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Abstract
Driven by technological progress and growing global attention for sustainability, the adoption of electric 
vehicles (EVs) is on the rise. Large-scale EV adoption would both disrupt the transportation sector and lead 
to far-reaching consequences for energy and electricity systems, including new opportunities for significant 
load growth. Unmanaged EV charging can stress existing grid infrastructure, possibly leading to 
operational, reliability, and planning challenges both at the bulk and distribution levels. However, effective 
management of EV charging can resolve these challenges and provide additional value. The demand-side 
flexibility provided by managed EV charging offers significant potential benefits for the grid over multiple 
timescales and applications. Managed charging can support power system planning and operations during 
normal and extreme conditions, benefitting EV owners and other electricity consumers. However, the costs 
of enabling these services must be weighed against the benefits they provide. We summarize the benefits 
of managed EV charging, provide an overview of the landscape of existing implementations and costs of 
managed charging in the United States, critically review the state of the art of methodologies in 
analysis/modeling studies, and quantify the cost and benefits of managed charging as reported in the 
reviewed studies. Finally, we distill several key insights outlining the factors affecting the value of managed 
EV charging and identify critical gaps and remaining challenges to fully realize effective EV-grid 
integration. 
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1 Introduction 
The adoption of electric vehicles (EVs) has increased rapidly over the last few years, thanks to major cost 
reductions and performance improvements in battery and electric drive technologies and a wide range of 
supportive measures including charging infrastructure buildout, incentives and other policies, and support 
or pledges from local communities and various stakeholders for reducing transportation emissions.1,2 EVs 
offer demand growth opportunity for the electric industry (increase in retail electricity sales) after decades 
of stagnation in the United States and other regions.3,4 Although the rapid rise in EV adoption can cause 
possible integration challenges, EV loads are highly flexible and offer unique opportunities for synergistic 
improvement of the efficiency and economics of electromobility and electric power systems as the two 
sectors become more integrated.

A vast body of literature has examined the possible impact of adding new EV loads to existing power 
systems, showing that if unmanaged or uncoordinated (assuming each EV charges as soon as it is plugged 
in without any consideration of electricity supply and grid conditions), EV charging may exacerbate net-
load variability, impacting resource adequacy and attendant long-term planning, as well as contributing to 
bulk-level (generation and transmission) operational challenges.4–8 However, based on historical growth 
rates, sufficient energy generation and generation capacity is expected to be available to support high EV 
market growth in the United States,9 and the bulk power system is expected to be able to support widespread 
EV adoption. Because EV charging usually takes place at distribution systems (DSs), DS planners and 
operators could face challenges in effectively integrating EVs.10–13 However, the impact of EVs on DSs is 
varied, given high heterogeneity in DS characteristics, and also dependent on the magnitude, timing, and 
location of charging events.11,14–18 The impact of EVs on DSs might become more critical with high-power 
charging and concentration of EV loads, such as clusters of residential charging10 and possibly depots for 
commercial vehicle charging. Proper planning and consideration of EV loads can likely resolve integration 
issues but might require expensive and time-consuming upgrades.19

Besides increasing loads, the demand-side flexibility provided by managed EV charging potentially offers 
significant benefits for the grid over multiple timescales and applications, supporting power system 
planning and operations during normal and extreme conditions and benefitting EV owners and other 
electricity consumers alike. Managed EV charging is a potential alternative to conventional power system 
solutions, such as peaking generators or stationary energy storage, and can broadly serve as a flexible 
resource.20 In 1997, Kempton and Letendre21 offered the first description of the concept of EVs providing 
grid services, either in the form of smart charging or bidirectional vehicle-to-grid (V2G) services. Since 
then, several studies have explored the value of managed EV charging as the prospect for EV adoption has 
increased and the transformation of the power system has highlighted the value of flexibility and demand-
side resources. However, the value managed charging can provide will depend on the scale at which EVs 
are deployed, the grid policy and regulatory framework, and enablement costs, as well as how vehicles are 
used and charged (determining the flexibility in charging loads). Muratori et al.1 summarize a range of 
future projections of EV adoption in the U.S. light-duty market (see Figure 1 in the cited article), showing 
multiple studies projecting rapid EV uptake and long-term opportunity for large-scale EV adoption. The 
potential for rapid growth in EV adoption and ultimately widespread success highlights the need for timely 
research on the value proposition for vehicle-grid integration and the growing potential benefits of managed 
charging, especially under scenarios with inadequate grid resources and high system stress.

EV-grid synergies are driven by two key factors: the value of demand-side flexibility in electricity systems 
and the ability of EVs to charge flexibly. Demand-side flexibility, including loads that can be shifted over 
time, are valuable for power system planning and operations since they reduce peak loads on the electricity 
supply side, reducing costs and increasing system efficiency and reliability. This is becoming more 
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important as electric power systems are undergoing profound changes: Variable renewables are displacing 
conventional generation sources, distributed generation is disrupting utility business models, and the 
traditional system based on the premise that generation is dispatched to match an inelastic demand is 
evolving to create a system with greater participation in power system planning and operations from 
traditionally passive consumers.22 

In addition, EV loads can be flexible and may be shifted in time and space without impacting the ability of 
EVs to accomplish their primary goal: providing mobility services. Most personal vehicles are driven for a 
small proportion of the day.21,23 For example, an analysis of the 2017 National Household Travel Survey 
data24 shows that personal light-duty vehicles in the United States are parked, on average, 95.8% of the 
time. Commercial vehicles are sometimes driven more, but several medium- and heavy-duty applications 
still offer ample charging flexibility.19 If EVs are grid-connected for extensive periods (i.e., when a vehicle 
is not driven and a charging plug is available), they can provide demand-side flexibility in the form of 
managed charging or bidirectional power transfer to/from the grid and/or other loads.25 

While managed EV charging can benefit the operation and planning of the power system across a broad 
range of spatiotemporal needs, it also requires targeted programs and compensating EV users for providing 
flexibility. Therefore, the costs of enabling managed EV charging must be weighed against the benefits 
provided. Cost-effectiveness assessments should adhere to basic principles, such as treating benefits and 
costs symmetrically, ensuring impacts are incremental to proper counterfactuals, and avoiding double 
counting.26 As such, estimating managed EV charging costs and benefits is difficult, given the nascent 
markets for demand-side resources and different perspectives among stakeholders.

This paper provides a critical and comprehensive review of the value of EV managed charging, including 
context for the value of demand-side resources in rapidly evolving power systems; an overview of EV 
managed charging strategies, including current demand response programs focusing on managed EV 
charging in the United States, implementation options and mechanisms, and enablement costs; and a 
summary of methods, assumptions, and results in modeling and analysis studies and cost-benefit analyses. 
Finally, we identify critical gaps and remaining challenges, indicating research opportunities to properly 
assess the value of EV managed charging and fully realize the value of EV-grid integration.
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2 Value of demand-side flexibility in the evolving power system
All power systems are designed and operated to match electricity supply and demand at all timescales and 
in all places, and utilities generally deploy a mix of generator types to minimize overall cost while 
maintaining adequate flexibility and reliability.27 Operating the power system involves committing and 
dispatching generators to meet the variability of both supply and demand, while also maintaining adequate 
operating reserves for response to forecast uncertainty and contingencies.28,29 However, with increasing 
deployment of variable generation (VG) (e.g., wind and solar photovoltaics [PV]) and associated increase 
in net load variability and uncertainty, power systems require greater system flexibility, including the need 
for greater ramping and operating reserves.30–32 There is also a greater need to address the diurnal and 
sometimes seasonal mismatch between demand and VG supply to ensure sufficient capacity is available 
during net peak demand periods and avoid excessive generation during periods of low demand.31,33–35 

While there has been a large focus on supply-side options for increasing grid flexibility, including energy 
storage, demand-side resources are another valuable and cost-effective source of power system flexibility 
that can support power system planning and operation.36–43 It is sometimes more efficient to have demand 
match supply, as opposed to the more traditional approach of making supply match demand. There are 
numerous historical examples of demand response (DR) programs and market participation,44,45 with DR 
applications starting in Europe as early as the 1950s.46–48 Traditional DR provides load reductions at peak 
and other critical times, essentially providing a capacity service with additional infrequent but high-value 
energy benefits.49 

There are numerous existing examples of DR programs in practice today that provide bulk power system 
services, including large commercial and industrial curtailable or interruptible load programs; peak 
shedding direct load control programs for air conditioners, water heaters, or pool pumps; critical peak 
pricing or critical peak rebates44,49; and energy shifting with time-of-use (TOU) pricing or direct load control 
programs.50–53 More recently, DR has been used to provide operating reserves, especially in wholesale 
markets,44 and to mitigate localized congestion, including at the transmission level.54,55

In addition to bulk system benefits, DR can support the distribution system, which delivers power to final 
users.56 Alone or in combination with other resources, DR can alleviate localized congestion and defer other 
upgrades.54,57 DR and other distributed energy resources (DERs) that interface the grid through power 
electronics (e.g., PV systems, battery energy storage, and EV chargers) can also provide voltage and 
frequency support58–60 and supplement hardware-based techniques (e.g., voltage regulators, capacitors) that 
manage distribution system voltage and losses on an ongoing basis.56

Managed EV charging could provide a large and valuable source of system flexibility, with the potential to 
help address the challenges of balancing net load on both bulk power and distribution systems across 
multiple timescales (Fig. 1). Like traditional DR that addresses system peaks, managed EV charging can 
reduce systemwide or localized peak demand, thereby offsetting generation, transmission, or distribution 
capacity that might otherwise be needed at higher EV penetration levels. In particular, EV managed 
charging can provide a variety of services, including energy shifting, operating reserves, and voltage and 
frequency support, and offers opportunities to EV users to reduce charging costs while also lowering 
electricity costs for all.61,62 Scheduling charging across timeframes of up to 1 week, sometimes providing 
power from EVs to the grid or other loads, or pairing EV managed charging with other DERs, would 
increase value over long timescales (but in turn limit charging flexibility) and potentially mitigate long 
outages associated with extreme events.
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Fig. 1 Managed electric vehicle charging has the potential to support power system operations during normal and extreme 
conditions and benefit EV owners and non-owners alike.1

The value of demand-side flexibility depends on the value of the service provided, the cost of enabling DR, 
and the analogous costs for alternative resources, especially those of the most expensive unit, which sets 
price in least-cost planning and operational practices. The costs of enabling demand-side resources to 
provide grid services (e.g., new metering and control infrastructure costs; customer-side transaction costs, 
inconvenience, or foregone business; and utility program administration and marketing costs) have been 
catalogued and sometimes quantitatively estimated in various reports63–65 (see Section 3.2 for EV-specific 
enablement costs). Capacity and energy services, which provide the megawatts and megawatt-hours to meet 
demand, are collectively the largest and most valuable electricity markets.66,67 Enabling peak load 
reductions or energy shifting can be relatively low-cost, whereas enabling provision of ancillary services is 
often more costly due to higher communication and control requirements, and typically subject to stricter 
performance-based regulations (see Table 2 for a summary of ancillary or essential reliability services).68 
Because ancillary services represent a small percent of the total costs of operating the power system and 
the market opportunity is limited, this is a less promising but potentially complementary source of demand-
side flexibility value.66,67 On a practical level, the net costs of demand-side flexibility may be reduced by 
co-benefits.68,69 On the other side of the ledger, grid service value may be reduced if the combined effects 
of retail tariffs (e.g., demand charges, time-of-use rates, or PV compensation policies) and DR programs 
are not aligned with bulk (e.g., capacity, energy, ancillary services) or more localized (e.g., distribution 
reinforcement deferral/avoidance, backup power, or local resiliency) grid needs.66,70 

EV managed charging should be considered in the context of alternatives to provide equivalent services. 
For example, based on current DR deployment levels and recent studies,45,68,71 some forms of DR are cost-
effective alternatives to traditional peaking resources such as combustion turbines. In the future, lithium-
ion batteries may define the competitive landscape for peaking resources if current trends continue.72,73 If 
that is the case, managed charging can be competitive if charging infrastructure buildout, retail tariffs, and 
DR programs to compensate EV users (while satisfying users’ mobility requirements) can be designed to 
provide grid services from managed charging at a lower cost than building and operating stand-alone 
stationary battery energy storage.
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3 EV managed charging
EVs can be charged in a multitude of ways depending on vehicle characteristics, user preferences, trip 
requirements, infrastructure availability, and other factors. Unmanaged (or uncoordinated/uncontrolled) 
charging assumes each EV charges as soon as plugged in without any consideration of electricity supply 
(i.e., no charge management: park, plug in, and charge). Most studies postulate an “unmanaged” charging 
scenario where the grid is stressed by many EV drivers coming home from work and plugging in at roughly 
the same time, which happens to be coincident with daily peak load. With managed charging, EV charging 
is controlled considering electricity supply, within the constraints of the EV user’s mobility needs. Managed 
charging, also referred to as “smart” or “coordinated” charging, most often occurs unidirectionally (V1G). 
This often involves shifting the EV charging times based on electricity pricing or other incentive signals. 
More advanced forms of managed or “smart” charging could include changes to charging locations on top 
of timing in response to dynamic grid signals or utilize inputs from the EV owner and the grid to develop 
optimal charging to meet mobility needs and support the grid. Managed charging can also occur 
bidirectionally between vehicles and the grid (V2G) or other loads (V2X) e.g., buildings turning EVs into 
temporary electricity suppliers to provide additional local benefits and improve resiliency (e.g., power 
appliances during power outages).

Managed charging of electric vehicles can be differentiated by (1) how charging is controlled (passive or 
active) and (2) the direction of electricity flow (unidirectional or bidirectional), as shown in Table 1. 
Managed charging relies upon signals between a utility and an EV user (or a third party, which in turn 
interacts with the EV user) to control charging events and can be used for measurement and verification 
(M&V) of the associated response. Under passive managed charging, the EV owner responds to prices or 
other signals to alter charging behavior, which could be accomplished automatically (e.g., EV owner could 
set a timer for charging) or manually (e.g., EV owner unplugs the vehicle). Passive managed charging has 
the added advantage that EV-specific M&V is typically not required and leverages other metering systems. 
Under active load control, the charger or vehicle responds directly to a signal from a utility or a third party 
(e.g., direct load control), or autonomously acts upon local conditions (e.g., under-frequency relay or power 
factor correction). However, EV owners still retain some level of control (e.g., an option to opt out of a 
managed charging event), blurring the distinction between active and passive controls. Active managed 
charging may or may not require dedicated M&V; even when required, M&V may be accomplished ex post 
rather than in real time. Technology requirements for managed charging vary depending on the 
implementation approach, which grid service is being provided or targeted, and availability of enabling 
technologies such as EV onboard communications and controls, smart metering, and elements of the smart 
grid.

Table 1 summarizes the different implementation strategies considered, comparing the potential for grid 
services; the requirements for communications and controls, measurement, verifications, and settlement; 
and additional key differentiators. For example, active load control may provide a wider range of grid 
services; however, it requires increasingly complex communication and control technology. 

From a load flexibility perspective, there are trade-offs between different charging solutions. En-route 
charging, for example, involves a forced stop to charge an EV, usually at high power to minimize dwell 
time, limiting the opportunities for managed charging. The higher charging power requirements at en-route 
charging stations (usually DC fast charging) can, on the other hand, adversely impact the operation of power 
systems, including in terms of asset overloading, higher ramping requirements, and reduced power 
quality.74 These challenges call for careful consideration of the techno-economic and infrastructure 
challenges attributed to placement and operation of high-powered fast charging stations, including coupled 
energy storage to decouple charging behavior from grid loads.74,75 Opportunity charging,76 on the other 
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hand, leverages times during which a vehicle would be parked anyway (e.g., residential overnight charging) 
to provide Level 1 or Level 2 charging, and offers more flexibility. The higher the charging power (within 
opportunity charging), the faster and potentially more flexible the charging event can be in terms of time 
postponement, but higher peak loads are introduced. Vehicle charging can also occur dynamically while 
driving, via catenary or wireless charging, which allows for minimal flexibility. There are major technology 
and infrastructure barriers to implement dynamic charging, but it could eliminate most range limitations 
and require smaller batteries.77–79 Charging flexibility also depends on the vehicle utilization; personal EVs, 
for example, may have higher flexibility due to longer parked periods compared to ride-hailing or other 
fleet vehicles that are driven more.

Table 1 Summary of managed charging strategies and considerations

3.1 Implementation Strategies and Programs
There are a number of managed charging implementation strategies and programs at various levels of 
research, development, demonstration, and deployment (see Table 3 for a summary of exiting 
implementation programs in the United States). Passive load control through time-varying retail electricity 
rates (such as TOU electricity tariffs) is common, and there are many demonstration projects focused on 
developing real-time pricing, active managed charging through direct load control, and V2G. Managed 
charging to support distribution system services is limited to research and development and is discussed in 
Section 4. 

Managed Charging Control
Passive

Static TOU and dynamic time-varying retail 
rates

Active
Direct load control, under-frequency relay

Potential grid services
 Limit generation, transmission, and 

distribution capacity expansion, energy 
arbitrage

Communications and controls
 Manual or automated controls
 No dedicated communications required
 Low complexity

Measurement, verification, and settlement
 EV-specific M&V typically not needed
 Requires interval meter for settlement

Potential grid services
• All; however, smaller loads typically require aggregation 

(utility or third party) 
Communications and controls
 Automated controls
 Dedicated one-way or two-way communications required
 Distribution system services require additional utility-side 

equipment
 Low to high complexity depending on implementation
Measurement, verification, and settlement
 Real time, ex post, or statistical-/engineering-based M&V
 May require direct telemetry or interval meter depending on 

implementation

Vehicle-Grid Power Flow Directionality
Unidirectional (V1G)

 Similar to demand response
 No power injection to the grid

Bidirectional (V2G)
• Similar to distributed storage 
• Power injection to the grid or support other loads providing 

additional benefits 
• Additional technical (e.g., battery degradation, distribution 

system protection equipment, onboard power converters) and 
nontechnical (e.g., vehicle warranties, lack of enabling 
regulations and standards, round-trip efficiency losses) 
barriers.
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The most basic implementation of managed charging is TOU electricity tariffs. With TOU, electricity prices 
are higher during peak electricity usage times and lower during off-peak times, incentivizing shifts in the 
timing of electricity use. Enrollment in TOU and other dynamic pricing programs has steadily increased 
over recent years, comprising 7% of residential, 11% of commercial, and 18% of industrial customers in 
2019.80 In 2017, 9% of all U.S. commercial tariffs applicable to DC fast-charging stations included TOU 
components.81 Utilities also offer EV-specific TOU rates to encourage EV charging at off-peak times.82–85 
TOU rates have been successful in changing charging behavior in the United States. For example, a 
California Public Utilities Commission study concluded that charging load successfully shifted from peak 
evening hours to off-peak hours (overnight) by using TOU rates.86 Similar results were shown for other 
locations.87,88 A greater price variation between peak and off-peak rate has been shown to increase the shift 
in charging.89,90 Among EV owners with access to TOU rates, a Smart Electric Power Alliance survey 
indicated that over 65% are enrolled in utility programs, and 87% of consumers charge off peak 95%–100% 
of the time.84 Although TOU rates are well established and have been effective in modifying charging 
behavior, pricing signals may create a rebound peak. This may occur if many EVs consistently shift 
charging from the traditional peak period to a lower price period, thereby creating a new peak.91–93 
Additionally, ill-designed TOU rates can exacerbate both ramping concerns and the net load “duck curve” 
phenomenon if not aligned with renewable availability.94,95 More intelligent and dynamic pricing 
mechanisms, supported with real-world testing and demonstration, can mitigate these issues.91–93

Beyond TOU rates, managed charging through unidirectional direct load control is a growing area of 
interest.85 Some entities enable load control by subsidizing charging equipment for residential and 
commercial customers to ensure the equipment is compatible with direct load control requirements.85,96–99 
For utilities with existing DR programs, subsidization of the EV charger also requires enrollment and 
participation in DR programs.85 Others offer incentive payments and/or bill credits for participating in DR 
events.85,100–102 Customer satisfaction and participation in these programs in the United States have been 
high. For example, BMW reported 90%,103 Avista 85%,104 and Eversource 95%105 of participation in call 
events. However, challenges have been reported for some implementations, including low resource 
availability (i.e., small fraction of vehicles plugged in at one time),85,103,106 communication outages and 
latencies,104 and high program costs.104,107

In order to provide other services, managed charging needs to participate in wholesale electricity markets. 
However, wholesale market participation may require aggregation to meet minimum size requirements: 
100 kW under Federal Energy Regulatory Commission Order 2222.108 Through aggregation, multiple EVs 
and chargers are pooled and collectively follow dispatch instructions. A number of managed charging 
demonstration projects utilize a non-utility third-party aggregator. For example, BMW piloted this 
capability in its ChargeForward project, leveraging their existing vehicle communications,103,109 and Enel 
X’s eMobility incorporates 35 MW of remotely controlled EV chargers in its DR.110,111 Both projects bid 
into the California Independent System Operator (CAISO) energy market as proxy demand resources, but 
BMW implemented managed charging through the vehicles and Enel X used the charger—highlighting a 
range of potential approaches and enabling technologies.

To date, examples of managed charging with V2G in the United States are generally limited and focused 
on testing capabilities, such as provision of frequency regulation services by V2G-capable EVs.105,112–115 
Traditionally, regulations and market structures have not been established to handle bidirectional power 
flows. However, new partnerships and projects are being established.116–118 Specifically, electric school 
buses have been targeted in multiple projects to provide V2G services given their large battery capacities 
and long scheduled idle time.119–121 While bidirectional flow increases grid services from managed charging, 
uncertain battery impacts122,123 and issues with vehicle warranties make implementation challenging. V2G 
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also offers opportunities to power other loads, especially valuable during emergency events, and 
complement other DERs.124

Current direct load control of other loads may provide perspective on similar opportunities for managed 
charging. Particularly, the scale (power level) of the resource is an important factor in evaluating 
implementation strategies.125 Power ratings of EV chargers vary from ~1 kW for Level 1 charging to several 
hundred kilowatts for DC extreme fast charging. Level 2 charging (~7 kW), common for residential homes, 
is higher power than typical residential central air-conditioning load but still relatively similar in scale. At 
this scale, common active DR strategies utilize one-way communications with direct load control (e.g., 
remote switches on pool pumps, air-conditioning units, and electric water heaters) and programable 
communicating thermostats. At the other end of the spectrum, DC fast chargers and fleet chargers have 
substantially larger loads (but might have more limited flexibility) and are similar in scale to commercial 
building equipment and industrial process loads. These larger loads are commonly controlled manually, but 
varying levels of supporting automation are also utilized.68,126 Some facilities have under-frequency relays 
that shed load when power system frequency falls below some threshold value.127 To date, DR providing 
frequency regulation is mostly limited to larger facilities, such as industrial electrolysis128–130; aggregations 
of industrial pumps; commercial heating, ventilating, and air-conditioning (HVAC) equipment; and 
commercial lighting.131 Aggregations of smaller loads for frequency regulation have been proposed in the 
literature,132 but due to the nascent nature of existing markets and technologies, have not been 
implemented.133,134

Across all sectors, fully automated DR with networked two-way communications between customer 
equipment or facilities and utilities, third-party aggregators, or power system operators remain limited. Still, 
there are many deployments in the field, and such implementations may grow in the near future.66,135–138 
Rather than real-time telemetry (that may be required for providing operating reserves139), ex post M&V is 
common and accomplished with interval metering (an interval meter measures and records data on either 
predetermined or remotely configurable time intervals). In the absence of interval meters, deemed values 
or statistical estimates from historical system data may suffice.140 

There have been a handful of instances where DR has been proposed for distribution system services to 
defer capacity upgrades, as part of so-called non-wires alternatives54; however, on balance, successful DR 
implementations for the distribution system have been rare to date. Some projects have been successful in 
deploying DR.141 Others, like the Brooklyn Queens Demand Management Program by Con Edison, have 
struggled: Although its DR auction procured significant load reductions, awardees have not been able to 
meet their obligations.142 Utilizing geographically targeted DR for distribution system services faces a 
number of challenges,143 and DR has been a minor contributor compared with other options such as energy 
efficiency, distributed generation, and conservation voltage reduction.144

3.2 Enablement Costs
Although managed charging can technically provide a wide range of grid services, there are potentially 
significant enablement costs. The costs of enabling managed charging are mostly associated with the 
incremental sensing, communication, and control costs. At the charger and vehicle levels, the incremental 
costs may depend upon factors such as the availability of interval metering, whether or not separate EV 
metering is required,85 and whether or not there is a need for networked two-way communications145 (e.g., 
to enable direct load control). Studies have reported incremental costs of $679 and $1,563–$1,945 for a 
networked residential and commercial Level 2 charger, respectively.65,104,146 For distribution system 
services, there are further costs depending on whether specific locations within the distribution system have 
the necessary equipment for monitoring and responding to network conditions.143 Aside from the 
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infrastructure costs, there may be additional costs such as customer acquisition, data charges, and network 
management and other backend services.147 One study reports network support and communications costs 
of $250/yr.104

Current estimates of costs may not be reflective of future costs, and many costs depend on allocation across 
multiple applications. For instance, widespread deployment of advanced metering infrastructure capable of 
distribution system state estimation and situational awareness or automated distribution system 
management could dramatically reduce the costs for managed EV charging to provide distribution system 
services.148 Network access could also be widespread through EVs, avoiding upgrades to the charger and 
thereby embedding network access costs within the broader digital services provided to EV users.145 Given 
the high costs of real-time telemetry, many load management strategies have sought to eliminate their need 
through statistical aggregation.140,149 However, such approaches would tend to be applicable only to certain 
bulk power system services and may not be appropriate for distribution system services.143 Managed 
charging costs scale differently among components. For instance, program administration and backend and 
network service costs decline on a per-user basis. However, other costs like real-time telemetry are fixed 
on a per-unit basis, supporting individually large managed charging enrollees.150 How managed charging 
cost components scale may inform which implementation strategies are most important for different EV 
market segments. 
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4 Value of managed charging in analysis/modeling studies
As discussed in Section 2, EV managed charging can synergistically improve the efficiency and economics 
of electric power systems and electromobility. This section presents an overview of the electric vehicle load 
representation in analysis studies and a critical review of the modeling methodologies proposed in the 
literature for assessing the various managed charging (MC) value streams. The value of MC reported in the 
reviewed literature usually focuses on a future state and is based on specific modeling choices, assumptions, 
and test system configurations; therefore, we also discuss the key factors driving the differences in the value 
estimation of MC across studies. A summary of the number of studies categorized by their geographic 
scope, modeling perspective, model type, and methodology is presented in Fig. 2.

Fig. 2 Summary of the reviewed modeling/analysis studies by their geographic scope, modeling perspective, model type and 
methodology. Capacity Expansion Models and Production Cost Models are typically used for optimizing bulk power system 
planning and operation, respectively. Reliability Assessment Models predominantly utilize Monte Carlo Simulation, both at the 
TSO and DSO levels. Heuristic Load Shaping models usually follow some pre-defined set of rules for modifying EV charging load 
shapes. On the other hand, Charging Cost Minimization problems optimize the EV charging behavior based on external price 
signals. There can be other optimization objectives for managing EV charging (e.g., distribution losses minimization, peak load 
minimization, etc.), which are categorized under Other Optimization Problems. Other Methodologies include other, not very 
commonly used, methodologies (e.g., Droop-based Control,  asset loss-of-life probability assessment, etc,).
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At the national and regional levels (bulk power system), studies are typically performed from the 
perspective of the transmission system operator (TSO) and implement standard model types. For instance, 
analyses focusing on bulk system planning, operation, and reliability predominantly use capacity expansion 
models (CEMs), production cost models (PCMs), and Monte Carlo simulations, respectively. On the other 
hand, studies at the local level have focused on multiple perspectives including that of the distribution 
system operator (DSO), aggregator, transport system, parking lot/charging station, and/or individual EV 
users. To capture several topics of interest and objectives, studies exploring the value of managed charging 
at local scales leverage a wide variety of model types/formulations, with charging cost minimization  
typically based on optimal power flow formulations, heuristic load-shaping models, and other optimization 
problems being the most common.  It is also evident that models even looking at local scales are primarily 
formulated in a centralized framework assuming that a central entity such as the DSO, aggregator or parking 
lot owner can directly manage/control the charging pattern of the entire EV fleet. The computational 
complexities associated with decentralized methodologies limits them typically to smaller-scale local 
studies primarily focusing on individual EV owners. Additionally, Fig. 2 reveals that a majority of model 
types are formulated as deterministic problems, with the exception of reliability assessment. A more 
detailed summary of the reviewed studies, including other details such as study goals, EV 
population/penetration assumptions, and implementation schemes, is presented in Table 4 in the Appendix.

4.1 Electric vehicle charging loads
To determine the value of managed charging, studies must first develop profiles for electric vehicle 
charging and their flexibility based on EV adoption, traveling demand, charging opportunities, and MC 
implementation. All these elements are uncertain given nascent EV markets, and different studies have 
made widely differing assumptions.

The simplest approach for modeling EV loads is based on annual travel statistics, such as vehicle miles 
traveled (VMT) and typical usage times, which have often been used to determined average daily charging 
loads.151–153 Such annual methodologies based on vehicle miles traveled might be appropriate for aggregate 
impact studies (e.g., greenhouse gas emissions benefits), but they lack the temporal granularity required for 
most power sector analyses. Several MC analyses use more granular data from travel surveys to model EV 
loads.154–158 Historical trip data and/or GPS measurements have also been used to model EV use and 
charging needs and opportunities,159–161 providing spatiotemporally resolved information about vehicle use, 
including arrival and departure times and locations. The travel pattern statistics or empirical distributions 
obtained from travel surveys, GPS measurements, or historical data can be used to generate deterministic 
or stochastic vehicle use and charging profiles. Travel data can also be combined with demographical data 
to derive more insights on charging.162 In the absence of survey or other information, some studies have 
also used exogenous assumptions about travel demand probability distributions for determining EV load 
profiles.163–165 Finally, agent-based models have also been used to project EV loads,166,167 but their 
application requires complex calibration and these models are usually intractable for regions bigger than a 
city or metropolitan area.

Besides using varied methodologies to project EV charging loads, different studies focus on different levels 
of aggregation. Typically, studies focusing on bulk power system require aggregate loads for reducing 
computational burden, and therefore consider aggregate charging profiles for the whole EV population or 
large clusters of vehicles rather than tracking the behaviors of individual vehicles, thereby missing 
heterogenous behaviors. The aggregate EV charging constraints are often based on a range of charging 
scenarios and usually assume that EV charging flexibility resembles a grid-connected battery with effective 
parameters, such as power and energy limits.156,160,166,168 On the other hand, studies focusing on localized 
phenomena, such as impacts on distribution networks or single facilities, usually track charging profiles of 
individual vehicles such that travel patterns are enforced explicitly.158,159,169,170
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Finally, widely differing assumptions are made on charging behavior, managed charging strategies and 
flexibility constraints, and consumer participation in DR programs. Studies often rely on collective rule-
based approaches (e.g., nighttime charging only,171,172 full vehicle availability and participation173–175), 
exogenous time-varying electricity tariffs,166,176 or scheduled EV charging based on optimization models 
considering EV charging constraints at different levels of resolution.166,170,177 

4.2 Bulk power system operation
EV managed charging can provide various operational benefits for bulk power systems (BPSs), including 
reducing system operation costs, greenhouse gas emissions, and peak loads, and curtailing variable 
renewable generation. These potential benefits of MC in improving BPS operation are usually analyzed 
using PCMs, such as unit commitment (UC) or economic dispatch, which typically model a single future 
year and focus on macro regions with fixed generation portfolios. These models co-optimize the scheduling 
of electricity generators and EV charging, typically at an hourly resolution, by minimizing system operation 
costs subject to operational constraints (e.g., power balance, reserve requirements, transmission network 
constraints), generation units’ constraints (e.g., minimum and maximum generation, ramping capabilities, 
minimum up and down times), and aggregate EV demand constraints.178–180 Although there is not a standard 
set of aggregate EV constraints, PCMs generally include such constraints as daily energy demand 
constraints, charging/discharging power limits, and battery state-of-charge limits.178,181,182 

BPS operation studies often use commercially available tools. For example, Zhang et al.173 use the PLEXOS 
model183 to assess the value of MC in California’s 2030 power system under high renewable scenarios with 
varying degrees of grid flexibility. Szinai et al.166 also use PLEXOS for the 2030 California system; 
however, in contrast to Zhang et al., which considers a simplified representation of EV load (using the same 
daily aggregate EV demand profile for the whole year and assuming that charging can be temporally shifted 
without any constraints), Szinai et al. use a transportation agent-based model that explicitly considers 
constraints on mobility and charging infrastructure. PLEXOS has also been used to study the value of MC 
for the 2025 Irish power system,152 2030 Barbados power system,184 and a hypothetical system with large-
scale variable renewable energy (VRE) generation.168 While PLEXOS allows customization of the UC 
objective function and constraints, the UC model in these PLEXOS-based studies typically minimizes total 
system operation costs subject to typical PCM and aggregate EV constraints, as discussed. Among the 
PLEXOS-based studies, both Taibi, del Valle, and Howells184 and the International Renewable Energy 
Agency168 consider V2G in addition to V1G, but only the former considers the associated battery 
degradation costs. These studies report a noticeable reduction in system operation costs due to V2G (as 
compared to V1G), as well as reduced participation of EVs in load shifting when battery degradation costs 
are considered.

Other PCMs besides PLEXOS have also been used. For instance, the value of V2G services (considering 
battery degradation costs) in the ERCOT system is studied using a deterministic UC tool in several 
studies.155,185,186 Whereas Sioshansi and Denholm’s 2009 article185 focuses on emissions reduction benefits, 
their 2010 article186 examines the system cost savings and V2G value for plug-in hybrid electric vehicle 
(PHEV) owners, and Sioshansi’s 2012 article155 compares the performance of optimal charging profiles 
estimated by the UC model with those obtained based on time-varying tariffs. The value of V1G with large-
scale VRE integration in the German and Beijing systems is studied using bespoke deterministic UC models 
in Schill and Gerbaulet187 and Chen et al.,188 respectively. Vaya and Andersson189 compare a centralized 
optimal power flow model (without discrete UC variables) against a decentralized TOU-based EV charging 
methodology in which optimal nodal TOU tariffs are determined accounting for the feedback impact of 
TOU tariffs on nodal charging profiles. The authors report that although centralized charging control leads 
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to the least-cost solution, the results of the decentralized nodal TOU-based scheme were comparable, both 
in terms of costs and shape of the system load.

In contrast to the aforementioned deterministic PCMs, Liu et al.157 present a stochastic UC model to assess 
the value of MC in the Illinois BPS under wind uncertainty, whereas Saber and Venayagamoorthy190 
consider both EV load and generation (wind and solar) uncertainty in a stochastic UC model. Similarly, a 
stochastic UC tool is used in Khodayar, Wu, and Shahidehpour191 to assess the value of V2G in mitigating 
the impacts of wind power uncertainty. These studies report that stochastic models are computationally 
more expensive than their deterministic counterparts, and they report a slight increase in the value of MC 
(in terms of reducing system operation costs) under uncertainty. 

In addition to PCMs, other methodologies have also been used to capture specific BPS operation benefits. 
For instance, Denholm and Short151 and Fitzgerald, Nelder, and Newcomb90 evaluate the peak load and 
power plant cycling reduction potential of MC by dispatching EV load to lowest-demand periods (referred 
to as valley-filling). However, such rule-based MC approaches cannot properly capture spatial, 
infrastructural, and demand-satisfaction constraints of EV loads and other system-level operational 
constraints. In contrast, Coignard et al.154 use centralized quadratic optimization for minimizing either peak 
load or net load ramping, subject to constraints on EV SOC limits and charge point availability, for 
assessing the benefits of V1G and V2G in reducing ramping and VRE curtailment in the 2025 California 
BPS. Similarly, centralized quadratic optimization for flattening the demand at BPS and DS levels in Great 
Britain is presented in Crozier, Morstyn, and McCulloch.192 Instead of the commonly used centralized 
methodologies, a decentralized Lagrangian decomposition-based approach is proposed in Ma, Callaway, 
and Hiskens169 to control a large population of PHEVs in the Midwest ISO region. The authors show that 
the proposed decentralized control methodology can provide similar outcomes as centralized control, and 
therefore could be particularly useful in applications where fully centralized control is not possible, Finally, 
the operational benefits of MC have also been reported in studies using BPS planning models,177,160 which 
aim to capture the impacts of MC on both system operational and investment costs, as discussed in Section 
4.5. 

Fig. 3 Benefits of EV managed charging (compared to unmanaged charging) in improving bulk power system operation in terms 
of (A) system operation cost, (B) CO2 emissions, (C) system peak load, and (D) curtailment of VRE. Each colored dot represents a 
data point from 14 studies. Multiple values from the same reference are enclosed within the same shape (defined in the legends) 
for more direct comparison. The impacts vary significantly across studies, based on EV penetration assumptions, vehicle type (BEV 
or PHEV), charging direction (V1G or V2G), system characteristics, and charging strategies.
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Fig. 3 summarizes the BPS operational value of MC estimated in the studies reviewed. It is important to 
note here that the benefits of MC in improving bulk power system operation apply for a given generation 
portfolio. Therefore, they do not consider how the power system generation portfolio could optimally 
evolve with increasing EV adoption. Such analyses can be performed using BPS planning models, such as 
CEMs, which are discussed in detail in Section 4.5. The BPS operation benefits of MC vary significantly 
across studies: cost savings between $15–$360/EV/year, CO2 emissions of −0.1 to 2.5 tons CO2/EV/year, 
peak load reductions of 0.2–3.3 kW/EV, and VRE curtailment reduction of 23–2,400 kWh/EV/year. Studies 
consistently find that system cost reduction per EV decreases with increasing EV penetration.166,186 The 
only exception to this declining trend is the sudden increase in cost savings potential at around 20% EV 
penetration in Szinai et al.,166 because unmanaged charging in this case causes loss of load (resulting in very 
high costs), which can be avoided by MC. The declining marginal value of MC with increasing EV 
penetration is also observed in the CO2

186 and VRE curtailment reduction potentials.166 These trends indicate 
the presence of shallow value streams that could become saturated at certain EV penetration levels. 

Fig. 3 also shows that V2G can further reduce operation costs, CO2 emissions, and peak load (compared to 
V1G) by displacing inefficient peaking generators.154,177,184 The benefits of V2G, however, are not clear in 
terms of reducing VRE curtailment.184 Different BPS characteristics also affect the value of MC. For 
instance, the operation cost savings due to MC would likely be significantly lower in systems that have 
other flexibility competitors (e.g., pumped storage, stationary batteries, other sources of DR).173 
Additionally, VRE curtailment reduction can also vary considerably, with curtailment reduction due to MC 
noticeably larger in systems with high VRE penetrations and limited flexibility.173 CO2 emission reduction 
benefits of MC would be highly sensitive to the generation mix. Although large-scale VRE integration and 
limited grid flexibility can result in significant emission reduction benefits,173,177 MC might have marginally 
positive to even adverse impacts on emissions (e.g., −0.1 tons CO2/EV/year) if off-peak generation units 
have greater emission rates than on-peak units and if the charging algorithm doesn’t account for the 
impacts/costs of emissions.105,187,193 

It is also interesting to note the underlying relationships between the value streams shown in Fig. 3. For 
instance, reductions in CO2 emissions due to managed charging are typically accompanied by operation 
cost savings as well, as demonstrated in Zhang et al.173 and Sioshansi and Denholm.186 This is primarily 
because CO2 emissions have associated costs (e.g., fuel costs of CO2-emitting plants, carbon taxes), and 
therefore reducing emissions inherently reduces operation costs. Similarly, reductions in peak loads reduce 
peak capacity needs, and therefore also operation costs (e.g., as shown in Zhang et al.173), because of the 
reduced need for running expensive peaking generators. Moreover, reduced VRE curtailment due to 
managed charging also tends to correlate with operation cost savings,166,173,184 as VRE generation resources 
such as wind and solar have almost zero marginal costs. Finally, results in Zhang et al.173 indicate that 
reduction in CO2 emissions would also be aligned with reduced VRE curtailment, as higher VRE utilization 
inherently reduces the CO2 content of the generation mix.

Different charging strategies can also lead to different MC value propositions. For instance, Sioshansi155 
reports that randomized EV charging start times outperformed TOU-based and real-time pricing (RTP)-
based MC in reducing operation costs and emissions. The authors demonstrate that RTPs (determined using 
marginal prices from UC) performed the worst among different time-varying prices because RTPs cannot 
capture power plant operational non-convexities (e.g., binary on/off decisions, minimum up/down time 
constraints), causing significantly more startups (and associated costs). Similarly, Szinai et al.166 show that 
if TOU tariffs are not aligned with periods of VRE generation availability, MC based on TOU tariffs can 
shift EV loads to periods of low VRE generation, thereby resulting in greater VRE curtailment than 
unmanaged charging.
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MC can also improve other aspects of BPS operation, such as increasing the load factors of base-load and 
mid-merit generators and reducing their daily cycling.186 Additionally, MC can reduce net load ramping, 
which might be particularly beneficial in systems with high VRE penetration.154 Finally, MC can reduce 
other harmful emissions such as NOx and SO2, but the magnitude of these reductions would also be system-
dependent.185

4.3 Distribution system operation
At the DS level, MC can alleviate the negative impacts of unmanaged charging, such as reducing the 
overloading of DS components/assets, improving voltage quality, and reducing energy losses. These 
benefits not only facilitate safe and reliable operation of the DS but can also increase the feasible EV 
penetration (also called the maximum hosting capacity) without violating network operational 
constraints.194 However, the vast variability of DS design and conditions, lack of detailed models of actual 
DSs, and the uncertainty associated with electricity loads and their flexibility make it particularly 
challenging to simulate the real-world value of MC and generalize results from single simulations. 
Furthermore, the significant differences in modeling detail and methodologies also make comparison of 
the value of MC across different studies rather difficult. The following discussion describes the various 
methodologies reported in the literature, highlighting their relative strengths and limitations.

The operational value of MC in DSs has been assessed for various charging strategies using power flow 
analysis/simulations, which determine the DS’s operating state (e.g., voltages, line flows, energy losses) 
for given loads (including EV charging profiles) and generation conditions.171,172,175,195–197 Leemput et al.172 
use a valley-filling approach for determining EV-managed charging profiles, whereas Voumvoulakis et 
al.196 compare valley-filling with “peak-curtailment” charging, whereby EVs can charge only when the total 
DS load is below a predefined value. It is shown that while peak curtailment charging results in higher 
energy losses compared to the valley-filling approach, it leads to lower peak DS loads, and therefore higher 
feasible EV penetrations.196 Kamruzzaman, Bhusal, and Benidris175 assume a “fully controlled” MC profile, 
such that EV charging can be completely shifted as long as the maximum capacities at selected nodes are 
not violated. Compared to these demand-based approaches, EV managed charging profiles in Hu, Li, and 
Bu171 are modeled based on cost minimization under TOU tariffs, and the authors also explore a V2G 
strategy, whereby EVs are allowed to discharge to the grid during the evening peak. Mehta et al.197 compare 
charging cost minimization and demand peak-to-average ratio (PAR) minimization strategies while 
considering battery degradation costs due to V2G services. They demonstrate that MC profiles based on 
PAR minimization result in significantly lower DS peak loads and higher feasible EV penetrations as 
compared to the charging cost minimization approach. 

Although power flow-based studies are helpful in comparing charging profiles, they can lead to suboptimal 
results because the MC profiles are not co-optimized with DS operation. This suboptimality can be reduced 
by including some critical DS constraints when determining “optimal” EV charging profiles under MC. For 
instance, maximum power limits specified by the DSO are included in the cost minimization problems of 
EV aggregators in Hu et al.161 and Wang et al.164 Compared to Hu et al.,161 where only active power limits 
are considered, Wang et al.164 also include reactive power limits. Alternatively, Sundstrom and Binding159 
propose an iterative coordination methodology that considers the interactions of a charging service provider 
(CSP) with the DSO and a retailer. The retailer issues a reference power profile to the charging service 
provider, who tries to minimize the deviation from this profile. The output is sent to the DSO to check 
operational feasibility. If infeasible, constraints are generated and sent to the charging service provider for 
re-optimization until the charging profile is feasible for the DS.
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EV charging can be further optimized for DS operation through endogenous representation of power flow 
constraints (in addition to EV demand constraints) in MC optimization problems, which comes at the cost 
of additional computational burden. Such optimization problems with power flow constraints are referred 
to as optimal power flow (OPF) problems. Steen et al.162 compare loss-optimal (minimizing DS energy 
losses) and cost-optimal OPFs for MC in residential and commercial DSs. Similarly, De Hoog et al.170 
compare OPFs for maximization of stored energy in EVs and minimization of charging costs. However, in 
contrast to Steen et al.,162 which models nonlinear AC power flow constraints, De Hoog et al.170 implement 
linearized approximations for improving computational tractability. A hierarchical corrective disconnection 
control methodology is proposed in Quirós-Tortós et al.,198 which is shown to provide similar results as 
AC-OPF while using significantly limited information. An OPF for maximizing EV penetration is presented 
in Lopes et al.,199 whereas a multi-objective OPF minimizing EV charging costs, PAR, and voltage 
deviation is proposed in Mazumder and Debbarma.200 Liu et al.201 present a distribution locational marginal 
pricing scheme (based on a linear DC-OPF) for reducing DS congestion.2 The distribution locational 
marginal prices are included in EV aggregators’ cost minimization problem, rendering EV charging more 
expensive during periods of high DS loading. The strategic interactions between a parking lot owner and 
DSO are modeled using bilevel optimization in Sadati et al.,163 where the DSO maximizes its profits subject 
to network constraints in the upper level, while the parking lot owner maximizes its profits (considering 
battery degradation costs) in the lower level. The results demonstrate that the DSO makes greater profits 
and incurs lower energy losses in the bilevel model as compared to centralized optimization. In contrast to 
the aforementioned studies where only the power system aspects are considered, the methodology in Geng 
et al.202 coordinates the operation of transportation and power distribution systems for reducing peak load 
and traffic congestion while incorporating EV demand elasticity. 

Decentralized methodologies have also been used for providing DS services through MC.158,203–206 For 
instance, Le Floch, Belletti, and Moura159 and Le Floch et al.206 use a dual-splitting technique for distributed 
coordination of EVs to minimize load variance while considering battery degradation costs. Similarly, a 
decentralized algorithm for reducing PAR is proposed in Rassaei, Soh, and Chua,204 in which aggregated 
demand profiles are broadcasted to EV owners who sequentially solve their individual optimization 
problems. In contrast to optimization-based decentralized schemes, the methodology in Knezović and 
Marinelli205 involves droop-based EV reactive power control as a function of active power consumption 
and phase-to-neutral voltage. Similarly, Martinenas, Knezović, and Marinelli206 propose and experimentally 
validate a droop-based methodology for controlling EV charging current as a function of phase-to-neutral 
voltage. 

 Fig. 4 summarizes the DS operational value of MC reported in several studies. Since different DSs can 
handle different numbers of EVs, it is hard to normalize results and these data are difficult to compare. As 
shown in Fig. 4A, MC can noticeably reduce DS peak loads and congestion, with total peak load reduction 
potential increasing with increasing number of EVs in the DS.199 However, the marginal peak load reduction 
(for each additional EV) might decrease with increasing EV penetration in cases where rising diversification 
effects of a larger number of EVs lead to reduction in simultaneity. Additionally, V2G can achieve higher 
reductions in peak load as compared to V1G,204 but the magnitude of these benefits can be substantially 
different. For instance, Wang et al.164 report that V2G can reduce peak loads by 67%, but only 10% peak 
load reduction is observed in Sadati et al.163 These variations can be attributed to different DS characteristics 

2 Locational marginal prices represent the incremental cost of additional energy at a specific location. This concept 
is used in all wholesale markets in the United States but has not been applied at the distribution system level, which 
requires much finer resolution. 
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and different charging schemes. While Wang et al.164 optimize EV charging subject to DS active and 
reactive power limits, Sadati et al.163 consider time-varying prices, which can increase charging 
simultaneity, thereby reducing the peak reduction potential. Indeed, charging EVs based on wholesale 
market prices (without considering DS constraints) can even result in higher congestion and peak loads 
than unmanaged charging.163,207

Fig. 4 Benefits of EV managed charging (compared to unmanaged charging) in improving distribution system operation in terms 
of (A) peak load and congestion, (B) minimum voltage, and (C) energy losses. Each colored dot represents a data point from 13 
studies. Blue circles represent V1G and orange triangles V2G. Multiple values from the same reference are enclosed within the 
same shape (defined in the legends) for more direct comparison. The impacts vary significantly across studies, based on  different 
EV penetration levels, charging direction (V1G or V2G), DS characteristics, and charging strategies.

MC can also reduce voltage drops caused by uncontrolled EV charging, as shown in Fig. 4B. However, the 
magnitude of voltage quality improvement can also vary considerably. MC can avoid potentially larger 
magnitudes of voltage drops at higher EV penetrations.164,199 DS characteristics also play a major role, and 
the voltage support value of MC is higher in DSs with longer electrical distances between the substation 
and the loads.192,196 Voltage improvements also depend on the charging strategies considered. For instance, 
optimal EV charging under voltage constraints is more likely to reduce voltage drops compared to charging 
based only on cost minimization.162 Finally, provision of reactive power from EVs also leads to greater 
improvements in DS voltage.164,200,205 

Fig. 4C shows that the total reduction in energy losses due to MC usually increases as more EVs are 
connected to a DS.196,199 Interestingly in Hu, Li, and Bu,171 V1G leads to a greater reduction in network 
losses compared to V2G. This is primarily because the V2G case in this study does not shift the EV load, 
but only allows discharging energy to the grid during peak load hours. Indeed, other studies have also shown 
that the impacts of charging strategies on DS losses can be fairly substantial. For instance, charging cost 
minimization under wholesale prices can, in some cases, even lead to higher losses than unmanaged 
charging.162,207 Finally, the highest loss reductions due to MC are typically observed in networks with 
significantly overloaded assets and/or voltage unbalance issues.196,205,208 

The value of MC for DS operation is also revealed by the increase in maximum feasible EV penetration 
(also called EV “hosting capacity”) without violating DS constraints or implementing network upgrades, 
as shown in Fig. 5. Feasible EV penetration in a specific DS significantly depends on the system 
characteristics and the EV loads. For example, the three studies grouped at the top of Fig. 5  suggest that in 
DSs with higher levels of redundant capacity,162 lower load density,172 and underutilized transformers,198 
full (100%) EV adoption can be accommodated without DS upgrades with MC. In other cases, much lower 
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EV adoption can be supported by DS without upgrades if EV charging is unmanaged. While the literature 
reports that MC can noticeably increase the maximum feasible EV penetration for such DSs, additional 
network upgrades/reinforcements are projected in these cases to accommodate full EV adoption (or EV 
charging for applications not considered in these studies, such as commercial vehicles). In addition to the 
DS characteristics, EV load modeling/assumptions also play a major role in these results. For instance, the 
value of MC is higher in scenarios with higher-rated (faster) charging (as unmanaged fast charging can 
overload DS components even at low EV penetrations)172,197 and when consideringV2G capability.200 
Finally, charging strategies and MC objectives also play a critical role in determining the EV hosting 
capacity in a specific system. EV charging based on peak curtailment resulted in higher feasible EV 
penetration, without requiring network upgrades, compared to valley-filling charging in Voumvoulakis et 
al.196 Additionally, charging based on cost minimization under wholesale prices was not only significantly 
outperformed by PAR minimization in Mehta et al.,197 but it even led to lower feasible EV penetration than 
uncontrolled charging in Steen et al.162

Fig. 5 Results from eight studies highlighting the potential of EV managed charging to increase the maximum feasible penetration 
of EVs in distribution systems without implementing additional network upgrades or violating operational constraints. The increase 
in the maximum feasible EV penetration due to MC would depend on the redundant capacity in the DS, load density, charging 
direction (V2G vs. V1G), charging speeds (faster unmanaged charging can overload DSs even at low penetrations), and charging 
strategies.

The results presented in this section highlight that DS characteristics and MC strategies would play a critical 
role in shaping the value of MC for DSs. It is also evident that MC profiles determined based on wholesale 
market signals could be detrimental for DS operation, which points to the need for developing holistic 
strategies that consider the value proposition and trade-offs across the whole power system. Finally, 
considering the limited benefits of MC in some DSs, it would be critical to assess the benefits of MC on a 
given system in comparison to the costs of MC implementation.

4.4 Power system reliability
The reliability of a power system is defined as its ability to provide an adequate supply of electricity to 
customers with a reasonable assurance of continuity and quality.209,210 To be reliable, the power system 
must have adequate power generation and balancing resources to keep pace with changing consumer 
demands, retiring plants, and addition of new resources and technologies.211
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At the BPS level, system contingencies (e.g., plant outages) can lead to loss of load, and in extreme cases 
set off cascading failures causing large-scale blackouts.212 Reliability of a BPS can therefore be measured 
by the adequacy of its generation capacity to meet total system load. The most commonly used BPS 
generation adequacy indices are Loss of Load Probability (LOLP), Loss of Load Expectation (LOLE), and 
Expected Energy Not Served (EENS) (also called Loss of Energy Expectation [LOEE]), which reflect the 
probability, expected frequency, and magnitude of lost load over a certain time period, respectively.213

Unmanaged charging of large EV loads has been projected to increase both frequency and magnitude of 
lost load.174,176,214–217 However, these studies also report that by shifting the EV load and injecting energy 
into the grid during capacity shortfalls, MC can improve BPS reliability relative to unmanaged charging. 
Evaluation of reliability benefits of MC is usually done using Monte Carlo simulation, which involve 
simulating a large number of realizations of uncertain system attributes, such as generator outages, 
variations in load and VRE output, and EV charging parameters. Considering the inter-temporal 
dependence of EV battery SOC levels, EV-based reliability studies typically use sequential Monte Carlo 
simulation (c) as it allows capturing these chronological aspects. Bremermann et al.214 compare the value 
of valley-filling and centrally optimized smart charging through SMCS, considering generator outages 
(using Markov models) and system load and wind uncertainty (based on normally distributed error 
forecasts). The results demonstrate that the centralized smart charging strategy can significantly improve 
BPS reliability compared to valley-filling.214 Similarly, Božič and Pantoš218 demonstrate the benefits of MC 
based on system reliability maximization (compared to charging cost minimization). Colonetti et al.215 
compare the reliability impacts of rule-based MC strategies (including valley-filling, charging 
postponement, and V2G during scarcity events), whereas Liu et al.216 compare the reliability benefits of 
V2G against V1G. In addition to the typical reliability indices, Liu et al.216 also propose new load-oriented 
indices that measure the expected frequency and magnitude of energy compensation by EVs for providing 
reliability services. The impacts of using different probability distributions (for modeling the EV load) on 
generation adequacy are analyzed in Bremermann et al.174 The authors demonstrate that utilization of non-
homogenous Poisson distribution can better represent end-user mobility and the EV opportunity to provide 
spinning reserves compared to the standard Poisson distribution.174 The effectiveness of changing PHEV 
charging start times on improving system reliability are studied in Wang and Karki,219 whereas a framework 
for comparing EV charging responses under TOU tariffs and dynamic scarcity pricing is proposed in 
Almutairi and Salama.176 Compared to the static transmission network topology assumed in the 
aforementioned studies, Li et al.220 allow optimal network reconfiguration, in addition to MC, for improving 
BPS reliability. Finally, in contrast to other BPS reliability studies, Hou et al.221 capture the impacts of the 
interaction between the transportation and power systems and propose new indices for capturing the extra 
time spent by EV drivers in finding charging stations or calling for help during insufficient EV charging 
situations. 

BPS reliability benefits of MC can also be evaluated using analytical approaches. Compared to running a 
multitude of simulations, analytical techniques use direct mathematical formulations for evaluating the 
reliability indices.222 da Rosa et al.217 present a convolution-based analytical approach for estimating the 
reliability value of centrally controlled smart charging, whereas Hajebrahimi and Kamwa223 propose a 
Combined Outage Probability Table-based approach for assessing the impacts of advanced metering 
infrastructure failure. Although these analytical approaches might not capture complex interactions of 
stochastic variables, they significantly reduce the computational burden associated with SMCS.
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Fig. 6 Impacts of unmanaged and managed EV charging (with V1G and V2G capability) on bulk power system reliability indices 
(LOLE and EENS) from 9 studies (direct comparison of absolute results across studies is complex, but trends are consistent and 
informative). Unmanaged EV charging invariably worsens BPS reliability, while MC can bring the reliability indices down to 
values close to the case without EVs. The improvement in reliability indices due to MC depends on BPS characteristics, EV adoption 
assumptions, charging direction (V1G vs. V2G) and charging strategies.

Fig. 6 summarizes the value of MC in improving BPS reliability. Although unmanaged charging is usually 
projected to cause more frequent (higher LOLE) and severe (higher EENS) loss of load events (mostly as 
a result of EV loads being added to a system without considering any network upgrades; similar results 
could be expected when analyzing the addition of other electricity loads in isolation), MC (both V1G and 
V2G) can bring the indices down to values close to the case without EVs, allowing for a similar reliability 
of the baseline system but serving a larger demand. The extent of reliability improvement depends not only 
on power system characteristics (e.g., generation mix, VRE penetration,221 network topology,220 and 
weather conditions214), but also on EV load modeling/assumptions. Wang and Karki219 show that increasing 
EV penetration increases the reliability benefits of MC; however, a saturation effect was observed in Hou 
et al.,221 where the reliability improvement kept increasing until 20% EV penetration, beyond which the 
marginal improvements started to decline. V2G capability also increases the reliability benefits of MC.215,216 
Finally, different MC schemes lead to different reliability outcomes. Optimally controlled EV charging 
outperformed valley-filling charging in Bremermann et al.,214 whereas dynamic DR signals significantly 
improved BPS reliability compared to TOU tariffs in Almutairi and Salama.176 Conversely, strategies based 
on minimizing EV owners’ charging cost under static tariffs and worst-case scenarios like synchronizing 
EV charging start times to peak periods could lead to reduced system reliability compared to uncontrolled 
charging.218,219

Reliable operation of DSs is also very important, as component failures in DSs are the most frequent cause 
of customer interruptions.211,224 Compared to systemwide indices used for BPS reliability, DS reliability 
indices are usually customer-oriented. The most commonly used DS reliability indices are System Average 
Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI), and 
Customer Average Interruption Duration Index (CAIDI).225 Whereas SAIFI reflects the frequency of 
customer interruptions, SAIDI and CAIDI capture the interruption durations normalized by total number 
of DS customers and number of interrupted customers, respectively. In combination with these indices, 
magnitude-based indices such as EENS are also used for assessing DS reliability. 

Whereas unmanaged charging of EVs can reduce DS reliability compared to the no-EV case,226,227 studies 
have shown that MC can improve the reliability indices (compared to unmanaged charging), particularly 
by injecting electricity to the grid (V2G) and/or into customers’ homes (V2H). Therefore, bidirectional 
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charging/discharging is a topic of significant interest in DS reliability studies. SMCS is the preferred 
approach (implemented in all studies discussed below) for assessing the DS reliability value of MC. The 
impacts of EV penetration with fast and slow charging and V2G capability on the reliability of urban and 
rural DSs are analyzed in Galiveeti, Goswami, and Choudhury.228 In addition to DS reliability indices, the 
authors also propose indices for capturing the impacts of DS outages on EVs’ expected energy not 
charged.228 Similarly, indices for average frequency, duration, and magnitude of EV charging interruption 
are proposed in Guanglin et al.227 Compared to Galiveeti, Goswami, and Choudhury,228 where the 
methodology decides whether all EVs need to provide V2G during network failure (considering the energy 
needed for load restoration), the methodology in Guanglin et al.227 allows all EVs to provide V2G as soon 
as an islanding situation is detected. The methodologies in Xu and Chung232 and Al-Muhaini233 consider 
the value of EVs directly injecting energy into customers’ homes (V2H), in addition to V2G services. The 
DS reliability value of EV parking lots providing V2G services during typical office hours is explored in 
Guner and Ozdemir234 and Zeng, Gao, and Zhu.235 Unlike the aforementioned studies, the methodology in 
Tan and Wang233 uses a condition-dependent outage model that explicitly considers the impact of EV 
charging strategies on DS component failure rates. Finally, the model in Zhang et al.234 incorporates the 
impacts of traffic congestion on DS reliability by integrating a quasi-dynamic traffic flow model with a 
reliability assessment tool. 

Fig. 7 shows the value of MC in improving DS reliability. By allowing EVs to provide grid support during 
network outages, MC with bidirectional capability (V2G and V2H) can reduce EENS not only compared 
to unmanaged charging, but also relative to the case without EVs. Similarly, MC with bidirectional 
capability can also reduce interruption duration (lower SAIDI) through load restoration. Conversely, most 
of the studies (except Al-Muhaini233 and Tan and Wang236) report very limited to no improvement in the 
frequency of customer interruption (SAIFI) due to MC. This is because these studies (except Tan and 
Wang233) do not capture the dependence of network outages on EV charging, and unlike SAIDI (where 
partial load restoration would improve the metric), SAIFI can only be improved if MC can fully restore the 
network load. 

Fig. 7 Impacts of unmanaged and managed EV charging (with V1G and V2G capability)  on distribution system reliability indices 
((A) EENS, (B) SAIDI, and (C) SAIFI) from eight studies. Unmanaged EV charging worsens DS reliability, wheras MC—
particularly by injecting electricity to the grid (V2G) and/or into customers’ homes (V2X)—can result in greater DS reliability, 
even compared to the case without EVs. The improvement in reliability indices due to MC depends on DS characteristics, EV 
adoption assumptions, charging direction (V1G vs. V2G), charging speed, and charging strategies.
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The DS reliability value of MC also depends on EVs’ mode of operation during outages. Fig. 7 shows that 
V2H provides limited improvement in DS reliability indices, primarily because the reduction in energy not 
supplied is capped by the consumption of each household.230 Also, V2H would not be able to restore the 
loads of households without EVs and would not be useful if the household is not affected by the outage. On 
the other hand, V2G can significantly reduce the duration and magnitude of customer interruptions.229,230 
Additionally, the number of EVs allowed to discharge during network outages also noticeably affects the 
reliability benefits of MC.228 Finally, the total value of MC in improving DS reliability is reported to 
increase with increasing EV penetration.229,233 

The results presented in this section highlight, not surprisingly, that in simulation studies introducing EV 
load without any system upgrades, unmanaged charging typically worsens system reliability, at both the 
BPS and DS levels. However, managed EV charging, particularly through bidirectional charging, can 
significantly improve reliability indices for a given system. Still, the extent of the benefits would 
significantly depend on whether the EVs provide support only to selected homes/buildings or also to the 
grid, as well as whether the improved reliability comes at the expense of EV users’ mobility. In particular, 
the reliability value of MC, particularly of V2G/V2H, would reasonably diminish under scenarios with 
high, inflexible mobility requirements and prolonged system outages where users might be unwilling to 
forego the transportation utility of EVs. Consequently, further experimental validation needs to be 
performed to assess the realistic potential of bidirectional charging to increase system reliability considering 
mobility requirements, user preferences (especially during extreme events), and the complexity of 
equipment/controller installation. 

4.5 Bulk system planning
Simultaneous uncontrolled charging of large EV populations can increase system peak loads, which could 
necessitate expansion of generation capacity, all else equal.90,168 By reducing energy consumption during 
peak hours, MC can potentially reduce the need for additional generation capacity, thereby reducing BPS 
planning/investment costs and improving system efficiency. MC can also complement greater investments 
in VRE generation and could thus have significant implications for long-term planning and support 
decarbonization policies.

The systemwide planning benefits of MC are usually evaluated using centralized CEMs. These models 
typically minimize total system costs (including investment and operation costs) comparing the value of 
competing technologies subject to some policy constraints and/or reliability targets.235 Manríquez et al.236 
use a CEM that optimizes investments in both generation and transmission capacity to assess the value of 
MC under various EV penetration levels for the 2030 Chilean power system. Kiviluoma and Meibom237 
use a linear CEM (Balmorel) coupled with a stochastic UC tool (WILMAR) to evaluate the potential of 
V1G and V2G in reducing generation investment and operation costs for the Finnish system. A similar 
sequential approach is used in Taljegard et al.,160 where the BPS planning outputs from a CEM (ELIN) are 
used in a PCM (EPOD) to evaluate MC benefits in future Scandinavian-German power systems. BPS 
planning benefits of V1G and V2G for Central West Europe, Nordic and Baltic countries, and the United 
Kingdom are studied in Gunkel et al.156 using the Balmorel model with battery degradation costs and 
transmission investments. In contrast to other CEMs, the model in Ramírez, Papadaskalopoulos and 
Strbac238 co-optimizes generation investments and the percentage of flexible EVs by explicitly modeling 
EV flexibility enabling costs (including metering, control and communication, and battery degradation 
costs). Carrión, Domínguez, and Zárate-Miñano239 introduce a stochastic CEM for capturing the impacts of 
long- and short-term uncertainties on the value of MC. In comparison to the aforementioned models, a 
whole-system assessment methodology is used in Aunedi and Strbac177 that quantifies the planning and 
operational benefits of V1G and V2G not only on BPS generation and transmission, but also on DS 
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reinforcement costs, which are modeled using calibrated functions of net peak load in each DS. Instead of 
using a CEM, Donadee et al.240 maximize the utility’s avoided costs under exogenous prices of different 
value streams (e.g., energy and ancillary service prices, generation capacity prices, DS capacity values). 
Although the model does not capture the evolution of installed generation and transmission capacities, it 
provides a computationally tractable framework for estimating the business case of MC infrastructure 
investments. 

Fig. 8 Comparison of managed EV charging (V1G and V2G) in terms of reducing bulk system investment costs relative to 
unmanaged charging reported in seven studies. Managed charging is shown to consistently provide hundreds of dollars in 
investment cost savings per EV each year. V2G capability tend to enable greater investment cost reductions compared to V1G; 
however, the extent of these benefits depends on BPS characteristics, EV adoption assumptions and EV flexibility modeling, and 
enablement costs (usually not explicitly considered in these studies).

Fig. 8Error! Reference source not found. summarizes the marginal BPS investment cost reduction 
benefits of MC, which highlights the significantly greater potential of V2G (over V1G). Several other 
factors are also important in determining BPS planning benefits of MC. In addition to cases with 
bidirectional capability, the marginal benefits are higher under lower EV penetrations.236,238 Although the 
presence of other sources of flexibility (e.g., energy storage) can reduce the planning benefits of MC,177,237 
MC can also outcompete other flexible resources.156,239 Moreover, investment cost reduction due to MC 
noticeably increases if transmission expansion is also considered.156 Conversely, the cost reduction potential 
of MC reduces if battery degradation costs are considered240 and could completely disappear beyond certain 
values of flexibility enabling costs.238

In addition to investment cost reduction, MC can also increase installed VRE capacities.156,160,168,236 
However, the type of resource facilitated by MC depends on the indigenous resource quality. For instance, 
higher solar availability factors in the regions modeled by the International Renewable Energy Agency169 
and Manríquez et al.239 lead to greater installation of PV units (compared to wind generation) due to MC. 
Conversely, European studies156,160 show that MC benefits wind development and might even reduce PV 
capacities compared to unmanaged charging. This is primarily because in Northern Europe, solar PV mainly 
produces during peak price hours, and therefore the load shifting capability of EV reduces the revenues for 
solar PV, resulting in reduced investments in PV capacities.
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The results presented in this section highlight that by reducing system peak loads, MC can noticeably reduce 
the need for investments in new generation capacity, particularly in cases with V2G capability. However, 
the value benefits of MC could be limited in systems with other flexibility competitors and under 
assumptions of high battery degradation and enablement costs. 

4.6 Distribution system planning
DS planning involves determining the reinforcements/upgrades required to distribution systems to ensure 
reliable power supply to all customers. Considering that the challenges attributed to uncontrolled charging 
would likely manifest at the DS level first (due to “clustered” EV adoption), long before affecting BPSs,90,241 
MC would be of utmost importance for avoiding/deferring DS upgrades.

The typical approach for assessing DS planning benefits of MC is running power flow analysis/simulations, 
whereby asset/component loading and voltages are assessed under different EV charging profiles. 
Subsequently, reinforcement requirements are estimated for avoiding the potential overloading/voltage 
issues. The reduction in number of DSs requiring upgrades based on MC profiles determined using peak 
demand minimization and load flattening is evaluated in Coignard et al.195 and Crozier, Morstyn, and 
McCulloch,192 respectively. However, these studies do not evaluate investment cost savings due to MC. To 
this end, Verzijlbergh et al.208 use power flow analysis to determine the reduction in percentage of 
overloaded transformers and cables by shifting the EV load to night hours, and subsequently use marginal 
component costs for determining the total investment cost reduction. Similarly, the impacts of MC profiles 
under dynamic pricing on the reduction of DS reinforcement costs in German DSs are analyzed in 
Kühnbach et al.167 The authors then estimate the reduction in household electricity bills due to reduced 
reinforcement costs. Veldman and Verzijlbergh207 compare the impacts of different charging strategies 
(unmanaged, peak load minimization, and charging cost minimization) on component loading, replacement 
costs, and energy losses in 48 Dutch DSs with high EV penetration. In contrast to studies that only consider 
the impacts of transport electrification, Pudjianto et al.242 analyze the value of managing the power 
consumption of heat pumps, in addition to EVs, in residential DSs under different future electrification 
scenarios in the United Kingdom. 
Although power flow-based methodologies are useful, they do not optimize the MC profiles for reducing 
DS reinforcement costs, which might lead to suboptimal results. This limitation can be avoided by using 
integrated optimization problems, similar to CEMs, for minimizing DS investment and operation costs. For 
instance, the model presented in Fernandez et al.243 minimizes DS investment and operation costs, subject 
to constraints on EV energy requirements, voltage limits, and transformer/line capacities. Similarly, Lin et 
al.244 minimize annual investment, maintenance, depreciation, and operation cost considering V2G services 
provided by an EV charging station. 

In contrast to methodologies assessing the replacement/upgrade requirements of multiple DS assets, the 
methodology in Soleimani and Kezunovic245 implements a detailed thermal model to determine the value 
of MC in reducing the loss-of-life probability and failure hazard of a single transformer.
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Fig. 9 Reduction in distribution system investment costs due to managed EV charging. Each colored dot represents a data point 
from six studies. Multiple values from the same reference are enclosed within the same shape for more direct comparison. The DS 
planning benefits of MC have been shown to be higher under lower EV penetrations and in DSs with high load density.

Studies have shown a wide range of DS investment cost reduction values of MC, ranging from $5–
$1,090/EV/year, as shown in Fig. 9. These substantial variations can be attributed to several factors. The 
marginal investment cost reduction benefits of EVs may diminish with increasing EV penetration.167 Also, 
the value of MC in reducing DS investments is shown to be higher ($145/EV/year) in an urban area with 
high load density and underground cables, but fairly limited ($5/EV/year) in a rural area with highly 
dispersed loads.243 Studies have also reported that DS reinforcement deferral values of MC would be higher 
under scenarios with widespread fast charging.167,208 Finally, charging management schemes also affect the 
outcomes. For instance, charging based on EV owners’ cost minimization led to almost 70% higher 
reinforcement costs compared to uncontrolled charging, and ~260% higher costs compared to charging 
based on peak load minimization.207 Also, Crozier, Morstyn, and McCulloch192 report that while 28% of 
the DSs in the United Kingdom would require updates if EV charging is not managed, managing EV 
charging to flatten the load at the BPS level reduced this percentage to 19%, which can be further reduced 
to 9% if EV charging is managed to flatten the load at the DS level. This also points to the fact that MC 
based on improving BPS operation might not be optimal in terms of DS performance. Therefore, MC 
strategies need to be carefully designed considering the trade-offs at the BPS and DS levels.

4.7 Charging costs and revenue from grid services 
Many of the benefits of MC described above can provide revenue to charging station operators and 
aggregators, and offset some of the costs of charging to the EV owner. A number of studies have analyzed 
these benefits from the perspective of these entities. This analysis evaluates how different MC approaches 
might impact revenue opportunities 

As an example, Donadee and Ilić246 present an approximate stochastic dynamic programming problem for 
maximizing the expected profits from price arbitrage (charging during lowest price periods) and providing 
frequency regulation (FR) for an EV owner under market price uncertainty. Similarly, an optimal control 
problem is implemented in Rotering and Ilic153 to maximize an EV owners’ price arbitrage and FR profits 
while considering the impacts on battery degradation. Sioshansi and Denholm186 use marginal prices of 
energy and reserve and optimal EV participation values from a PCM to assess the value of V2G for EV 
owners. In contrast to optimization-based methodologies, a droop-based scheme for provision of FR using 
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EVs is presented in Calearo and Marinelli.247 The droop-based charging/discharging power of EVs is then 
used to calculate the associated revenues (based on FR prices) and battery degradation costs (using semi-
empirical functions). Wu and Sioshansi248 maximize the profits from price arbitrage and FR for an EV 
charging station using stochastic optimization, whereas the impacts of a charging station’s strategy (cost 
minimization vs. PAR minimization) on charging costs and DS operation are compared in Mehta et al.197 
Similarly, the impacts of different pricing schemes not only on the profitability of a parking lot owner and 
DSO, but also on DS operation, are evaluated using bilevel optimization in Sadati et al.163

The potential of MC in minimizing an EV aggregator’s (EVA’s) charging costs is analyzed in Le Floch, Di 
Meglio, and Moura249 using an optimization problem based on partial differential equations subject to 
individual EVs’ charging requirements and constraints on provision of contracted FR services. Similarly, 
Hu et al.162 and Wang et al.165 analyze the impacts of considering power consumption limits set by the 
system operator on EVA’s charging costs, whereas Clairand, Rodríguez-García, and Álvarez-Bel165 
incorporate penalties associated to the violation of such power consumption limits in the objective function 
of an EVA. Instead of constraint violation penalties, distribution locational marginal prices are included in 
the EVA’s cost minimization problem presented in Liu et al.201 Compared to including power consumption 
constraints and/or costs associated to the grid services provided by the EVA, Steen et al.163 and De Hoog et 
al.171 include DS power flow constraints within the EVAs’ optimization problems, transforming them into 
OPFs. 

Several studies show that MC can reduce EV charging costs for the EV owners and aggregators by about 
10%–60% depending on intra-day price variability, charging schemes,162,170 V2G capability,186,200 
participation in FR,246,249 and participation in unmonetized DS services. Results also show that if EV 
charging is controlled to provide unmonetized DS services, the charging costs can increase by ~5%–90% 
(compared to cost minimization without considering DS operation). This is primarily because EV charging 
based on lowest wholesale prices might cause DS congestion, voltage quality issues, and/or energy 
losses.162,163,207 Therefore, charging EVs while avoiding these impacts tends to be more expensive. These 
results highlight that it would be imperative to holistically consider the trade-offs between BPS and DS 
benefits of MC, and to adequately monetize DS services to incentivize the participation of EVs in improving 
network operation.

4.8 Benefit-cost analyses 
While Sections 4.2–4.7 highlighted the numerous benefits of MC across various aspects of the power 
system, the value of managed charging is a function of benefits and costs (see Section 3.2 for MC 
enablement costs) and how they are allocated to different entities, including EV users, electric utilities, 
general ratepayers, and others. Numerous benefit-cost analyses have been performed by utilities to assess 
the impacts of increased EV adoption in a region. These are often used to inform investment decisions, rate 
designs, and other regulatory processes, and to better understand consumer and societal benefits (e.g., value 
of emissions reductions, consumer fuel cost savings). Some of these analyses also considered the value of 
MC, even though limited to passive implementations, mostly involving TOU tariffs. Under baseline 
charging assumptions, these studies have reported utility benefits exceeding costs by hundreds of dollars 
per EV.250 MC has been estimated to roughly double those net benefits, with annual value of MC ranging 
from $34/EV to $166/EV.251–256 This large variability in the value of MC for utilities is driven by a number 
of factors, ranging from analysis scope, approaches, EV adoption projections, and assumed flexibility and 
heterogeneous characteristics of different power systems. A single case even projected declining value for 
the utility with implementation of MC.251 The same study, however, reports EV users’ net benefits of 
participating in a managed charging program (lower cost of off-peak TOU charging) ranging from 
$148/vehicle to $571/vehicle, not including the one exception discussed previously. 
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Across benefit-cost analyses, a number of common themes emerge. When examining the long-term utility 
perspective, avoided generation capacity is typically the largest benefit of managed charging, followed by 
either avoided distribution infrastructure costs or avoided generation energy costs.251–256 The utility 
financial impacts of managed charging, however, may vary due to the characteristics of the retail and 
wholesale electricity markets in which utilities operate. Most utilities can take advantage of MC to reduce 
peak demand and capacity-related costs. However, there may be instances where distribution-only and retail 
choice utilities cannot directly realize the benefits of MC due to how they procure electricity supply on 
behalf of their retail customers. Ultimately, the incentive to invest in managed charging programs will be 
based upon the value proposition or regulation.

Overall, a critical review of these benefit-cost analyses highlights limitations and major uncertainties, 
mostly driven by limited information on MC cost given nascent EV markets (most benefit-cost analyses 
assume zero enablement cost since they focus on TOUs), simplifications needed to capture the complex 
managed charging approaches and implications, and a lack of holistic consideration and detailed modeling 
of benefits of MC across various elements on the power system. Moreover, benefits and costs will likely 
evolve as technologies develop, EV adoption increases, and power systems and other loads evolve, making 
analysis more complex. Synergies between EVs and renewable integration, for example, might enhance the 
value of MC in high-VRE systems.58,168,184,191 As such, developing a broader assessment of managed 
charging value continues to be an active area of research.
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5 Conclusions, key insights, and research gaps
Increasing EV adoption is a great opportunity for utilities, and it is often projected to be the main driver of 
future electricity demand growth in the United States.4,55 While EVs can pose operational challenges for 
existing electric power systems when charging is unmanaged, management of EV charging offers unique 
opportunities to support power system operation and planning. The increased load (and retail sales) from 
EV deployment may require investments to upgrade various parts of the power system, but several studies 
have shown that widespread EV adoption coupled with managed charging can reduce average retail 
electricity rates for all consumers. 54,55,157,245 Managed charging is particularly valuable in systems with 
high levels of variable renewables to provide flexibility to match supply and demand. The value of managed 
charging, however, must consider both the benefits that MC can provide as well as the costs of 
implementation. Benefits have been estimated in many studies, but not in a holistic framework that 
consistently considers all the values that managed charging can provide and their trade-offs. Individual 
estimates might therefore be underestimating the full value of managed charging. On the other hand, 
combining individual benefits reported in different studies can lead to overestimation of benefits, primarily 
due to the lack of consideration of trade-offs between multiple value streams. Enablement and 
implementation costs remain highly uncertain due to limited market implementations. Overall, a complete 
benefit-cost assessment, even at a regional level, is still missing that considers the entire extent of values, 
enablement costs, and the perspectives of all stakeholders, including utilities, EV owners, charging station 
operators, and rate payers. 

This paper reviews numerous studies that quantify the value of managed charging across the power system. 
Here, we synthesize several insights from these studies:

Benefits of Managed Charging:
 Compared to unmanaged EV charging, managed charging can provide significant benefits, 

reducing operation costs for bulk and distribution systems, improving reliability and voltage 
quality, supporting renewable integration and reducing curtailment, and potentially reducing the 
need for additional generation, transmission, and distribution capacity, thereby reducing 
planning/investment costs and times.

 Modeling studies show that EV managed charging can provide various operational benefits for 
bulk power systems, including reduction of system operation costs ($15–$360/EV/year), 
greenhouse gas emissions (−0.1 to 2.5 tons CO2/EV/year), peak loads (0.2–3.3 kW/EV), and 
curtailment of variable renewable generation (23–2,400 kWh/EV/year).

 Managed EV charging can support and complement the expected large-scale VRE deployment, 
with significant implications for long-term planning and to support decarbonization policies. 

 While the increased load from EV deployment may require investments to upgrade various parts 
of the power system, which could in principle increase electricity costs, several studies have shown 
that widespread EV adoption coupled with managed charging improves overall system efficiency 
and can reduce average retail electricity rates for all consumers.

 The benefits of EV managed charging vary significantly across studies due to different approaches, 
assumptions, and heterogeneity in power systems, EV adoption, use, and charging flexibility 
scenarios, making direct comparison difficult. 

 Studies consistently find that the marginal operation and planning benefits of managed charging 
diminish with increasing EV penetration, owing to the presence of shallow value streams and 
competition with other technologies or approaches that provide flexibility cost-competitively. 

 Differences in charging management schemes and time-varying tariffs lead to substantial 
differences in the benefits managed charging can provide. Without careful consideration, managed 
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charging can lead to unintended operational problems. Particularly, EV charging solely based on 
cost minimization (under wholesale market prices) can be worse than uncontrolled charging for the 
distribution system.

 Different power system characteristics also affect the value of managed charging. For instance, the 
managed charging operation cost savings could be significantly lower in systems that have other 
cost-completive sources of flexibility (e.g., energy storage). Also, the value of managed charging 
is computed with respect to a baseline. As strategies and other flexibility options are employed, 
the incremental value of increasingly complex managed charging implementations may decline as 
the baseline evolves in step. 

 The value of managed charging will likely change over time as power systems evolve, more EVs 
are deployed for different applications, and charging approaches and consumer behavior evolve.

 V2G can potentially further reduce operation costs, CO2 emissions, and peak load (compared to 
V1G) by displacing inefficient peaking generators.

 Unmanaged charging of large EV loads can increase both frequency and magnitude of lost load. 
Managed charging can support grid reliability by reducing loss of load and energy not served, 
particularly by injecting electricity to the grid (V2G) and/or to customers’ homes or buildings 
(V2X). While managed charging can reduce both the severity and frequency of loss-of-load events 
at the BPS level, the reduction in frequency of outages at the distribution level are only evident if 
condition-dependent component outage models are used, and/or if managed charging can 
completely restore the local network load. Challenges due to unmanaged EV charging could 
manifest at the distribution system level first. However, the monetary value of managed charging 
at the bulk power system may exceed those of the distribution system in the long run. 

 The range of benefits for distribution systems is particularly wide—where issues are location- and 
system-specific. Managed charging can noticeably reduce distribution system peak loads and 
congestion, and consistently increase the maximum feasible EV penetration for existing systems, 
even though “hosting capacity” is location-specific and also impacted by EV use, consumer 
participation, and managed charging programs. Generalization of the insights from modeling and 
analysis studies require simulating the impacts of managed charging in more diverse and realistic 
distribution systems under varying assumptions. 

Managed Charging Implementations:
 While V1G is similar to demand response for other loads, there are significant differences in the 

EV market that suggest experiences may diverge. 
 Benefits of more complex implementations (e.g., active V2G) are greater but more costly to 

implement. Full benefit-cost analyses to date, which rely on simplified approaches, are limited to 
passive V1G. 

 The V2G benefits reported in the reviewed literature represent an upper bound achievable under 
ideal situations. In realistic applications, the V2G capability of EVs may be significantly restricted 
by the mobility requirements, particularly for long-duration value streams, such as reliability and 
capacity value.

These insights suggest a number of gaps as well as research and development/demonstration needs: 
 

 Characterizing the needs of different EVs used for different applications is the first step to study 
managed charging. Most managed charging literature has focused on personal light-duty vehicles 
using average statistics, with earlier studies focusing on PHEVs. It is important to capture 
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differences in vehicle use and charging opportunities. Also, with growing interest for battery 
electric vehicles in ride-hailing fleets and medium- and heavy-duty applications that might charge 
at higher power levels, it is important to consider these emerging trends. Additional data, modeling, 
and analysis studies are needed to better estimate charging needs, customer participation, and 
constraints for various vehicle types and applications that will ultimately determine charging loads 
and ability to provide demand-side flexibility 

 Since the value of managed charging is impacted by the characteristics of both the bulk power and 
distribution systems (as well as other flexible loads and energy storage technologies) and looking 
at these systems independently may result in discrepancies and suboptimal solutions, a 
comprehensive analysis across the entire power system is needed to better understand the total 
benefit managed charging can provide. Conflicting charging solutions might maximize different 
value streams, suggesting the existence of trade-offs and an overall optimal solution for assessing 
the systemwide benefits of EVs when simultaneously providing multiple grid services. This would, 
however, require development of methodologies for improving the computational tractability of 
modeling such complex system holistically.

 Capturing these system benefits (not always explicitly monetized in today’s markets) will require 
ways to demonstrate and market mechanisms to pass on these savings to participants and 
compensate EV users for providing flexibility while ensuring other stakeholders are also 
benefitting from managed charging. 

 The role of charging infrastructure in enabling and supporting managed charging remains an open 
research question, with limited insights informing cost-benefit trade-offs and guiding investment 
decisions (e.g., what are the trade-offs between residential and workplace/public charging 
considering infrastructure costs as well as cost and benefits for the power system). 

 While the impacts of managed EV charging on power system reliability have been analyzed in 
several studies, there is a dearth of literature on the benefits in improving grid resilience under 
high-impact, low-probability events such as natural disasters, as well as the value of local resilience 
(e.g., residential building backup power during such events). 

 Estimation of the value of managed EV charging under different regulatory requirements, 
particularly for evaluating the potential of V2G in improving power system reliability, remains an 
unexplored area to inform evolving regulations and the design of future power markets. 

 Realizing the central role of EV owners’ behaviors and preferences in shaping the flexibility of 
managed charging, a multidisciplinary assessment approach is required to evaluate managed 
charging in the context of the social sciences and humanities. 

 As the EV market rapidly evolves, it is important to consider new technologies and charging 
solutions in assessing integration challenges and managed charging opportunities. Future work 
should consider more EV applications and emerging mobility trends, such as ride-hailing, 
autonomous vehicles, and e-commerce, and their impact on EV charging needs and flexibility. 
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Appendix

Summary of Ancillary or Essential Reliability Services

Table 2 Summary of ancillary or essential reliability services

Operating Reserves

Frequency-
Responsive Reserves

Services that act to slow and arrest the change in frequency via rapid and 
automatic responses that increase or decrease output from generators providing 
these services. These services include inertial response and primary frequency 
response (PFR). An emerging product is “fast frequency response,” which may 
replace some fraction of traditional inertia/PFR.

Regulating Reserves

Also known as frequency regulation. Rapid response by generators used to help 
restore system frequency. These reserves may be deployed after an event and 
are also used to address normal random short-term fluctuations in load that can 
create imbalances in supply and demand.

Contingency 
Reserves

Reserves used to address power plant or transmission line failures by increasing 
output from generators. These include spinning reserves, which respond 
quickly and are then supplemented or replaced with slower-responding (and 
less costly) non-spinning/replacement reserves.

Ramping Reserves
An emerging and evolving reserve product (also known as load-following or 
flexibility reserves) that is used to address “slower” variations in net load and 
is increasingly considered to manage variability in net load from VRE.

Other Services

Black-Start Capacity that can be started without either external power or a reference grid 
frequency, and then provide power to start other generators.

Voltage Support Used to maintain voltage within tolerance levels and provided by local 
resources.
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Summary Table of Existing Implementations of Managed Charging 
Table 3 summarizes existing implementations of managed charging, as discussed in Section 3. The following summary is not intended to be 
exhaustive or comprehensive, but rather provides an overview of programs and projects across differing MC strategies. Examples range from 
established utility-scale pricing schemes to exploratory, small-scale demonstration projects for emerging technologies (e.g., V2G). Examples for the 
following table were primarily identified from more comprehensive summaries presented in other references.85,90,105,115 

Table 3 Summary of existing implementations of managed charging

Direct/
Indirect

Charging 
Direction

Mechanism Sector(s) Project/Program 
and Timeframe

Goal(s) Size Participation Compensation Value

Residential light-
duty vehicle 

(LDV)

BMW/PG&E 
ChargeForward 

Pilot, 2015–
2020103,109

Potential for grid 
services to reduce 
EV costs, support 
renewable energy 

integration

Phase 1: 
96 drivers, 
Phase 2: 

>400 
drivers

90% success 
in call events

$1,000 upfront, 
ongoing 

incentive for 
each day with 

no opt-out

$325/vehicle per year in 
grid savings

1,200 kWh of 
renewable 

energy/vehicle per year

Direct V1G

Demand 
response 

signal Residential LDV, 
commercial LDV

Avista EVSE 
Pilot, 2016–

2019104

Understand LDV 
EV load profiles, 

grid impacts, costs, 
and benefits; 
support EV 

adoption

439 
charging 

ports

85% opt-in 
rate

Installation and 
operation of 

EVSE

75% curtailment of 
peak EV load

Residential LDV NV Energy, 
Active258

Not specified Not 
specified

Not specified TOU rate, credit 
for difference 

from flat rate for 
first 12 months

Not specified

EV TOU
Residential LDV SDG&E PEV 

TOU, 201487
Understand impact 
of EV charging and 
mitigate negative 

impacts

Not 
specified

86%–94% 
off-peak or 
super off-

peak charging

TOU rate Not specified

EV day-
ahead 

pricing

Residential LDV, 
workplace LDV

SDG&E Power 
Your Drive, 

Active99

Not specified Not 
specified

Not specified Day-ahead time-
varying rates

Not specified

Indirect V1G

Charging 
rebates

Residential LDV, 
Commercial 

light-, medium-, 
and heavy-duty 

vehicle

ConEdison 
SmartCharge 
New York, 

Active85

Incentivize off-peak 
charging, 

understand 
customer response

Not 
specified

Not specified Monthly and 
per-kWh rebates 

for off-peak 
charging

Not specified

Direct V2G
Frequency 
regulation 

market

Commercial 
LDV, medium-

duty vehicle

Los Angeles Air 
Force Base 

Vehicle to Grid 
Demonstration, 
2016–2017113

Explore cost savings 
potential of plug-in 
electric vehicles via 

V2G

29 
vehicles

Not 
applicable

CAISO 
regulation 

market tariffs

$2,200 per season for 
fleet (29 vehicles)—
likely not economical
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Meta-Analysis Table of Managed Charging Modeling/Analysis Studies
Table 4 summarizes the modeling/analysis studies reviewed in this paper. In particular, it presents the geographic 
scope, modeling perspective, study goal(s), methodological details (including model type, formulation framework, 
and treatment of uncertainty), value streams, number/penetration of EVs, implementation mechanisms, and charging 
direction(s) (V1G and/or V2G) considered in these studies. The table is primarily organized by the type of analysis 
(indicated by different row colors), starting with bulk system operation, followed by distribution system operation, 
bulk system reliability, distribution system reliability, bulk system planning, distribution system planning, and 
charging costs and revenues. Within each analysis type, the studies are arranged according to geographic scope, 
starting with national scope and followed by regional, local, and individual scopes. Studies with the same geographic 
scope are subsequently ordered according to the modeling perspective(s) starting at the TSO level, going down to 
individual EV owners’ perspective. Finally, studies with the same analysis type, geographic scope, and modeling 
perspective(s) are arranged in the order in which they appear in the manuscript.

Table 4 Summary of managed charging modeling/analysis studies

Legend:

Ref.

Geographic
Scope & 
Modeling

Perspective(s)

Study Goal(s) Methodology Value
Streams

No. of EVs/ 
Penetration

Implementation 
Mechanism

Charg
ing

Direct
ion(s)

152
Evaluating the impacts of managed 
charging on overall system operation 
based on minimization on operation costs

D-PCM OC, E 260,000
(10%) Not Specified V1G

160

Evaluating the impacts of V2G on long- 
and short-term system performance based 
on minimization of investment and 
operation costs

D-CEM
IC, OC, 
E, RC 76 million Not Specified V2G

177

Evaluating the impacts of V1G and V2G 
on long- and short-term system 
performance based on minimization of 
investment and operation costs

D-CEM
IC, OC, 
E 1 million Not Specified V1G, 

V2G
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184
Evaluating the impacts of V1G and V2G 
on overall system operation based on 
minimization of operation costs

D-PCM OC, RC 27,000 Not Specified
V1G,
V2G

187
Evaluating the impacts of managed 
charging on overall system operation 
based on minimization of operation costs

D-PCM
PL, E, 
RC 4.8 million Not Specified V1G

189
Comparing the impacts of centralized and 
decentralized EV charging on overall 
system operation

D-PCM,
D-CCM

OC, PL 1 million
(25%)

Optimal Control 
compared to TOU 
tariffs

V1G

192
Evaluating the potential of smart charging 
in flattening transmission and distribution 
network load

D-LSM
PL, EL,
VQ, AO 100% Not Specified V1G

151
Evaluating the benefits of V2G in terms of 
peak load reduction and improving power 
plant operation D-LSM

PL Up to 50%
Not Specified

V2G

154
Evaluating the benefits of V1G and V2G 
in terms of reducing net load ramping and 
VRE curtailment D-LSM

PL, RC 1.5 million
Not Specified V1G, 

V2G

155
Comparing optimal EV charging profiles 
with those obtained using time varying 
rates D-PCM

OC, E 1%
Time-varying 
prices V1G

157 

Evaluating the impacts of managed 
charging on overall system operation 
based on minimization on expected 
operation costs under uncertainty

S-PCM OC 735,000
(10%)

Not Specified V1G

166

Evaluating the impacts of MC on overall 
system operation based on minimization 
on operation costs. Also, comparing 
optimal EV charging with TOU-based 
charging

D-PCM OC, RC 0.95–5 million 
(4% to 20%) Dynamic pricing 

compared against 
TOU tariffs

V1G

168
Evaluate the impacts of V1G and V2G on 
overall system operation based on 
minimization on operation costs D-PCM

PC, PL, 
RC, E 50%

Not Specified V1G, 
V2G

169
Evaluating the effectiveness of a 
decentralized charging strategy for valley 
filling

D-LSM PL 10 million
Coordination 
Pricing V1G

173
Evaluating the impacts of managed 
charging on overall system operation 
based on minimization of operation costs

D-PCM 
OC, PL, 
E, RC 3 million Not Specified V1G

185
Evaluating the impacts of V2G on 
emissions based on minimization on 
operation costs

D-PCM E
0.075–1.14 
million
(1% to 15%)

Not Specified V2G

186
Assessing impacts of V2G on system 
operation cost savings and value for EV 
owners

D-PCM OC
0.075–1.14 
million
(1% to 15%)

Not Specified V2G

90 Evaluating the peak load reduction 
potential of managed charging

D-LSM PL 23% Not Specified V1G

171
Evaluating the impacts of different 
charging schemes on DS operation and 
maximum EV penetration

D-CCM
MP, PL, 
VQ 80% TOU-tariffs

V1G,
V2G

172 Assessing impacts of EV charging rates on 
maximum feasible EV penetration

D-LSM MP, AO, 
PL, VQ 100% TOU-tariffs V1G

175
Evaluating the potential of managed 
charging in increasing the maximum 
feasible EV penetration

D-OM MP 1,510 Not Specified V1G

195 Evaluate the benefits of managed charging 
for reducing DS upgrades

D-LSM PL, AO, 
VQ

4,000–8,000
(100%) Not Specified V1G
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196
Evaluating the impacts of different 
charging schemes on DS operation and 
maximum EV penetration

D-LSM
MP, PL, 
EL 1,000–2,000 Not Specified V1G

198

Demonstrating the effectiveness of the 
proposed control algorithm for 
simultaneous thermal and voltage 
management

D-OM
MP, AO, 
VQ 86 Direct Load 

Control
V1G

199 Evaluating the benefits of managed 
charging for improving DS operation D-OOP

AO, EL, 
E

227
(67%) Direct Load 

Control
V1G

202
Coordinate the operation of DS and 
transport network to reduce charging costs, 
peak loads, and traffic delays D-OOP

PL, VQ, 
CC Not specified Dynamic 

Coordination 
Pricing

V1G

159 Operation of a charging service provider
 in coordination with a retailer and DSO D-OOP

PL, AO, 
VQ 2,200 Direct Load 

Control
V1G

161
Coordinating the operation of DS operator, 
fleet operator and EV owners using a 
distribution grid capacity market scheme

D-CCM CC, PL 36
(60%) Direct load 

control
V1G

162

Assessing impacts of EV charging strategy 
(uncontrolled, price optimal or loss 
optimal) and demographic data on DS 
operation D-OOP,

D-CCM

MP, PL, 
VQ, EL, 
CC

254 in Area A, 
2,306 in Are B

Price Optimal: 
Dynamic spot 
prices;
Loss Optimal: 
Direct load 
control

V1G

164

Optimally coordinate the active and 
reactive power dispatch of EVs for 
minimizing charging costs improving DS 
operation

D-CCM
CC, VQ, 
PL 1,500 Not Specified V2G

201 Assessing the effectiveness of distribution 
LMPs for reducing DS congestion D-CCM CC, AO 100% Direct load 

control
V1G

163

Assessing the value of bilevel optimization 
as compared to centralized optimization 
for maximizing the profits for the 
distribution company and PL owner

D-OOP
CC, EL 100 Critical Peak 

Pricing
V2G

158

Comparing the effectiveness of a 
decentralized methodology TOU and 
external marginal cost pricing for reducing 
peak loads and load variance

S-LSM
PL 500 Coordination 

Pricing
V1G, 
V2G

203
Evaluating the effectiveness of a 
decentralized methodology for reducing 
peak loads and load variance

S-LSM PL 315 Coordination 
Pricing

V1G,
V2G

205
Evaluate effectiveness of a droop control 
methodology for improving DS voltage 
quality

D-DBC VQ 100% Droop Control V2G

206
Experimental validation of a droop control 
methodology for improving DS voltage 
quality

D-DBC VQ 3 Droop Control V1G

170
Comparing impacts of charging cost 
minimization and maximization of total 
stored energy in EVs on DS operation

D-OOP,
D-CCM

MP, PL, 
AO, VQ, 
CC

57
(50%)

Not Specified V1G

200

Comparing impacts of charging 
mechanism (V1G or V2G) and charging 
rate (fast or slow) on maximum feasible 
EV penetration

D-OOP

MP, AO, 
PL, VQ, 
CC

1,000 Not Specified V1G
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204
Evaluating the effectiveness of 
decentralized algorithms for reducing 
energy consumption and peak loads

D-LSM PL 1,000 Demand shaping 
signal

V1G, 
V2G

197
Comparing impacts of charging cost 
minimization and PAR minimization on 
maximum feasible EV penetration

D-CCM,
D-OOP

MP, AO, 
PL, CC 1,000 Direct Load 

Control
V1G

214 Evaluating the adequacy of BPS with 
electric vehicles and high wind penetration S-MCS R 2% Direct Load 

Control
V1G

217

Comparing the proposed analytical 
methodology with SMCS for evaluating 
the reliability benefits of managed 
charging

S-OM
R 10% Not Specified V1G

174

Evaluating the effectiveness of the 
proposed stochastic EV charging model in 
capturing the reliability impacts of EV 
charging

S-MCS
R 5.5%–11% Not Specified V1G

176
Evaluating the effectiveness of the 
proposed framework is assessing the 
reliability impacts of EV charging

S-MCS

R 0%–50% TOU tariffs and 
Critical Events 
Call

V1G

215 Evaluating the impacts of V1G and V2G 
on BPS reliability S-MCS R 100% Not Specified

V1G, 
V2G

216 Evaluating the benefits of V2G on BPS 
reliability

S-MCS

R 15,000 Direct Load 
Control

V2G

218 Evaluating the impacts of EV charging 
objective on BS reliability S-MCS

R 69,000 Direct Load 
Control

V2G

219 Evaluating the impacts of managed 
charging on BPS reliability S-MCS R 50% Not Specified V1G

220

Evaluating the impacts of different 
charging strategies and transmission 
network operation strategies on BPS 
reliability

S-MCS
R 480,000

(25%)
Not Specified V2G

221
Evaluating the impacts of VRE and EV 
penetration on BPS and EV charging 
reliability

S-MCS R 10% Not Specified V2G

223
Evaluating the impact of Advanced 
Metering Infrastructure (AMI) failure on 
BPS reliability assessment.

S-OM R 21,000 Scarcity Pricing V1G

227 Evaluating the impacts of EV penetration 
and charging rate on DS reliability S-MCS R 30%, 50% Not specified

V1G, 
V2G

228 Evaluating the impacts of EV penetration 
and charging scheme on DS reliability S-MCS R Up to 62% Direct Load 

Control
V2G

229 Evaluating the impacts of EV mode of 
operation on DS reliability S-MCS R 100% Direct Load 

Control

V2H, 
V2G

230 Evaluating the impacts of EV mode of 
operation on DS reliability S-MCS R 31% Direct Load 

Control

V2H, 
V2G
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233
Evaluating the benefits of V2G on DS 
reliability considering a condition-
dependent outage mode

S-MCS

 
R 10%–100% Real time pricing, 

Reliability 
incentives

V2G

234
Evaluating the impacts of EV penetration 
on DS reliability while considering traffic 
congestion

S-MCS R 0% to 100% Not specified V2G

231 Evaluating the benefits of PL V2G 
charging on DS reliability S-MCS R 1 Parking Lot Direct Load 

Control
V2G

232
Evaluating the benefits of PL managed 
charging on DS reliability considering 
behavioral aspects

S-MCS R 1 Parking Lot Direct Load 
Control

V1G, 
V2G

156
Evaluating the impacts of V1G and V2G 
on generation and transmission system 
investments

D-CEM
IC, OC, 
E 36 million Not Specified

V1G, 
V2G

236
Evaluating the impacts of EV charging 
schemes on generation and transmission 
system investments

D-CEM
IC, OC, 
PL

0.18–0.56 
million Not Specified V1G

238
Evaluating the impacts of co-optimization 
of BPS investments and proportion of 
flexible EV demand

D-CEM IC, OC 0%–100% Direct load 
control

V2G

237
Evaluating the benefits of managed 
charging in reducing long-term investment 
and operation costs

D-CEM
IC, OC, 
E 1 million Dynamic 

Marginal Pricing

V1G, 
V2G

239
Evaluating the impacts of EV charging 
controllability on generation and storage 
expansion

S-CEM IC, OC 30,000
(30%) Direct load 

control
V2G

240
Quantifying the potential investment and 
operation cost reduction benefits of V1G 
and V2G

D-OOP IC, OC 5 Not Specified
V1G, 
V2G

208
Evaluating the impacts of managed 
charging on DS investments and energy 
losses.

D-LSM
IC, AO, 
EL

720,000
(75%) Not Specified V1G

242
Evaluating the benefits of different DR 
technologies for improving DS operation 
and asset management

D-LSM IC, PL 3.42 million
(10%) Not Specified V1G

243 Evaluating the impacts of EV penetration 
on DS investments and energy losses. D-CEM IC, EL Area A: 2,335,

Area B: 17,748 TOU or RTP V1G

245 Evaluating the impacts of EV charging on 
distribution transformers D-OM IC, AO 10

(40%) Direct Load 
Control

V1G

244 Evaluating the benefits of V2G in reducing 
DS investments D-CEM IC, OC 3,000 Direct Load 

Control
V2G

167
Evaluating the impacts of charging power 
and management on DS investments end 
electricity procurement costs

D-CCM IC 2–12 million
(5%–30%) Dynamic Pricing V1G

207
Assessing the financial impact of various 
EV charging strategies on distribution 
grids.

D-CCM,
D-OOP

IC, AO, 
EL

430,000
(47%)

Not Specified V1G

165 Minimizing aggregator's charging cost D-CCM CC Up to 1,000 Direct Load 
Control

V1G

249

Minimizing the cost of charging plug-in 
EVs, subject to supplying sufficient energy 
to the grid and sufficiently charged EVs to 
the drivers

D-CCM
CC, FS 2,225 Direct Load 

Control
V1G
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248 Maximizing the profits from energy 
arbitrage and frequency regulation services S-CCM CC, FS 1 Parking Lot Direct Load 

Control
V1G

153 Maximizing profits from energy arbitrage 
and frequency regulation services D-CCM

CC, FS 1 Dynamic Energy 
and Reserve 
Pricing

V1G

246
Maximizing expected profits from energy 
arbitrage and frequency regulation services 
considering price uncertainty.

S-CCM
CC, FS 1 Dynamic Energy 

and Reserve 
Pricing

V1G

247
Maximizing profits from frequency 
regulation while considering battery 
degradation

D-DBC CC, FS 1 Droop Control V2G
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