spin-down electrons in the MoS2 
conduction band, which is entirely position dependent. In other 
words, electrons in the MoS2 layer located under the Co chevron 
experience a higher or lower potential than electrons in the MoS2 
layer without the Co NC overhead, depending on the spin of the 
electron. The general concept behind the NC quantum dot is 
visualized in Figure 1(a) and 1(b).

It is important to note that even though other magnetic materials 
can be used to achieve the same design goals, we focus on the use of 
Co as the ferromagnet in this work, as the interaction between Co 
and MoS2 has been modeled as a separate term in the Hamiltonian 
from that of a bare MoS2/hBN system,9 and the relative energy of the 
spin-up and spin-down electrons in the presence and absence of the 
FM NC can be determined. Many other ferromagnetic materials 
could be used. However, Co will suffice to demonstrate the principles 
of our qubit. In this work, we assume that the NC is extremely thin 
and that the tunneling time for electrons to move from the MoS2 
layer into the NC is longer than the spin rotation time. Also, we 
assume that due to the extreme thinness of the Co layer used in the 
DFT calculations9,11 and the unusual shape of the NC, very few free 
electrons will be able to reside within the NC itself. Furthermore, we 
assume that the NC does not interact strongly with the time-
dependent electric field used for EDSR. In general, perturbation 

theory can be used to estimate the suitability of a given FM material, 
provided that the relative energies of the spin-up and spin-down 
electrons for the proximitized and bare TMDC are well known.

Next, a series of electrostatic gates are placed around this NC along 
with a suitable back-gate potential to form a parabolic electrostatic 
potential. To prevent tunneling from the back gate to the MoS2, a 
sufficiently thick SiO2 layer is present in between. Detailed 
theoretical calculations have shown that the electrostatic potentials 
formed by gates on 2D materials are parabolic in nature.21,22  
Therefore, we treat the Co NC as a position-dependent step-function 
which either raises or lowers the energy of spin-down and spin-up 
electrons, depending on their position within the confining potential. 
The energy shift of the spin-up and spin-down electrons is calculated 
based on the low energy effective Hamiltonian (LEH), 9 and the values 
are summarized in Table 1. 

The K and K’ valleys are inequivalent conduction band minimums in 
the momentum space, which are normally degenerate in energy in 
the absence of an external field. Although degenerate in energy, they 
are inequivalent in terms of spin. In this case, the ground state of the 
K’ valley is spin-down while the ground-state of the K valley is spin-
up.9,11 In this work, we primarily focus on the K’-valley, as it is the K’-
valley that has the spin ordering reversed, therefore the energies of 
spin-up and spin-down electrons are raised at different rates, when 
an applied external magnetic field magnetically aligns the NC in the 

 direction. This in turn allows for the spin-up and spin-down + 𝒛
energies to be brought closer together in energy, which is useful for 
EDSR.

STATE MoS2/hBN  
(meV)

MoS2/hBN/Co  
(meV)

MASS 
(m/me)

|𝑲′,↑⟩ 879.361 877.664 0.49
|𝑲′,↓⟩ 876.639 878.336 0.44
|𝑲,↑⟩ 876.639 874.942 0.44
|𝑲,↓⟩ 879.361 881.058 0.49
Table 1. Energies of the spin states in the  K and K’ valleys 
calculated based on the LEH, 9 which are used for determining 
the energies of ,  and  states in the |𝐾′,↑⟩,  |𝐾′,↓⟩ |𝐾,↑⟩ |𝐾,↓⟩
TMDC/hBN/FM heterostructures, and the spin-up and spin-
down effective mass from DFT calculations.23 

(a)

(b)
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Since the electrostatic potential is parabolic and the energy of 
each state relative to the bottom of the well is of interest, the 
relative energies of these states are used in the calculations, 
with 0 meV referring to the lowest energy state of the four. 
Table 2 shows these relative energies, which are measured from 
the spin-up/spin-down conduction band minimum (CBM) 

assuming that the entire system is either MoS2/hBN or 
MoS2/hBN/Co.

Table 2. The relative energy of the spin-up and spin-down states in 
the presence and absence of the Co proximity exchange interaction. 
All energies are measured relative to the lowest energy in Table 1, 
which is the ground state of the proposed qubit.

Next, the effect of the magnetic NC on the wavefunctions of the spin-
up and spin-down electrons, which are confined to the QD potential, 
is considered. Intuitively, a wavefunction spends less time where its 
probability density is lower. Therefore, if we assume that the 
wavefunction were centered near the tip of the NC then the effect of 
the Co NC would be felt most strongly near the minimum of the well 
and would rapidly diminish towards the edges. However, since the 
NC is not symmetric along the x-axis, it generates on average a 
variable Zeeman splitting in the y-direction. This is because the 
electron will spend less time further away from the minimum and the 
legs of the NC are slanting away from the center. This is how an 
effective slanting Zeeman field is created with the position-
dependent interaction with the NC. The asymmetry of the NC along 
the x-axis is important to the ability of the proposed QD to couple 
the spin-up and spin-down states to an alternating electric field, 
which will be discussed later.

For a parabolic potential with a ferromagnetic NC perturbation 
of a depth of 300 meV,24 and a radius of 40 nm, based on the 
proposed QD radius ( ) in reference 23, the potential 𝑅𝑄𝐷

energies of spin-down and spin-up electrons within the K’ valley 
are shown in Figures 2(a) and 2(b) respectively. The Hamiltonian 
of the NC-QD is described by Equation 1 below.

In Equation 1a, the first term is a Landau term taking into account 
the interaction of the electron with the perpendicular magnetic field, 

which is further described in equation 1c. In equation 1c we have 
taken into account the effect of the magnetic field on the electron 
via a vector potential that has been implemented in the symmetric 
gauge.25 The second term is the well-known parabolic well potential 
adapted from reference 24.  is the depth of the quantum well 𝑽𝒎𝒂𝒙

(300 meV),  is the QD radius (40 nm),   and  are the cartesian 𝑹𝑸𝑫 𝒙 𝒚
position coordinates and are measured in nanometers. In our model,  

 is the energy of the electron at the conduction band minimum 𝜶𝝉,𝒔

for a given spin and valley, where  for the K’ (K) valley and 𝝉 =± 𝟏
for spin-up (down). The value of  can be read off from 𝒔 =± 𝟏 𝜶𝝉,𝒔

Table 2. In a similar way  can also be read off from Table 2. The 𝒎𝝉,𝒔

spin-up energy is determined by choosing  while the spin-𝒔 = +𝟏
down energy is determined by selecting . The terms and 𝒔 = ―𝟏 𝒈𝒗𝒍 

are the effective valley and spin g-factors with values of 0.75 and 𝒈𝒔𝒑 
1.98 respectively for MoS2.23 Equation 1b describes the perturbing 
potential created by the magnetic NC. For Co, the proximity 
exchange interaction raises or lowers the energy of the spin-down 
and spin-up electrons, respectively, by   where  meV. a, b, 𝜸 𝜸 = 𝟐.𝟎
and c are the dimensions of the NC with ‘a’ being the ‘depth’ of the 
NC in the y-direction (9 nm), ‘b’ is the NC tip position (7 nm) and ‘c’ 
half the NC width (10 nm). The slope/sweep of the NC in our studied 
structure ‘m’ is set to 1.

Figure 2 shows the potential experienced by the spin-down and spin-
up electrons within the K’-valley of the Co nano-chevron QD. Notice 
that the shape of the NC is clearly visible. It is also observed that the 
Co chevron creates either a depression or a rise in the potential, 
depending on the spin of the electron. Due to the parabolic shape of 
the confining potential, the Co NC affects the electron strongly near 
the center of the potential and becomes less relevant as the electron 
moves further away. The behavior of the QD as a function of NC 
position is discussed next.

Fig. 1. (a) A general layout of the proposed device with purple indicating monolayer (ML) hBN, yellow ML MoS2, blue Co (or 
any other proximity exchange material), red SiO2 insulating layer, and green the substrate. The grey blocks represent the 
electrostatic gates, which form the parabolic potential. (b) A closeup of the Co chevron with geometric elements relevant to 
the proposed device: sweep (the slope of the chevron’s legs), position relative to the origin defined at , width in the x- 𝑥 = 0
direction, and depth of the chevron in the y-direction. These properties are defined mathematically in equation 1b.

STATE MoS2/hBN 
(meV)

MoS2/hBN/Co 
(meV)

MASS 
(m/me)

|𝑲′,↑⟩ 3.0 1.0 0.49
|𝑲′,↓⟩ 0.0 2.0 0.44
|𝑲,↑⟩ 0.0 ―2.0 0.44
|𝑲,↓⟩ 3.0 4.0 0.49

𝐻 = 𝐻𝐵 +
𝑉𝑚𝑎𝑥

𝑅2
𝑄𝐷

(𝑥2 + 𝑦2) + 𝛼𝜏,𝑠 +
1 + 𝜏

2 ℏ(𝑒 ― |𝐵𝑧|
𝑚𝜏,𝑠 ) +

1
2

(𝜏𝑔𝑣𝑙 +  𝑔 ⊥
𝑠𝑝𝑠)𝐵𝑧𝑔 ⊥

𝑠𝑝𝜇𝐵 ―  𝑠𝑉𝑁𝐶(𝑥,𝑦)        (1𝑎)

𝑉𝑁𝐶(𝑥,𝑦) = {𝛾,  𝑖𝑓  𝑦 < ―𝑚|𝑥| + 𝑏 𝑎𝑛𝑑 𝑦 ≥ ―𝑚|𝑥| + (𝑏 ― 𝑎) 𝑎𝑛𝑑 |𝑥| < 𝑐
0,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          (1𝑏)

𝐻𝐵 = 𝑖ℏ
𝑒 ― 𝐵𝑧

2𝑚𝜏,𝑠
[𝑦

∂
∂𝑥 ―  𝑥

∂
∂𝑦] +

𝑚𝜏,𝑠

2 (𝑒 ― 2𝐵2
𝑧

4𝑚2
𝜏,𝑠 )(𝑥2 + 𝑦2)            (1𝑐)
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NC Position vs. Spin-Up and Spin-Down Energy

The position of the ferromagnetic NC relative to the center of the 
parabolic potential has a large effect on the spin splitting between 
the spin-up and spin-down states. In this work, we carry out several 
different calculations with different NC parameters (width, sweep) to 
determine the optimal shape for enhancing EDSR. The optimization 
procedure involves iterating through different NC parameters and 
the consequential NC-QD properties. Of primary interest is how 
stable the energy separation is between the spin-up and spin-down 
states at the optimum NC position as well as the overlap between 
the spin-up and spin-down wavefunctions. To determine the energy 
of the spin-up and spin-down states in the NC parabolic potential, we 
solve the 2D Schrödinger Equation using the Direct Matrix Method,26 
where the eigenvalues and eigenvectors of the matrix are found 
using the built-in SciPy eigenvalue/eigenvector solver.27 To 
incorporate the effect of applied external magnetic field in the z-
direction, the symmetric vector potential from eqn (1c) needs to be 
incorporated into the resulting numerical matrix, for which we use 
the so-called ‘naïve’ discretization method.28 It should be noted that 
this method is reasonably accurate as the perpendicular magnetic 
field is represented in the symmetric gauge,29 which should not 
introduce any significant errors. 

Due to the complex nature of the numerical methods used to 
calculate the energy of the spin-up and spin-down ground states 
within the K’-valley, the number of samples that can be taken of the 
potential space is limited. In Fig. 3(a), we use 1282 samples of the 2D 
potential to calculate the spin-up and spin-down energy versus the 
position of the NC. 1282 samples are also used along with the 
optimized NC position to determine the effect of the applied external 
magnetic field on the energy of the different possible valley-spin 
states. This should offer a sufficient resolution to achieve high 
accuracy of the spin-up and spin-down ground states. In order to 
increase the resolution of the calculations without increasing the 
number of samples in the potential space, the NC-QD potential needs 
only to be simulated out to a radius of 20 nm rather than the full 40 

nm. Appendix A further explains in detail why this is an appropriate 
approximation. To summarize, the ground states of the NC-QD are 
almost completely contained within the first 20nm of the potential. 
In fact, wavefunctions up to the third excited state should be well 
approximated within a radius 20nm from the center of the NC-QD 
potential. Beyond a radius of 20 nm, the potential is treated as 
infinite.26 Using a ±20 nm simulation limit in the x and y directions, it 
is possible to obtain a resolution of approximately 0.098 nm2 per 
sample of the NC-QD potential.

Figure 3(a) shows the calculated energies of the lowest spin-up and 
spin-down states as a function of the Co NC position in y-direction 
relative to the center of the parabolic potential. After fitting the data 
in Fig. 3(a) with quadratic equations, the point at which the spin-up 
and spin-down states come the closest in energy is determined to be 
at the NC tip position of approximately 7 nm. It is also worth noting 
here that the spin-up and spin-down energies have a parabolic-like 
behavior near the minimum energy difference. This is a desirable 
property for a QD system, as the energy versus position behavior is 
effectively flat near the minimum energy difference point. When an 
alternating electric field is applied to the system, it will not change 
the energy splitting significantly, therefore allowing a simpler 
application of EDSR. 

To determine the relationship between the applied external 
magnetic field and the energy of the , ,  and  |𝑲′,↑⟩ |𝑲′,↓⟩ |𝑲,↑⟩ |𝑲,↓⟩
states, a series of numerical calculations are required. Fig. 3(b) shows 
the energies of the different spin-valley states calculated via 
equation 1(a) with varying magnetic field, as well as linear lines fitting 
the numerical results. This allows us to estimate the required 
magnetic field in order to bring the  and  states close |𝑲′,↑⟩ |𝑲′,↓⟩
enough in energy to form a qubit state, which can be manipulated by 
EDSR. It can be seen that they are brought close enough together for 
EDSR at around 4 Tesla. From Fig. 3(b), it is clear that in order for our 
proposed qubit to operate, the  state needs to be filled first. In |𝑲,↑⟩
this work, we assume that due to the energy and momentum 
difference, it will not interact strongly with  and  states, |𝑲′,↑⟩ |𝑲′,↓⟩

(a) (b)

Fig. 2. (a) The quantum dot potential experienced by the spin-down electron within the K’-valley of the NC QD. (b) The quantum 
dot potential experienced by the spin-up electron within the same system. Note that both potentials assume an initial parabolic 
potential of a depth of 300 meV and a QD radius of 40 nm and the NC is treated like a position-dependent perturbing step-
function.

Page 4 of 10Nanoscale



ARTICLE

Please do not adjust margins

Please do not adjust margins

and that the effect of the extra charge can be compensated for via 
the back-gate potential. Future calculations are needed in order to 
take into account the electron-electron interactions in more detail. 
Next, the shape of the spin-up and spin-down wavefunctions is 

studied.

NC-QD Spin-Up and Spin-Down Ground States & Manipulation

The ground states for the spin-up and spin-down electrons are 
determined by the eigenvectors of the 2D Schrödinger Equation 
matrix. These are returned in the calculations along with the 
eigenvalues (energies). Sorting these eigenvectors & eigenvalues, 
the un-normalized ground states of the NC-QD system are obtained. 
These un-normalized solutions are integrated and set equal to 1 to 
determine their normalization factors. Afterwards, the resulting 
normalized eigenvectors are plotted in Figure 4. In our calculations, 
we assume that the effect of the magnetic field can be treated 
separately from that of the NC proximity exchange interaction. In 
other words, the effect of the magnetic field on the electron in the 
K’-valley is the same with or without the NC.

This assumption is supported by experimental results,17 which shows 
that at magnetic fields below 1 Tesla, a WSe2/EuS heterostructure 
experiences strongly enhanced valley splitting on the order of 2.5 
meV/T. However, once the applied perpendicular magnetic field 
exceeded 1 Tesla, the rate of valley splitting with respect to 
increasing magnetic field returned to that of the WSe2/SiO2 system 
(0.20 meV/T). This lends credibility to our assumption that the 
magnetic proximity exchange interaction can be treated as position 
dependent perturbation to the MoS2 band structure while the effects 
of external perpendicular magnetic fields remain unchanged.

It is worth noting in Fig. 4 that the spin-down electron state has been 
squeezed into an egg-like shape due to the influence of the magnetic 
Co NC. This in turn creates an asymmetry in the y-direction, which 

results in strong coupling between the spin-up and spin-down states 
within the NC-QD when coupled with a linear perturbation in the y-
direction.

Next, we determine how these electronic states will interact with the 
time-dependent electric field used for EDSR. The effect of the electric 
field can be treated as a linear perturbation in the y-direction.2,20 The 
electric field has the following form as described in equation (2).

Eqn. 2 describes the magnitude of the electric field in the y-direction 
versus time, where Eac is the amplitude of the oscillating electric field 
and ωac is the driving frequency. In the calculations, t is in 
nanoseconds. This electric field will perturb the lowest-energy 
electron (the spin-down ground state ) from its initial position. |𝟎,↓⟩
Therefore, to determine the form of the time-dependent potential, 
the initial position of the spin-down electron has to be located, as the 
perturbing potential relative to its resting position will be measured. 
Since the potential is asymmetric due to the presence of the NC, the 

average position in the y-direction must be calculated via equation 
(3).

In equation (3) Bra-Ket notation is used where in general the spin-up 
and spin-down states are represented by  and . In this case |𝒏,↑⟩ |𝒏,↓⟩
‘n’ refers to the excitation level of the state and denotes whether the 
system is spin-up or spin-down. Knowing the equilibrium position, 
the potential experienced by the spin-down electron due to the 
perturbing electric field can be calculated. That is the perturbing 
electric potential that the electron will experience assuming that its 
initial position defines where the perturbing electrostatic potential is 
zero. Since the alternating electric field is treated as a perturbation, 
the above treatment is reasonable as only a relative change in energy 
due to the electric potential is of interest. The time-dependent 
perturbing potential is calculated via equation (4).

(a) (b)

Fig. 3. (a) Calculated energies of spin-up (blue square) and spin-down (red dot) states as a function of the Co NC position in y direction. 
Dashed and dotted lines are fitting with quadratic equations for the spin-up and spin down states respectively. The black dashed line is 
positioned where the minimum difference in energy occurs (~7 nm). (b) The energy of the spin-up and spin-down states in the K and K’ 
valleys for different magnetic field strengths. The dashed lines are the linear fits to the numerical results. 

𝐸(𝑡) = 𝐸𝑎𝑐cos (𝜔𝑎𝑐𝑡)𝑦#(2)

𝑦𝑎𝑣𝑔 = ⟨0,↓│𝑦│0,↓⟩#(3)
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In equation (4) αnk is a short-hand expression for the overlap 
between two states in the NC-QD with respect to the linear 
perturbing potential. Both the left- and right-hand sides of the 
equation are multiplied by the magnitude of the electron charge, e-, 
to convert the time-dependent electric potential into a perturbing 
energy potential in units of eV. Having determined both the 
stationary states and the perturbing potential, all that is needed to 
determine the effect of the applied time-dependent electric field is 
to plug these results into the perturbative form of the time-
dependent Schrodinger equation (5). 21, 22

Equation (5b) generates a series of coupled first order differential 
equations, which must be solved to determine how the ground 
state  evolves with time under the effect of the time-|0,↓⟩
dependent perturbing potential. In equation (5a),  and    |𝑛⟩ |𝑘⟩
refer to different stationary states that are calculated previously 
based on the NC-QD potential.  refers to the amplitude of 𝑐𝑘(𝑡)
the  state at time  with   and   referring to the previously |𝑘⟩ 𝑡 𝐸𝑘 𝐸𝑛

calculated energies of the  and  states. The constant electric |𝑛⟩ |𝑘⟩
field term, , and the time-dependent term, , are 𝐸𝑎𝑐 cos (𝜔𝑎𝑐𝑡)
factored out since they do not depend on position.

To solve the set of coupled first order ODEs generated by equation 
(5b), a particular version of the Runge-Kutta method is used, which 
has been applied to similar resonant perturbation problems in the 
past.30,31 The Runge-Kutta algorithm used to solve the system of 

equations generated by equation (5) comes from SciPy,27 which uses 
a 5th order accurate Runge-Kutta method.32 Next, the electron is 
assumed to be initially in the ground state and therefore . To 𝒄𝟎 = 𝟏
make sure that the system considers the possibility of state leakage 
from the desired lowest energy spin-up and spin-down states, we use 
the first ten eigenstates of both the spin-up and spin-down NC-QD 
potential. This give twenty states in total, which are then sorted by 
energy from lowest to highest, and then are in turn plugged into 
equation (5) to be solved via the Runge-Kutta method.32

One final aspect that needs to be taken care of is the energy splitting 

between the ground spin-down state ( ) and the ground spin-up |𝟎,↓⟩
state ( ). When a magnetic field is applied in the out-of-plane |𝟎,↑⟩
direction ( ), the spin-up and spin-down states in the K’ valley + 𝑩𝒛

rise in energy at different rates. Based on the approximately linear 
change in energy, we can estimate the required magnetic field 
needed to bring the spin-up and spin-down states close enough in 
energy for EDSR to occur. In the following, we apply an external 
magnetic field of 4.75 Tesla on a system with the previously 
mentioned optimized NC-QD parameters. For these calculations, 
1582 samples of the potential space are used to achieve sufficiently 
high resolution for the time dependent calculations later. After 
performing these calculations, the resonant frequency of the 
resulting system is determined. Equation (6) is used to determine the 
resonant frequency of a two-state system.

(a) (b)

Fig. 4. (a) Normalized probability density of the spin-down electron ground state with a simulation radius of 20 nm. The potential radius 
is 40 nm and potential depth is 300 meV. (b) Normalized probability density of the spin-up electron ground state in the same system as 
(a).

𝑒 ― 𝑉𝑎𝑐(𝑡) = 𝑒 ― 𝐸𝑎𝑐cos (𝜔𝑎𝑐𝑡)⟨𝑛│(𝑦 ― 𝑦𝑎𝑣𝑔)│𝑘⟩ 𝑦 = 𝑒 ― 𝐸𝑎𝑐cos (𝜔𝑎𝑐𝑡)𝛼𝑛𝑘 𝑦#(4)

𝑑
𝑑𝑡𝑐𝑛 =

―𝑖
ℏ ∑

𝑘
𝑒 ― 𝐸𝑎𝑐cos (𝜔𝑎𝑐𝑡)⟨𝑛│(𝑦 ― 𝑦𝑎𝑣𝑔)│𝑘⟩𝑐𝑘(𝑡)𝐸𝑥𝑝[ ―𝑖(𝐸𝑘 ― 𝐸𝑛)𝑡 ℏ]#(5𝑎)

𝑑
𝑑𝑡𝑐𝑛 =

―𝑖
ℏ ∑

𝑘
𝑒 ― 𝐸𝑎𝑐cos (𝜔𝑎𝑐𝑡)𝛼𝑛𝑘𝑐𝑘(𝑡)𝐸𝑥𝑝[ ―𝑖(𝐸𝑘 ― 𝐸𝑛)𝑡 ℏ]#(5𝑏)
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In equation (6), variable  is defined as the difference between the ∆𝑬𝒇

spin-up and spin-down state energies. In our case, the resonant 
frequency of the system is approximately 20.89 GHz when a 4.75 
Tesla magnetic field is applied, which is very similar to the resonant 
frequency of the state-of-the-art silicon spin qubits (19.7 GHz).4 

For qubit operations, the π-rotation time or  is the time it takes for 𝒕𝝅

the system to evolve from the spin-down state into the spin-up state 
with a greater than 0.99 probability, and it is clearly an essential 
parameter. To calculate this, the 20 lowest states (10 lowest spin-
down states and 10 lowest spin-up states) are solved, and then a 5th 
Runge-Kutta method27,32 is used to further solve the resulting system 
of equations generated by equation (5). Doing so,  (the |𝒄𝟏|𝟐

probability of measuring the electron in the lowest energy spin-up 
state )  is plotted in Figure 5. Since the system is being driven at |𝟎,↑⟩
resonance (20.89 GHz), the value of  is determined by the 𝒕𝝅

amplitude of the perturbing potential, which is the applied electric 
field. However, to achieve a π-rotation with a high probability, it is 
necessary to use lower-amplitude electric fields to fulfill the 
assumptions of the rotating wave approximation (RWA). In this 
study, the amplitudes of the perturbing electric field are 𝟏 × 𝟏𝟎 ―𝟐 

,  and  for our 𝒎𝑽 𝒏𝒎 𝟎.𝟕𝟓 × 𝟏𝟎 ―𝟐 𝒎𝑽 𝒏𝒎 𝟎.𝟓 × 𝟏𝟎 ―𝟐 𝒎𝑽 𝒏𝒎
proposed system, which are in line with the electric field used for the 
proposed TMDC qubit in reference 33 ( ).𝟏.𝟎 × 𝟏𝟎 ―𝟐 𝒎𝑽 𝒏𝒎

It should also be noted that according to the RWA, the value of is 𝒕𝝅

proportional to the magnitude of the driving amplitude. Therefore, 
larger driving amplitudes will result in smaller and vice versa. 𝒕𝝅 
However, when large driving fields are applied to the system, the 
transition probability versus time does not behave sinusoidally and 
therefore  does not predictably approach a value of 1 at these |𝒄𝟏|𝟐

large driving amplitudes. Therefore, smaller driving amplitudes are 
used to make sure that the transition probability behaves 
sinusoidally.

The data plotted in Figure 5 is used to determine by simply 𝒕𝝅 
locating the first  maximum. This is done numerically within |𝒄𝟏|𝟐

Python and the location of the maximum is noted in Fig. 5 with a 
black dashed line for each resonant frequency. The time it takes for 

  of a given configuration to reach its first maximum is therefore |𝒄𝟏|𝟐

the  of that particular system.𝒕𝝅 

To keep our results comparable with reported values,21,23,33-36 we 
only consider these three driving amplitudes. For the system driven 
at 0.01 mV/nm, a Rabi frequency of 90.91 MHz is achieved, while 
Rabi frequencies of 68.49 MHz and 45.45 MHz are obtained for the 
systems driven at 0.0075 mV/nm and 0.005 mV/nm, respectively. 

These results are comparable to the proposed defect based MoS2 
QDs,36 as well as the current silicon based QDs.3,4

As observed from Fig. 5, among the three driving amplitudes, only 
the system driven at 0.01 mV/nm has a rotation time approximately 
equal to the measured spin-lifetime of MoS2.37 However, it is not 
clear if such measurements are indicative of the spin lifetime of spin-
polarized electrons within electrostatic MoS2 QDs. Up to now, there 
is a wide range of spin-valley lifetimes reported for MoS2 and MoS2 
heterostructures, with the heterostructures having reported spin-
valley lifetimes of approximately 1000 ns.38 It is suggested by others 
that using isotopically defined MoS2 as well as better substrate 
isolation could lead to substantially longer spin-lifetimes in MoS2 
QDs, as was accomplished with Si.39,40 Furthermore, within the 
proposed NC-QD, the K’-valley and K-valley spin-up and spin-down 
states are not only separated in terms of energy but also in terms of 
momentum. This may also increase the qubit lifetime as discussed in 
reference 36.

Conclusions

Significant advantages that 2D materials (such as TMDCs) possess in 
regard to quantum computing have been noticed recently,39,41 
together with other applications of symmetry breaking in 2D layered 
heterostructures.42 Furthermore, electrostatically defined TMDC 
quantum dots have been experimentally demonstrated,43-47 which 
indicates that producing electrostatically defined MoS2 QDs with a 40 
nm radius should be feasible. 

Fig. 5. The green, blue and red curves represent the spin-up 
probability versus time when a resonant time-dependent 
potential is applied to the system. The resonant frequency for our 
proposed system when a 4.75 T magnetic field is applied is 
approximately 20.89 GHz.

𝜔0 =
𝐸↑,𝑓 ― 𝐸↓,𝑓

ℏ ,  ∆𝐸𝑓 = (𝐸↑,𝑓 ― 𝐸↓,𝑓) = ℏ𝜔0#(6)
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The proposed NC-QD takes advantage of the proximity exchange 
interaction to modify the properties of an MoS2 electrostatic QD. It 
should be emphasized that the proposed device is not limited to 
using Cobalt and in fact many other magnetic materials can be used, 
provided that the NC is properly optimized and introduces a 
sufficiently large shift in the spin-up and spin-down energies within 
the K’ valley of the conduction band. Therefore, the design principles 
behind the proposed device are very general and could be employed 
to customize the properties of 2D semiconductors via proximity 
exchange effect in general.

The NC-QD also has several attractive properties from a theoretical 
perspective, when compared to other proposed MoS2 QDs. First, the 
NC-QD does not require either placing or locating a defect for the 
qubit to operate as is required in reference 36. Second, the NC-QD 
requires an external magnetic field of much less than 10 Tesla for 
qubit operation, which is significantly smaller than the 20 Tesla 
magnetic field required for EDSR as discussed in reference 33 and is 
therefore much more easily achieved practically. Third, the NC-QD 
requires gate frequencies of tens of GHz or less for qubit operation 
as opposed to hundreds of GHz required for spin-valley qubit 
operation.21,34 Therefore, the proposed NC-QD design allows for 
qubit operations to be carried out under more typical experimental 
conditions, and therefore could be a viable candidate.

Appendix A
The method and rational that we use to decide on an appropriately 
sized simulation space is presented in this section.

Of primary concern are the lowest energy states of the system, these 
being the ground states of the electron in the spin-up and spin-down 
states. Determining the shape and energy of these states is the most 
important part of our numerical simulation, since these two states 
determine the resonant frequency of the system as well as the 
rotation speed. Achieving high resolution of higher energy states is 
useful for quantifying the amount of leakage that the qubit 
experiences as it is rotated from spin-down to spin-up. Therefore, we 
seek to simulate the smallest reasonable space to achieve the highest 
resolution of the ground states while also minimally changing the 
shape and energy of the higher energy states.

For a 2D parabolic quantum well represented in x, y coordinates the 
first 10 states (1 ground and 9 excited) are all contained within the 
first three excited states. This is because of the combined degeneracy 
of the first, second and third excited states. Therefore, our goal is to 
make sure that the dimensions of the simulation space are such that 
more than 99% of the third excited state wavefunction is captured 
within the space. To determine the appropriate dimensions, we first 
define the third excited wavefunction in equations A.1 through A.3.

Although our potential is not a true parabolic potential due to the 
NC, we consider the standard solutions to be an acceptable 
approximation. Next, we define  and  based on chosen QD 𝝎 𝒎𝝎 ℏ
potential with ,  and   𝒎 = 𝟎.𝟒𝟒𝒎𝒆 𝑹𝑸𝑫 = 𝟒𝟎𝒏𝒎 𝑽𝒎𝒂𝒙 = 𝟑𝟎𝟎𝒎𝒆𝑽
via equations A.4 and A.5.

Next, we sub in our value of  and then integrate symmetrically 𝒎𝝎 ℏ
over the x and y coordinates up to finite value α. After this, we solve 
equation A.6 numerically to determine what value of α is needed to 
contain more than 99% of .𝝍 ∗

𝟑 (𝒙,𝒚) × 𝝍𝟑(𝒙,𝒚)

Solving for α numerically we obtain a value of approximately 18.26 
nm. Therefore, a simulation limit of 20nm in the positive and 
negative x, y directions should be adequate for our calculations.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work was sponsored by the Army Research Office and was 
accomplished under Grant Number W911NF-19-1-0309. 

𝜓3(𝑥) =
1
3(𝑚𝜔

𝜋ℏ )1/4[2𝑥3(𝑚𝜔
𝜋ℏ )3/2

― 3𝑥(𝑚𝜔
𝜋ℏ )1/2]𝐸𝑥𝑝[ ― 𝑥2𝑚𝜔

2ℏ ]#(𝐴.1)

𝜓3(𝑦) =
1
3(𝑚𝜔

𝜋ℏ )1/4[2𝑦3(𝑚𝜔
𝜋ℏ )3/2

― 3𝑦(𝑚𝜔
𝜋ℏ )1/2]𝐸𝑥𝑝[ ― 𝑦2𝑚𝜔

2ℏ ]#(𝐴.2)
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𝜔 =
𝑘
𝑚 =

𝑉𝑚𝑎𝑥

𝑚𝑅2
𝑄𝐷

#(𝐴.4)

𝑚𝜔
ℏ =

0.44 𝑚𝑒

ℏ
300 𝑚𝑒𝑉

(0.44 𝑚𝑒)(40 𝑛𝑚)2≅0.0329𝑛𝑚 ―2#(𝐴.5)

0.99 = ∫
𝛼

―𝛼
∫

𝛼

―𝛼
𝜓 ∗

3 (𝑥,𝑦) × 𝜓3(𝑥,𝑦)𝑑𝑥𝑑𝑦#(𝐴.6)
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