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Energy shortage and environmental pollution have been great challenges so far for human 

beings. Here, we report a highly effective, precise, and environmentally friendly material design 

strategy through a novel machine learning approach integrating the physical laws and 

mathematical model, which is successfully applied to the development of complex multi-phase 

multi-principal element alloys (MPEAs), contributing to the world’s carbon neutrality process. 

Here, a feasible material design avenue is proposed by integrating the machine learning, physical 

law, and mathematical model. A new developed MPEA with a good combination of strength and 

plasticity exceeding that of its system and subsystems reported so far is then screened and 

prepared within only two days. It has been demonstrated that the efficiency and economy of the 

present work are several hundred times higher than those of the existing approach. Most 

importantly, the present work provides a universal framework for the precise and rapid tailor of 

the property-guided composition and microstructure, which further broadens the applicable scope 

of advanced MPEAs.
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Abstract 

Multi-principal element alloys (MPEAs) with remarkable performances possess a great 

potential as structural, functional, and smart materials. However, their efficient 

performance-orientated design in a wide range of compositions and types is an 

extremely-challenging issue, because of properties strongly dependent upon the composition 

and composition-dominated microstructure. Here, we propose a multistage-design approach 

integrating machine learning, physical law and mathematical model for developing the 

desired-property MPEAs in a very time-efficient way. Compared to existing physical model- 

or machine-learning-assisted material development, the forward-and-inverse problems, 

including identifying the target property and unearthing the optimal composition, can be 

tackled with better efficiency and higher accuracy using our proposed avenue, which defeats 

one-step component-performance design strategy by multistage-design coupling constraints. 

Furthermore, we developed a new multi-phase MPEA at the minimal time and cost, whose 

high strength-ductility synergy exceeding those of its system and subsystem reported so far by 

searching for the optimal combination of phase fraction and composition. The present work 

suggests the property-guided composition and microstructure are precisely tailored through 

the newly-built approach with significant reductions of the development period and cost, 

which is readily extendable to other multi-principal element materials.  
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Introduction

Obtaining multi-principal element alloys (MPEAs) with excellent mechanical properties 

through traditional trial-and-error methods is an extremely time- and cost-consuming task, 

owing to the near-infinite compositional space and its impact on phase structures.1-9 Despite 

the involvement of multi-scale simulation tools and high-throughput technologies,10-12 the 

precise design of MPEAs with desired properties is still a challenge due to the complicated 

process producing the complex and uncertain microstructures. Naturally, it is crucial to search 

for an effective and accurate strategy/approach to predict the structures/properties and design 

the desired-performance MPEA system. Recently, machine learning has been actively 

promoted for the development of phase selection, performance prediction, and component 

screening in MPEAs.13-15 Nevertheless, the conventional data-driven machine learning models 

have so far neglected the physical essence of the problems and caused less explainable and 

poor generalization. Indeed, the existing machine learning models,16, 17 which are still in their 

infancy for the computer-aided material design, have been limited to numerically establishing 

the connection between input/output features. The deep integration of the physical cognition 

and machine learning has not yet been enforced to the development of MPEAs. Here, we 

provide a universal multistage design framework, by which we successfully design a new 

multi-phase MPEA. Comparing the tensile properties of this MPEA with its system and 

subsystems proposed in the literature, it is demonstrated that the present MPEA possesses 

superior combinations of yield strength and elongation. 

To develop the multi-phase MPEAs with the excellent properties fastly and accurately, a 

multistage design method integrating the physical law, mathematical model, and machine 
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learning is presented in Fig. 1A. Hence, two core problems should be solved, namely both the 

forward problem (FP) avenue (from the composition to desired performance) and the inverse 

problem (IP) avenue (from the target performance to optimal composition), as shown in Fig. 

1B. Here, the multistage strategy has been embedded in the FP and IP avenues, which is 

composed of two parts, introducing a composition dependent physics feature space to predict 

phase formation, and a phase dependent mathematical model to calculate yield strength. In 

order to obtain the target performance, we can screen out the initial composition space, and 

then determine the optimal composition (Fig. 1B). Compared to the results of the one-step 

strategy, this work can rapidly converge in the desired region, resulting in the reduction of the 

experimental trial and error, no matter in the FP avenue or the IP avenue. Thus, the current 

novel approach can effectively reduce development cycle and resource consumption in 

complicated materials.  
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Figure 1. Strategy of the multistage design for the performance-oriented precision 

design. (A) Flowchart of optimization design in multi-phase MPEAs with high strength and 

large elongation. Several common machine learning algorithms, including K-nearest 

neighbors (KNN), decision tree (DT), support vector machine (SVM), and artificial neural 

network (ANN) are used to predict the phase selection of MPEAs. Here, the widely-studied 

physics-based features for the phase formation of MPEA are calculated as the initial input 

features (a detailed description in Table S1). (B) The comparisons of the one-step and 

multistage strategies in FP and IP avenues. The black arrows represent the process of one-step 
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strategy. The colored arrows denote the process of multistage strategy.   

Experimental section

Sample preparation

Two alloys with a nominal composition of Al0.63Co0.95Cr0.95FeMn0.74Ni and 

Al0.55Co0.9CrFe0.95Mn0.8Ni0.8 (mole fraction) were produced by vacuum arc melting. 

High-purity (at least 99.5 weight percent, wt.%) powders of the constitutive elements were 

used as starting materials. The produced ingots had dimensions of ~ 10 × 14 × 50 mm3. The 

ingots were remelted 5 times to ensure the chemical homogeneity. The SEM-EDS analysis 

showed that the actual chemical composition of the alloy closely corresponded to the nominal 

one. 

Microstructural characterization

The microstructure and phase composition of the alloys in the as-cast condition were 

studied, using X-ray diffraction (XRD), scanning electron microscopy (SEM), and 

transmission electron microscopy (TEM) techniques. The XRD analysis was performed, using 

a RIGAKU diffractometer and Cu Kα radiation. Samples for the SEM observations were 

prepared by careful mechanical polishing. The SEM investigations were performed 

employing a FEI Quanta 300 3D and a FEI Nova NanoSEM microscope equipped with a 

back-scattered electron (BSE), an energy-dispersive X-ray spectrometry (EDS), and an 

electron backscattered diffraction (EBSD) detectors. The EBSD phase maps were produced, 

utilizing a TSL OIM software. Samples for TEM analysis were prepared by the conventional 

twin-jet electro-polishing of mechanically pre-thinned to 100 µm foils, in a mixture of 95% 

C2H5OH and 5% HClO4 at the 27 V potential. The TEM investigations were performed, 
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employing a JEOL JEM-2100 microscope equipped with an EDS detector at an accelerating 

voltage of 200 kV.

Mechanical testing

Tensile mechanical tests were performed, utilizing an Instron 5882 machine. Dog-bone 

specimens with gauge dimensions of 1.5 × 3 × 5 mm3 for testing were cut, using an electric 

discharge machine. Prior to testing, the specimens were carefully mechanically polished. 

Tensile testing to fracture was carried out at an initial strain rate of 10-3 s-1. Elongation to 

fracture was determined by a VIC-3D system. 3 tests were performed to ensure the 

consistency of the results.

Mathematical modeling

The mathematical modeling is a very important bridge to relate fundamental material 

properties to macroscopic material behavior. Here, the fundamental properties (such as 

composition and elastic moduli) are connected to specific mechanisms of deformation (such 

as dislocation slip and phase structure), which then collectively determine the macroscopic 

properties (such as strength and strain hardening). In MPEAs, the yield strengths can be 

composed of the grain-boundary strengthening and lattice-friction stress. The grain-boundary 

strengthening in MPEAs is supposed to be similar to that in traditional alloys.18 However, the 

lattice-friction stress in MPEAs is significantly different from that in traditional alloys, owing 

to their intrinsic multi-principal characteristics. Here, we utilize the 

lattice-distortion-introduced stress originating from the atomic difference between various 

multi-principal elements in MPEAs to replace the sum of the solid-solution strengthening and 

lattice-friction stress in traditional alloys, owing to the fact that there is no definite distinction 
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between the solute and solution in MPEAs. It is noted that the present model contains no 

fitting parameters. The computed inputs are the compositions and phase structures of the 

MPEAs, where the former is the inherent feature of materials, and the latter can be obtained 

by the machine learning approach. The detailed calculation description of yield strength is 

provided in Supplementary Text 1 “Yield strength of MPEAs”. Here, the proposed 

mathematical model can directly calculate the yield strength of single phase MPEAs. For the 

dual-phase MPEAs, their yield strength is predicted through the mixing theory, which needs 

the phase volume fraction calculated based on the constructed “composition-FCC/BCC 

volume fraction” model by machine learning (Supplementary Text 2). 

Data collection

The initial “composition-phase structure” data set is built by collecting the available 

experimental results in the previous literature (a detailed alloy composition and the 

corresponding source in Data S1), including 325 entries with some common MPEA systems, 

like Al-Fe-Co-Cr-Ni-Mn, Co-Cr-Fe-Ni, and Mo-Nb-Ta-V-Zr. Furthermore, considering that 

process parameters have significant influence on the microstructure and properties, the 

MPEAs collected in the initial data set were all prepared by arc melting to prevent 

measurement differences. The data set includes three MPEAs phase structures (BCC, 

BCC+FCC, and FCC). In view of few HCP MPEAs so far, the HCP MPEAs are excluded for 

avoiding unbalanced data distribution. In addition, to ensure the reliability of the data set and 

improve the accuracy and efficiency of machine learning model, data cleaning is a critical 

step before using machine learning algorithms. The basic guideline is that each MPEA 

composition corresponds to a unique phase and each item appears only once. Besides, all of 
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the entries with the same composition yet the different phase structures induced by the 

variation of process parameters need to be excluded because the accuracy of these data can 

not be figured out. Meanwhile, some obviously outlier entries are removed by observing the 

distribution of input features (detailed description about input features in Data analysis). After 

data cleaning, the final data set for phase prediction is composed of 266 entries with 103 BCC, 

61 FCC and 102 BCC + FCC phases (Data S2).

Machine learning algorithm

The performance of the four machine learning algorithms, including KNN algorithm, DT 

algorithm, SVM algorithm, and ANN algorithm, are evaluated in the current work. In order to 

protect against the over-fitting issue when using machine learning algorithms, five-folds 

cross-validation method is used for KNN, DT, and SVM algorithms while an early-stopping 

strategy is adopted for the ANN algorithm. The descriptions of these machine learning 

algorithms, five-folds cross-validation method and early-stopping strategy are elaborated in 

Supplementary Text 1 “Machine learning algorithm”.

Results and discussion

Data analysis

Before the implementation of the machine learning algorithms, it is critical to determine the 

appropriate descriptors as the input features. Apparently, it is unreasonable to use the 

elements and corresponding composition fraction as descriptors because of the unpredictable 

dimensional disaster and excessive computation. Luckily, Hume-Rothery rules19 denote that 

some physical features, such as the valence electron concentration ( ), mixing entropy VEC

( ), mixing enthalpy ( ), atomic-size difference ( ) and electronegativity difference mixS mixH 
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( ), are closely related to the phase formation of MPEAs. Based on the previous work, 

some other important physics features, such as thermodynamics features20 (average melting 

temperature , and thermal stability parameters ), atomic features21 ( ), physical mT Ω 

properties (elastic modulus E, bulk modulus B, and alloy density ) as well as hybrid 

feature22 ( ), are adopted as the input features to expand the parameter space. The detailed 

description and formula of the twelve physical features are presented in Table S1. 

Subsequently, the values of the features are normalized to (0,1): i) Each individual feature has 

the same numerical scale; ii) All features are treated equally. Furthermore, the t-stochastic 

neighbor embedding (t-SNE) method23 is used to investigate the feature distribution of the 

whole sample in two dimension, as shown in Figure 2 (the detailed data corresponding to the 

each MPEA in Data S3). The original data distribution can be presented in Figure S1. There 

are two advantages in choosing the t-SNE method for data analysis: (i) Converting the high 

dimension data into low dimension space makes the data distribution to be better visualized, 

and each axis does not need to be given a clear physical meaning; (ii) Original information of 

the high dimensional feature space can be maintained. Here, there are some BCC alloys far 

away from other materials (the top right of Figure 2), which are mainly refractory MPEAs, 

such as Nb-Ta-Ti-V, Hf-Nb-Ta-Zr, and Mo-Nb-Ta-Ti-Zr systems. For the MPEAs lacking the 

refractory elements, like Cr-Co-Fe-Ni and Cu-Al-Cr-Co-Fe-Ni systems, they mainly locate at 

the left region of Figure 2. Furthermore, although the distributions of BCC and FCC phases 

are obviously separated, the samples of BCC+FCC phase are significantly entangled with 

them. This trend indicates that the feature information of them in origin high dimension space 

is similar. Therefore, using empirical rules to identify the phase selection is difficult. 
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Accordingly, in this work, the machine learning model with high efficiency and accuracy is 

developed to search for the nonlinear mapping that distinguishes the feature distribution of 

various phases. Moreover, in view of the small data size, the current machine learning model 

could predict accurately the phases of MPEAs, which are limited in initial data set.

Figure 2 Feature distribution of the 266 samples in two dimensional space via t-SNE. 

Phase prediction

In order to obtain the optimal features of phase predictions, removing less important 

features can perform more reliably in classification tasks while decreasing the size of the 

machine learning models. Here, a feature engineering scheme combined with the correlation 

analysis with physical knowledge is used to search for an optimal number of features and 

reduce the size of the feature space. Figure 3A shows the Pearson correlation coefficient 24 

matrix for every possible input feature pair obtained from 12 features. Less than 10% of 

features have absolute values of correlation coefficients of larger than 0.8 (Fig. 3A), 

confirming the relatively-small redundancy. Further, the physics information of the features is 

mined to reduce the size of the feature space to an optimal number of the correlated features 
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(Fig. 3B). Thus, the original 12 features are converted to the 9 features resulting in a smaller 

feature space in the final classification process. Importantly, a more robust machine learning 

model can be generated by decreasing the number of features. 

To select the best machine learning algorithm for phase predictions, various machine 

learning models are evaluated (performance of the machine learning algorithm in 

Supplementary Text 3). Here, the accuracy values of KNN, SVM, and DT are the average of 

five testing results, and the accuracy of ANN represents the average of the training, validation 

and testing data set, i.e., the average of the entire data set. Figure 3C indicates the comparison 

of the accuracy, and ANN is of potential interest for prediction performance. Meanwhile, the 

proposed feature engineering scheme significantly enhances the efficiency of the model 

without sacrificing the prediction accuracy. Moreover, for discovering the criterion on how to 

confirm the phase selection, the sensitivity measures for BCC, BCC + FCC, and FCC 

structures are calculated, respectively. The result of the trained ANN model for the sensitivity 

measure of the feature (Fig. 3D) illustrates that the weight coefficient of the valence electron 

concentration (VEC) to decide the phase structure gradually declines, accompanied by the 

increase of the weight coefficient of the mixing enthalpy, which breaks the traditional rule of 

VEC acting as only the high impact feature.25, 26 Hence, the formation mechanism of 

multi-phases is extremely complex, and this result gives avenues towards the 

multi-mechanism criterion that beats the single rule for the precise structural design.
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Figure 3. The correlations between the input physical features and prediction of the 

accuracy of machine learning models. (A) Pearson correlation coefficients for 12 features. 

The value in each grid represents the correlation coefficient between two features, 1 (-1) 

denotes the completely positive (negative) correlation, and the colour intensity reflects the 

magnitude of the correlation coefficient. (B) Polar charts for distributed characteristics of 12 

features in BCC, BCC + FCC, and FCC phases, respectively. Area with a higher color 

intensity indicates the average distribution shape of the phase structure in the feature space. (C) 

Comparing the prediction performance using various machine learning algorithms with 

different training parameters. The green pillar represents the machine learning model built 

with 12 features, the red pillar denotes 11 features, and the blue pillar means 9 features. Based 

on the efficiency of the models with 12 features as benchmark efficiency, the efficiency of the 

model improves 16%, using the proposed feature engineering scheme. (D) The sensitivity 

measures with 9 features for BCC, BCC + FCC, and FCC structures via a Nightingale rose 

diagram. The red (blue) color represents that the sensitivity measure of the feature is positive 

(negative). The radius of the sector denotes the value of the magnitude of the sensitivity 

measure.
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Yield strength of multi-phase MPEA

To accelerate the development of the complex materials, it is very common to construct the 

correlation among the composition, microstructure, and mechanical performance.18 Therefore, 

a mathematical model is established to predict the yielding strength of the MPEA. 

Simultaneously, the elongation of MPEA is obtained using the machine learning approach due 

to lack of accurate prediction model for the ductility (Supplementary Text 4). 

We have carefully curated literature data on the yield strengths of a range of MPEAs with 

various phase structures, including the FCC, BCC, and FCC + BCC phases. The yield 

strengths of the BCC and FCC MPEAs are significantly different, in which those of most 

FCC MPEAs are less than 400 MPa, and those of most BCC MPEAs are larger than 900 MPa 

(Fig. 4A). Then, the predicted strength data is compared to the experimental data, and there is 

a fairly-good agreement between the prediction and experiment (Fig. 4A). The further 

statistics indicate that the computed results with the deviation less than 3% account for 28.3%, 

with the deviation larger than 3% and less than 10% represent 34%, and with the deviation 

larger than 10% and less than 20% denote 30.2%. Specifically, only 7.5% prediction data has 

the deviation larger than 20%. Furthermore, it has been confirmed that the prediction accuracy 

of this model is superior to other typical models out of many potential candidates (Fig. 4B). 

This developed mathematical model interrogating the machine learning would be efficiently 

used as constraints to predict properties of hypothetical MPEAs when applied to data-driven 

materials. These results illustrate that this mathematical model possesses excellent 

quantitative predictive capability and universal applicability to compute the yield strengths of 

MPEAs. Thus, the present model can be integrated into the machine learning approach, for 
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further selection of MPEAs with outstanding properties by considering various aspects: 

multi-component, multi-phase, and multiple-strengthening mechanisms. 

Figure 4. The strength prediction and its accuracy. (A) The deviation relationship of the 

yield stress between the experimental and calculated results for various MPEAs (Data S4). 

The black line denotes that the calculated result coincides perfectly with the experimental data. 

The light green area indicates that the deviation is smaller than 10%. the pink area represents 

that the deviation is larger than 10% but smaller than 20%, and the A and B areas denote that 

the deviation is larger than 20%. (B) The comparison of the prediction accuracy between the 

proposed model and other typical model, which is counted from various samples, including 

the representative FCC CrCoFeNiMn, BCC TiNbTaZrHf, and dual-phase Al0.5CrCoFeNiMn 

MPEAs. The experimental data sources and modeling predictions have been provided in 

Table S2.    

Application of multistage design strategy

The most important contribution of the current multistage design approach is to deduce the 

accurate element composition and phase structure. Here, the classical FeCoCrNiMn (Cantor) 

system is the basic principal component, and then the introduction of the Al element produces 

multi-phase MPEAs.27 Meanwhile, the new Al0.63Co0.95Cr0.95FeMn0.74Ni MPEA, having a 

good combination of strength and plasticity, has been predicted through the IP avenue in Fig. 
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1B (Supplementary Text 2 “Prediction of the optimal composition in the Al-Fe-Co-Cr-Ni-Mn 

system”). To check the validity of predictions, this alloy is prepared by arc melting. From the 

XRD pattern of Fig. 5A, the intensity of the peaks from FCC and BCC phases is similar, and 

the alloy is composed of both phases with the lattice parameters of 0.361 and 0.289 nm, 

respectively. To identify the crystal structures of the constitutive phases, the EBSD analysis is 

performed (Fig. 5B), where the estimated fractions of the FCC and BCC phases are 0.72 and 

0.28, respectively. The TEM studies are performed to analyze the structure of the alloy at a 

nanoscale (Fig. 5C), where the existence of FCC and BCC phases is confirmed by 

corresponding selected area electron diffraction patterns (#1, #2, and #3 in Fig. 5C). This 

trend agrees reasonably well with the available literature data.27, 28 Finally, the chemical 

compositions of the constitutive phases measured by the TEM-based EDS analysis is 

presented in Table S3. The FCC phase has the composition close to the nominal one, and the 

BCC phase is enriched with Cr and Fe and depleted of the rest of the elements. The tensile 

stress-strain curve in Fig. 5D shows a high yield strength of 880 MPa, the ultimate tensile 

strength of 1,235 MPa, and the elongation of 12.3%. Furthermore, the experimental results 

suggest that the new MPEA proposed in current work thoroughly defeats the properties of its 

existing system/subsystems and other MPEAs reported in previous literature,27 as presented in 

Fig. 5E. The experimental strength and elongation are also located in the range of screening 

criteria (strength > 800 MPa and elongation > 10%, the detailed explanation is mentioned in 

Supplementary Text 2). Therefore, a new alloy system with excellent mechanical properties 

can be designed, which only takes two days, including the prediction, preparation, 

characterization, and performance test. These results imply the key role of our novel avenue 
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in designing high-performance MPEAs. Moreover, in order to further demonstrate the validity 

comprehensively of the proposed multistage-design approach, the Al0.55Co0.9CrFe0.95Mn0.8Ni0.8 

MPEA with suboptimum properties has been re-selected and re-prepared. The detailed 

description is presented in Supplementary Text 5.

Figure 5. Results of the validation experiment. (A) Structures and mechanical properties of 

the as-cast Al0.63Co0.95Cr0.95FeMn0.74Ni MPEA: XRD pattern. (B) EBSD phase map (the green 

color depicts the FCC phase, and the red denotes the BCC one). (C) TEM bright-field image 

with selected area electron diffraction patterns. (D) tensile stress-strain curve. (E) Ashby plot 

of elongation versus yield strength of the Al-Co-Cr-Fe-Ni-Mn system, and other MPEA 

systems (Table S4).

Comparison of design methods

The existing one-step strategy used in designing MPEAs usually attempts to directly 

establish the relationship from the composition to performance.29-32 However, this mode 
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neglects the complex phase structure dependent upon composition, thus causing a significant 

deviation between the computed and target performance. For example, using one-step strategy, 

the AlCoCrCuFeNi MPEA with desired performance was prepared successfully at the 

expense of several series experimental feedbacks, due to the existence of phase transformation 

with the varies of Al and Cu content.29 Moreover, the precipitation strengthened copper alloys 

with high properties were also obtained by the one-step strategy, but were verified by 12 

experiments owing to the lack of microstructure-to-performance correlation.30 The present 

work introduces the composition dominated phase structure as the intermediary, and thus 

realizes the multistage strategy, integrating a physics-guided machine learning to predict 

phase formation, and a microstructure-controlled mathematical model to calculate yield 

strength. Firstly, a “physics-feature-space” is constructed to describe the phase formation of 

MPEAs, and embed it into machine learning. Compared to the case for the composition as 

descriptors, the physical feature-constrained machine learning model not only contributes to 

accurately reveal a general criteria of phase formation (Fig. 3D), but also makes the model 

explainable and universal. The classical feature engineering method based on Pearson 

coefficient for phase prediction of MPEA has been fully reported.24 Nevertheless, this feature 

analysis method is one-sided because only numerical correlations between features are 

assessed, causing some potential redundant features to be remain. Therefore, the proposed 

feature engineering method that comprehensively considers Pearson coefficient and physical 

features (Fig. 3B) becomes more reasonable, effectively improving the accuracy and 

efficiency of machine learning model (Fig. 3C). The developed mathematical model considers 

the extensive strengthening mechanisms, such as the grain boundary strengthening, phase 
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transformation strengthening, and solid solution strengthening.33, 34 Hence, the current model 

is universal for multiphase MPEAs, which accuracy in the predicted strength is up to 90% and 

overmatches that of other existing models (Fig. 4). The robust machine learning and 

mathematical models are the intrinsic reason for the accuracy of this novel approach in FP 

avenue. Compared to the one-step strategy, the multistage strategy significantly reduces the 

initial composition space in IP avenue. Subsequently, FP avenue is employed to compute the 

performance of the initial composition space and screen out the optimal composition based on 

the optimal performance, avoiding a lot of experimental trial and errors and obtaining the low 

cost yet high efficiency using the multistage design strategy.

As well-known, the high strength of the alloy most likely stems from the multiphase 

microstructure (Fig. 5E). For the Al-Co-Cr-Fe-Ni-Mn system, the combination of Al and Ni 

tends to form the BCC phase because of the high formation enthalpy.29 With increasing the Al 

content, the MPEAs transform from FCC phase to BCC + B2 phase. Thus, the multiphase 

enabling strength-plasticity synergy is developed, owing to the reason: the FCC matrix 

provides a reasonable elongation and good strain-hardening capacity, and the BCC and B2 

phases are acted as a hard reinforcement and generates strong back stresses in the softer FCC 

phase. Our multistage strategy can capture this rule hidden, guiding the experimental 

exploration of multi-phase MPEAs that go beyond the limitations of conventional alloy 

performance. With respect to the cycle of the development for alloys, a comparison with the 

major technologies is presented in Fig. 6. The traditional experiments are most time and cost 

consuming, due to lots of trials and errors. The high-throughput, theoretical model and 

simulation-assisted experiments enhance efficiency (or reduce cost) to a certain extent. This is 
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deriving from the wide composition range space and its induced uncertainty of microstructure. 

The existing design strategy combining machine learning and experiments still require some 

trials as the feedback. Here, the cost and efficiency of the proposed approach virtually 

exceeds those of previous material design technologies, providing new avenue to 

simultaneously achieve the rapid and accurate material design. 

Figure 6. Advantages of the method. Ashby map showing efficiency as a function of cost 

and time in relation to the potential material design technologies (Table S5). Zones Ⅰ-Ⅳ 

represent a deteriorating combination of efficiency and cost. 

In the present work, we have proposed a multistage design approach integrating machine 

learning, physical law, and mathematical model to achieve the rapid design for the 

multi-phase MPEA. Based on the proposed strategy, a new multi-phase MPEA is developed 

under a very short amount of time and low consumption. Importantly, the comprehensive 

mechanical properties outperform its system and subsystems reported previously, in which 

achieve the accurate design for MPEAs with high strength and ductility. It is believed that the 

present work provides a fundamental framework to guide the design of advanced materials 
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through a means of high efficiency and low cost, helpful for reducing resource consumption.

Keywords: Multi-principal element alloys; multistage design; machine learning; high 

efficiency; low cost
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