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Abstract 
Achieving 100% carbon-free or renewable power systems can be facilitated by the 

deployment of energy storage technologies at all timescales, including short-duration, long-

duration, and seasonal scales; however, most current literature focuses on cost assessments 

of energy storage for a given timescale or type of technology. Here, we use an optimization 

framework with high spatial and temporal resolution to simultaneously assess the variable 

renewable power deployment and the optimal storage portfolio for seven independent 

system operators in the United States. Results indicate that achieving high (75%–90%) and 

ultrahigh (>90%) energy mixes requires combining several flexibility options, including 

renewable curtailment, short-duration, long-duration, and seasonal storage. For instance, 

carbon-free and renewable energy mix targets of up to 80% are achieved with economic 

curtailment and a combination of short- and long-duration energy storage for the 

performance and cost assumptions used. After that, there is a point between 80% and 95% 

where seasonal storage becomes cost-competitive, depending on the specific power system. 

Moreover, our results indicate that storage-to-storage operation—one storage device used 

to charge another storage device—and the decoupling of charging and discharging storage 

power capacity are cost-effective options for the integration of high and ultrahigh shares of 

carbon-free or renewable power sources. Additionally, the results from this study show that 

an 85% carbon-free or renewable energy mix can be achieved at a cost of avoided CO2 

emissions of US$66.0 per tonne or less, regardless of the power system.   
 

Power systems are undergoing rapid changes driven by national and regional energy 

policies, falling costs of wind and solar photovoltaic (PV) power, and the electrification of 

energy demand, among other factors1. Achieving high and ultrahigh clean or renewable 

energy systems poses significant technical and operational challenges to planning and 

operations2,3. The large-scale integration of variable renewable energy (VRE) requires 

enhancing power system flexibility to accommodate steeper and/or more frequent 

fluctuations in net load—electricity load minus VRE availability. A broad range of 

approaches could provide power system flexibility, including operational strategies (e.g., 

VRE curtailment, demand-side management), energy storage, spatial diversity of generation 

resources (including transmission expansion), and sector coupling1,4. Note that this paper 

Page 1 of 28 Energy & Environmental Science

mailto:omarjose.guerrafernandez@nrel.gov


2 
 

defines high levels of clean or renewable energy shares between 75% and 90% on an annual 

energy basis across the power system. Additionally, ultrahigh levels of clean or renewable 
energy correspond to energy shares >90%. 

Energy storage could help address VRE integration issues across timescales5–7. For 

example, subhourly and diurnal shifts of VRE generation can be addressed by storage with 

less than 10 hours of discharge duration, including flywheels and many battery types8,9. 

Longer-duration discharge (>10 hours and <100 hours)10,11 storage—such as compressed 

air energy storage (CAES), pumped hydro storage (PHS), and hydrogen—can address inter-

day shifts of VRE power output12,13. Achieving 100% carbon-free or renewable power 

systems could require shifting VRE generation across weeks or months and enhancing 

resilience to extreme events. These issues could be addressed by seasonal energy storage 

(>100 hours of discharge duration), including hydrogen and other fuels and systems14,15. The 

least-cost solutions will likely involve a diverse portfolio of generation and storage 
technologies, with each contributing to supporting grid operations16,17.  

Although energy storage is widely recognized as a key enabling technology for the 

integration of VRE18–20, studies on grid-integrated storage have been limited in scope. Most 

focus on the storage cost assessment for a given timescale or a type of technology 21–23, 

market-based opportunities24–26, or are based on a limited set of technologies 17,27 or a 

limited spatial scope (e.g., analysis of a single region)28,29. There is a need for comprehensive 

assessments of the optimal storage portfolio—power capacity and duration—in view of high 

and ultrahigh carbon-free or renewable power systems. The following aspects of VRE 

integration and storage deployment, in particular, require a better understanding: (i) How 

does the energy mix affect the optimal energy storage portfolio? (ii) How does the least-cost 

storage portfolio vary as a function of the VRE share? (iii) What is the optimal portfolio of 

storage devices in high and ultrahigh carbon-free or renewable power systems? and (iv) 

What are the economics of large-scale VRE integration and storage deployment in power 

systems?  

Grid planning models often use a reduced temporal representation (e.g., 

characteristic days) to make investment decisions, but this can present challenges when 

modeling long-duration and seasonal energy storage if the temporal decomposition does not 

accurately represent the cumulative interaction between time periods14. Here, we use an 

electric grid planning framework with high spatial and temporal resolution to provide 

detailed insight into large-scale VRE integration and energy storage deployment in power 

systems. The planning framework provides a more robust representation of storage 

operation across different timescales, from short-duration to seasonal, and it takes 

advantage of the spatiotemporal diversity and complementarity between solar PV and wind 

generation. We use load, generation mix, and weather data from seven independent system 

operators (ISOs) in the United States to optimize the large-scale integration of VRE 

generation and the associated storage portfolio in terms of power and energy capacity. 
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Electric grid planning framework 
To evaluate the optimal energy storage and VRE generation portfolio for high and 

ultrahigh carbon-free or renewable power systems, we propose the Storage Deployment 

Optimization Model (SDOM). SDOM is designed to accurately represent the operation of 

storage across different timescales, including long-duration and seasonal applications, and 

the spatiotemporal diversity and complementarity among VRE sources. SDOM uses an 

hourly temporal resolution, a fine spatial resolution for VRE sources, and a 1-year 

optimization window. The same temporal resolution and optimization window have been 

used in previous work27,30 but with a lower spatial resolution12,30,31. Thus, SDOM uses a 

better representation of the spatial variability of VRE generation, land-use constraints for 

VRE siting, and required transmission capacity for the integration of VRE sources. We 

assume that all builds of VRE are accompanied by sufficient additional transmission capacity 

to allow for the full utilization of these additional resources, similar to previous 

approaches27,28. Installed capacity and operational profiles for existing nuclear, hydropower, 

biomass, and geothermal plants are fixed based on operational data (time series) for a given 

year; thus, SDOM minimizes total system cost using conventional generators as the balancing 

unit and using VRE and storage technologies to achieve a user-defined carbon-free or 

renewable energy target. The total system cost includes capital costs, fixed operation-and-

maintenance (FO&M) costs, variable operation-and-maintenance (VO&M) costs, and fuel 

costs for power generation and storage technologies. An overview of SDOM is presented in 

Supplementary Fig. 1, and the corresponding mathematical formulation is described in 
Methods. 

The optimization framework is used to evaluate the optimal VRE generation and 

storage portfolio for seven ISOs. Combined, these ISOs are projected to represent ~65% of 

total electricity demand in the United States by 205032, a projected growth of ~27% from 

2019 to 205032. By analyzing multiple regions, this study allows for a more comprehensive 

analysis of the effects of the energy mix and load shape on the optimal energy storage 

portfolio. We consider six renewable energy targets: 75%, 80%, 85%, 90%, 95%, and 100% 

(and the same scenarios for the carbon-free cases). The model maintains existing nuclear, 

hydropower, biomass and geothermal, and it is allowed to expand wind and solar PV 

capacity. Wind and solar PV deployment and power capacity are optimized using generation 

profiles and maximum available capacity from the Renewable Energy Potential (reV) 

model33, as described in Methods. Nuclear generation is removed from the generation mix 

for the renewable energy target scenarios, but it is included for the carbon-free target 

sensitivity scenario provided in the Supplementary Information. 

 Table 1 presents summaries of the ISO load and generation, whereas the techno-

economic assumptions for VRE, balancing units, and storage technologies are presented in 

Supplementary Table 1. The VRE reference cost values are used as the base case for costs, 

whereas the projected minimum and maximum costs are used for a sensitivity analysis. We 

consider four storage technologies representing different classes of technologies being 

deployed or under development, with details presented in Supplementary Table 1. Each 
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technology has independent power and energy costs so the model can optimize duration in 

addition to total power capacity. Short-duration (SD) storage has high energy-related costs 

but the lowest power-related costs. Like all technologies, short duration can be built to any 

duration, but the higher duration-related costs tend to make shorter durations more 

favorable. This technology is based on projections around lithium-ion (Li-ion), but it could 

also represent alternative battery chemistries that could achieve the cost and performance 

values assumed. We then consider two storage technologies representing longer duration 

technologies: LD1 and LD2. Of these two technology classes, LD1 is intended to capture 

technologies with somewhat lower power and energy costs but with lower round-trip 

efficiencies, potentially representing adiabatic CAES or pumped thermal storage. LD2 

captures technologies with somewhat higher capacity and energy costs but also higher 

efficiencies, potentially representing PHS or longer duration batteries such as flow batteries. 

Finally, we include seasonal storage (SS), which has higher power-related costs, very low 

energy-related costs, and low round-trip efficiencies. This approximates a power-to-gas (e.g., 

hydrogen) or similar type of technology. Additionally, the charge power and discharge 

power for LD1 and seasonal storage can be independently optimized. The simultaneous 

assessment of different energy mix targets and multiple storage technologies, e.g., short-

duration, long-duration, and seasonal storage, allows for a better understanding of the 

transition of storage requirements, e.g., from short-duration to long-duration and from long-

duration to seasonal, as well as the operational policy for storage technologies as function of 

the energy mix target. Although we suggest representative technologies for each class, the 

techno-economic assumptions presented in Supplementary Table 1 are not intended to 

represent any specific energy storage installation. There is significant uncertainty regarding 

the technology evolution of storage, and some technologies might have very site-specific 

requirements, such as geological conditions for PHS and CAES34. Additional details regarding 

the input data are provided in Methods. 

Table 1. ISO data and techno-economic assumptions for VRE, energy storage, and 

balancing technologies. 

System property or parameter ISO32, § 
CAISO ERCOT ISONE MISO NYISO PJM SPP 

2019 peak load (GW) 44.1 74.7 24.0 120.5 30.4 151.6 50.7 
2019 total load (TWh) 219.5 383.8 118.3 667.9 155.8 787.3 270.4 
2050 peak load (GW) 54.2 101.0 28.1 148.9 34.4 184.0 65.2 
2050 total load (TWh) 269.2 519.1 138.8 825.5 176.1 955.8 348.3 
Nuclear generation  
(% of 2019 total load) 

7.4 10.8 25.2 15.4 28.7 35.5 6.0 

Hydro generation  
(% of 2019 total load) 

12.0 0.2 6.8 1.7 18.8 2.1 5.6 

Other renewable generation  
(% of 2019 total load) 

7.2 0.1 4.9 1.1 1.4 0.7 0.1 

§ CAISO: California Independent System Operator (http://oasismap.caiso.com/mrioasis/logon.do); ERCOT: Electric 

Reliability Council of Texas (http://www.ercot.com/gridinfo); ISONE: Independent System Operator–New England 

(https://www.iso-ne.com/markets-operations/iso-express); MISO: Midcontinent Independent System Operator 
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(https://docs.misoenergy.org/marketreports/YYYYMMDD_rf_al.xls); NYISO: New York Independent System Operator 

(load data: http://mis.nyiso.com/public/P-58Blist.htm, generation data: http://mis.nyiso.com/public/P-63list.htm); PJM: 

Pennsylvania-Jersey-Maryland Power Pool (https://dataminer2.pjm.com/list); SPP: Southwest Power Pool 

(https://marketplace.spp.org/pages/generation-mix-historical). 

VRE deployment and optimal energy storage portfolio 
We use SDOM to analyze the effects of the energy mix on the optimal (least-cost) 

storage portfolio and operation as well as the optimal VRE deployment and curtailment. We 

provide results in this section primarily from CAISO and MISO because these tend to produce 

bookend results, with CAISO being dominated by solar PV deployments and MISO by wind. 

Full results are provided in the Supplementary Information. The optimal VRE mix for the 

other five ISOs is between that of these two systems. For CAISO, depending on the renewable 

energy mix targets, the optimal solar PV energy share varies from 42.0%–56.7%, and the 

optimal wind energy share varies from 17.8%–29.3% (Figure 1a). For MISO, these ranges 

are 9.5%–25.3% and 63.3%–72.7% for solar PV and wind, respectively (Figure 1b). Although 

the optimal mix of solar PV and wind power generation depends on a variety of factors, 

including electricity demand patterns, the differences in the optimal mix of solar PV and wind 

power generation between CAISO and MISO seem to be driven more by the differences in the 

resource quality between the two regions. For instance, the average capacity factor of the 

potential solar PV plants considered in this study is 22.3% and 21.3% for CAISO and MISO, 

respectively (Supplementary Figs. 9a and 12a). In contrast, the average capacity factor of the 

potential wind facilities is 24.1% and 48.3% for CAISO and MISO, respectively 

(Supplementary Figs. 9a and 12a). Using the proposed framework and assumptions, 

achieving a 100% renewable energy mix in CAISO would require deploying 96.5 GW of solar 

PV and 36.2 GW of wind power generation capacity. In contrast, achieving a 100% renewable 

energy mix in MISO would require deploying 146.8 GW of solar PV and 170.0 GW of wind 

power generation capacity. The results for the carbon-free energy mix targets are similar 

and are summarized in Supplementary Fig. 16. Regardless of the ISO and for energy share 

targets less than 95%, the optimal VRE curtailment monotonically increases with the share 

of carbon-free or renewable energy sources; however, the optimal VRE curtailment 

decreases significantly when moving from the 95% to the 100% energy share target. This 

results from the seasonal storage needed to achieve 100% renewable energy. At the lower 

values, it is more cost-effective to curtail renewable energy than to deploy expensive 

seasonal storage. The optimal VRE mix and curtailment for the other ISOs are summarized 

in Supplementary Figs. 17–21. 
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Figure 1. Optimal VRE mix and curtailment for renewable energy mix targets in 

CAISO (top) and MISO (bottom) in 2050. a, optimal VRE mix and curtailment for CAISO. b, 

optimal VRE mix and curtailment for MISO. The definitions of VRE share and curtailment 

are presented in Methods. 

 

The optimal energy storage portfolios for the renewable energy mix targets for CAISO 

and MISO are summarized in Figure 2. The results for the other energy mix targets and ISOs 

are summarized in Supplementary Figs. 22–27. The results follow previously demonstrated 

trends, including increased storage capacity as a function of VRE deployment and a transition 

to longer-duration storage. In general, the required total storage power capacity increases 

monotonically with the renewable or carbon-free energy mix depending on the power 

system. Seasonal storage is not deployed before a renewable mix of approximately 85%–

90%. We also see significant variation in the amount of seasonal storage deployed based on 

the energy mix. For these energy mix targets, the required proportion of seasonal storage 

power capacity is less for CAISO (e.g., ~24% of total storage power capacity) than for the 

other ISOs (e.g., 35%–54% of total storage power capacity). In contrast, the required 

discharge duration is greater for CAISO for both short-duration (SD) and seasonal (SS) 

storage technologies. For instance, for CAISO the required discharge duration ranges from 

2.1 hours–5.1 hours for short-duration and from 44 days–59 days (~1.5 to ~2 months) for 

seasonal storage technology. For MISO, the required discharge duration ranges from 1.4 

hours–2.0 hours for short-duration and from 5.6 days–14.3 days for seasonal storage 
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technology (the results for carbon-free energy mix targets are similar). This difference 

between solar PV-driven systems (e.g., CAISO) and wind-driven systems (e.g., MISO) is 

driven by the combination of both diurnal and seasonal coincidence with load and the 

inherently higher spatial variability of wind, particularly in the diurnal timeframe. This 

result follows previous analysis that demonstrates the impact of the spatial variability of 

wind27. Achieving the lowest cost for a 100% renewable energy mix, however, would require 
significant deployment of seasonal energy storage.  

In addition, we see significant potential benefits for technologies that can decouple 

charging/discharging power capacities. We allow this for LD1 and the seasonal storage 

technologies (see Methods). Figure 3. shows that the LD1 charging/discharging capacity 

ratio for CAISO increases monotonically and is greater than 1 for 80% or greater energy mix 

targets. This results from the relatively short periods of surplus energy available during the 

day (requiring higher charging power), followed by long periods of somewhat lower load 

overnight, which requires less discharging power. In contrast, regardless of the energy 

target, the LD1 power capacity ratio is less than 1 for the other ISOs (wind-driven power 

systems). The seasonal storage power capacity ratio tends to decrease with the renewable 

energy target and is less than 1 for the 100% carbon-free or renewable energy mix 

regardless of the ISO; thus, along with duration, the charging-to-discharging power ratio is 

an important parameter and depends on the selected region and system conditions. To 

provide insight into how techno-economic assumptions could impact the optimal VRE mix 

and storage portfolio, we implement a sensitivity analysis for the 100% carbon-free and 

100% renewable energy mix targets in CAISO and MISO (see Supplementary Section 8). The 

results are summarized in Supplementary Figs. 32–35. 

 

Page 7 of 28 Energy & Environmental Science



8 
 

 
Figure 2. Optimal storage portfolio for renewable energy mix targets in CAISO (top) 

and MISO (bottom) in 2050. Storage power capacity by type is shown in the left plots (Fig. 

2.a for CAISO and Fig. 2.c for MISO). Storage discharge durations by technology type are 

shown in the right plots (Fig. 2.b for CAISO and Fig. 2.d for MISO). The average power 

capacity is reported for storage technologies that can decouple charging/discharging 

power capacity (LD1 and SS; see Methods). The definition of storage discharge duration is 

presented in Methods. 
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Figure 3. Optimal charging/discharging power capacity ratio for storage technology. 

a. optimal charging/discharging power capacity ratio for the LD1 and renewable energy 

mix targets. b. optimal charging/discharging power capacity ratio for the seasonal storage 

and renewable energy mix targets. Results for the carbon-free energy mix targets are 

shown in Supplementary Fig. 28.  
 

To better understand how power and energy capacity storage requirements vary as a 

function of VRE deployment, we use normalized metrics based on the average residual load 

(see Methods); see Figure 4. Note that this analysis is based on the seven ISOs and the six 

carbon-free or renewable energy mix targets (84 scenarios). First, the normalized total 

storage power capacity is expressed as a function of the normalized VRE installed generation 

capacity (Figure 4a). The normalized total storage power capacity increases linearly 

(Pearson correlation coefficient = 0.95) with the normalized VRE capacity. In contrast, 

depending on the ISO, the normalized total storage energy capacity increases exponentially 

with the corresponding energy share (Figure 4b). These findings are consistent with 

previous work27. 
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Figure 4. Total storage power and energy capacity for renewable scenarios as a 

function of VRE deployment in 2050. a, normalized total storage power capacity as a 

function of the normalized VRE capacity across all the ISOs. b, normalized total energy 

storage capacity as a function of the renewable energy share. Results for the carbon-free 

energy mix targets are shown in Supplementary Fig. 29. 

Operation of energy storage across different timescales 
Improving the understanding of the operational behavior of the storage portfolio can 

support the research community and industry by: (i) demonstrating the potential role for 

each technology to support grid operations, (ii) providing technology companies an 

understanding of the operational expectations for different types of storage, and (iii) 

providing information regarding expected operation for others that want to model this 

technology but will not perform a detailed operational analysis.  

The state of charge (SOC) for each storage technology and 100% renewable energy mix 

in CAISO and MISO are shown in Figure 5. In CAISO (Figure 5a), short duration, LD1, and LD2 

generally discharge storage between 16:00–20:00 and charge storage between 08:00–16:00. 

This accommodates the solar profile, the dominant renewable generation technology in 

CAISO. The seasonal storage SOC profile exhibits strong seasonal behavior, charging in the 

spring and summer and discharging in the fall and winter. These findings are similar for 

MISO (Figure 5b), except that LD1 and LD2 exhibit more multiday energy shifting than daily 

arbitrage.  
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Figure 5. Normalized state of charge (SOC) for storage devices in CAISO and MISO. a, 
normalized SOC for storage devices for CAISO 100% renewable energy mix. b, normalized 

SOC for storage devices for MISO 100% renewable energy mix. The definition of 
normalized SOC is presented in Methods. SOC=1 (dark red) implies that the storage device 
is full. SOC=0 (light red) implies that the storage device is empty. The normalized SOC for 

storage devices in the CAISO and MISO 100% carbon-free energy mix are presented in 
Supplementary Fig. 31. 

The equivalent annual discharging cycles for each technology create a comparable 

measure of cycling between regions and technologies and more clearly show the extent to 

which they are operated, as shown in Figure 6a. Equivalent annual discharging cycles are 

defined as the sum of all partial discharging cycles throughout the year (see Methods). There 

is a significant difference between the solar PV-dominated CAISO system and wind-

dominated systems. All short- and long-duration technologies cycle more often in CAISO to 

accommodate the diurnal cycling of solar PV, whereas those technologies cycle less often in 

the other ISOs. Seasonal storage devices have significantly lower equivalent cycles than other 

technologies mostly because of the large size of the energy storage capacity and relatively 

low round-trip efficiency.  

As the carbon-free or renewable share approaches 100%, one storage device is 

sometimes used to charge another storage device, i.e., storage-to-storage operation. The 
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resulting fraction of annual storage charging energy that is used to charge other storage 

devices is between 6%–12% of all charging energy for the 100% renewable energy mix 

target (Figure 6b) and occurs across all ISOs. The behavior begins near the 90% target for 

carbon-free scenarios and the 85% target for renewable scenarios. Examining the average 

time of day (Figure 6c) shows that in CAISO this behavior occurs mostly in the evening, and 

on limited occasions seasonal storage device is used to charge other storage technologies. 

The overall behavior is consistent with excess generation patterns for solar. In CAISO (Figure 

6d), this is related to periods of excess generation in the spring and summer associated with 

low load and high renewable production. Although multiple storage processes increase the 

overall energy losses, these losses are offset by the increased utilization of the resources and 

reduce the overall storage capacity needs of the system. As a result, transferring energy 

between storage devices effectively increases the amount of energy that can be stored in the 

seasonal storage device.  

 

 
Figure 6. Metrics for storage operation. a, equivalent annual discharging cycles for each 

storage technology and each ISO across all carbon-free and renewable energy mix targets: 
75%, 80%, 85%, 90%, 95%, and 100%. b, breakdown of storage energy used to charge 
other storage for each ISO with a 100% renewable energy mix target. c, hourly average 

breakdown of storage that charges other storage for CAISO with a 100% renewable energy 
mix target. d, monthly average breakdown of storage that charges other storage for CAISO 
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with a 100% renewable energy mix target. “Other” includes LD1 charging short duration, 
LD2 charging short duration, etc. 

Energy cost and cost of avoided CO2 emissions 
This analysis follows previous work that demonstrates a substantial increase in costs as a 

system approaches 100% renewable energy mix31,35. Figure 7 provides an example of the 

average energy cost (US$ per MWh) and the cost of avoided carbon dioxide (CO2) emissions 

(US$ tonne-1) across the various regions analyzed (see Methods). In SPP, the ISO with the 

lowest average energy costs, a high renewable energy mix can be achieved at electricity costs 

ranging from US$38.1 MWh-1 to US$48.2 MWh-1 for renewable energy mix, depending on the 

energy mix target. In contrast, energy costs for CAISO vary from US$51.6 MWh-1 to US$80.0 

MWh-1 for renewable energy mix, depending on the target. Results are similar for carbon-

free energy mix scenarios. Note that the capacity factor for the gas combined-cycle balancing 

unit varies from 8.4%–39.6%, depending on the ISO and the energy mix target. Based on this 

range for the capacity factor, the estimated levelized cost of energy for a gas combined-cycle 

unit with carbon capture and sequestration varies from US$77.8 MWh-1 (CAISO 75% carbon-

free energy mix, 39.6% capacity factor for gas combined cycle) to US$229.6 MWh-1 (ISONE 

95% renewable energy mix, 8.4% capacity factor for gas combined cycle) 36. It is noteworthy 

that this study did not consider the monetization of VRE externalities, e.g., climate and air-

quality benefits, which could reduce the costs of carbon-free or renewable power systems. 

As a reference, in 2015, the estimated combined climate and air-quality marginal benefit was 

approximately 2020 US$79.7 MWh-1 and 2020 US$43.7 MWh-1 for wind and solar PV power 

in the United States, respectively37. Regarding the cost of avoided CO2 emissions, an 85% 

carbon-free or renewable energy mix can be achieved at a cost of US$66.0 per tonne or less 

regardless of the ISO. Excluding CAISO, a 90% carbon-free or renewable energy mix can be 

achieved at a cost of US$63.5 per tonne or less in all other ISOs. In general, the cost of avoided 

carbon emissions is higher in CAISO (a PV-driven system) than in the other ISOs.  
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Figure 7. Energy cost and cost of avoided CO2 emissions. a, energy cost for renewable 

energy mix targets. b, cost of avoided CO2 emissions for renewable energy mix targets. Gray 
dashed line in Fig. 7b represents a cost of US$60.0 per tonne for avoided CO2 emissions. 

Results for the carbon-free scenarios are summarized in Supplementary Fig. 30. 
Additionally, the average energy cost and the cost of avoided CO2 emissions for the 

sensitivity scenarios are summarized in Supplementary Fig. 35. 

Conclusions 
Energy storage could play a pivotal role in enabling high and ultrahigh carbon-free or 

renewable power systems, but there is a lack of understanding of the scale and operation of 

the optimal wind, solar photovoltaic power, and energy storage portfolio to achieve these 

energy mix targets. The effects of energy mix on the optimal energy storage portfolio and the 

conditions and scale of VRE deployment to transition from short-duration to long-duration 

and seasonal storage are not comprehensively considered in the literature. In this study, 

therefore, we developed and implemented a high-temporal and high-spatial resolution grid 

planning framework to provide detailed insight into the optimal power generation and 

storage portfolio, based on four generic storage technologies, for seven independent system 

operators across the United States. 

Our results indicate that carbon-free and renewable energy targets of up to 80% are 

achieved with economic curtailment and a combination of short- and long-duration energy 

storage for the cost and performance assumptions used. There is a point between 80% and 

95% where seasonal storage becomes cost-competitive, depending on the specific power 

system.  

Achieving a 100% carbon-free or renewable energy target can benefit from a 

significant portion of the storage portfolio to come from seasonal storage (between 24% and 

54% of the total power capacity). As the energy mix target approaches 100%, the operation 

of short- and long-duration storage devices to charge seasonal storage devices, i.e., storage-
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to-storage operation, becomes cost-effective. This accounts for between 6% and 12% of the 

energy used to charge the storage devices for the 100% renewable energy mix in CAISO. 

Considering all scenarios, short-duration energy storage provides predominantly 

diurnal energy shifting with between 1.4 and 5.1 hours of discharge capacity, high cycling 

with 129–250 equivalent annual discharge cycles, and accounts for between 8%–56% of the 

storage portfolio power capacity. With higher power capital expenditures than the short-

duration storage technology but lower energy capacity cost and efficiency, long-duration 

storage technologies provide diurnal energy shifting and also some inter-day shifting with 

durations between 4.9–16.1 hours at discharge power, depending on the technology. Cycling 

behavior is driven by the round-trip efficiency, i.e., technologies with a higher efficiency tend 

to have higher number of equivalent cycles. Long-duration storage technologies perform 

between 23 and 161 equivalent annual discharge cycles for all ISOs except CAISO, which has 

100–229 equivalent discharge cycles. This is equivalent to a discharge capacity factor of 

2.4%–29%. Long-duration storage technologies comprised between 28%–87% of the total 

storage portfolio power capacity across all scenarios. Last, although seasonal storage is 

assumed to have a higher power capacity cost and a lower round-trip efficiency than any 

other technology, the energy capacity cost assumption for seasonal storage is more than an 

order of magnitude lower than the nearest competitors, i.e., long-duration storage 

technologies. As a result, seasonal storage takes the role of inter-day and intra-season 

storage with discharge durations between 3.6–58.5 days. Because of the large storage level 

and low round-trip efficiency, equivalent annual discharge cycles are between 0.8–7.9 for 

seasonal storage, equal to a discharge capacity factor of 7.7%–27%. Seasonal storage is not 

installed in every system or for every energy target, but when installed, it comprises between 

2%–54% of the storage portfolio power capacity and is particularly important for achieving 

100% energy targets. Regardless of the power system and for energy share targets below 

95%, the optimal solar photovoltaic and wind power curtailment monotonically increases 

with the share of carbon-free or renewable energy sources. Driven by the deployment of 

seasonal storage capacity, curtailment decreases significantly when moving from the 95% to 

the 100% energy mix target. Thus, despite the large-scale deployment of different storage 

technologies, power curtailment is a cost-effective flexibility option for the integration of 
variable renewable energy sources.  

Additionally, using the average residual load as a normalization factor, it was 

observed that the normalized total storage power capacity increases linearly with the 

normalized VRE capacity, whereas normalized total storage energy capacity increases 

exponentially with the corresponding energy share. Finally, this study shows that a high 

carbon-free or renewable energy mix can be achieved at electricity costs (including capital 

and operational expenditures) ranging from US$38.1 MWh-1 to US$80.4 MWh-1, which is 

likely less than the cost of operating with gas combined- cycle plus carbon capture-and-

sequestration units, e.g., US$77.8 MWh-1–US$229.6 MWh-1. Moreover, it was estimated that 

an 85% carbon-free or renewable energy mix can be achieved at a cost of avoided CO2 
emissions of US$66.0 per tonne or less, regardless of the power system.  
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Methods 
SDOM mathematical formulation 

The high-temporal- and high-spatial-resolution grid planning framework SDOM is 

formulated as a mixed-integer linear programming (MILP) model. SDOM optimizes both 

capacity expansion for select resources (VRE, gas combined cycle, and storage technologies) 

as well as storage operations. SDOM minimizes the total power system capital and 

operational cost for a given carbon-free or renewable energy target—e.g., an 80% renewable 

energy share—for a 1-year operation window assuming no transmission constraints, e.g., 

copperplate approach and perfect foresight of electricity demand and VRE generation. Note 

that a multiyear analysis could be more appropriate. For instance, simulation-based 

multiyear analyses allow for the assessment of the impacts of interannual variability of VRE 

generation and load on storage requirements31,38; however, multiyear chronological 

optimization analyses with hourly resolution are computationally challenging—based on 
current computing capabilities—and therefore it is left for future work. 

We use index ℎ to denote hours in the analysis period, e.g., 8,760 hours represented 

by the set 𝐻 (ℎ ∈ 𝐻). For instance, 𝐻 = {1,2,3, . . ,8760}. Additionally, SDOM considers a set 

(𝐽) of storage technologies (indexed by 𝑗, i.e., 𝑗 ∈ 𝐽), a set (𝐾) of potential solar PV plants 
(indexed by 𝑘, i.e., 𝑘 ∈ 𝐾), and a set (𝑊) of potential wind plants (indexed by 𝑤, i.e., 𝑤 ∈ 𝑊).  

The objective function is to minimize the total annual system cost (𝑇𝑆𝐶), as defined 

in equation 1. The total system cost includes the following cost components for VRE plants: 

capital cost (𝑆𝑜𝑙𝑎𝑟𝐶𝑎𝑝𝑒𝑥𝑘 for solar PV and 𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑒𝑥𝑤 for wind), transmission investment 

cost (𝑆𝑜𝑙𝑎𝑟𝑇𝑐𝑜𝑠𝑡𝑘 for solar PV and 𝑊𝑖𝑛𝑑𝑇𝑐𝑜𝑠𝑡𝑘 for wind), and FO&M cost (𝑆𝑜𝑙𝑎𝑟𝐹𝑂𝑀𝑘 for 

solar PV and 𝑊𝑖𝑛𝑑𝐹𝑂𝑀𝑘  for wind). The annualization of the VRE investment costs is 

represented by corresponding capital recovery factor: parameters 𝐶𝑅𝐹𝑠 and 𝐶𝑅𝐹𝑤 for solar 

PV and wind power plants, respectively. Each potential VRE plant has a maximum power 

capacity to be installed (determined by the reV model33): 𝐶𝑎𝑝𝑆𝑜𝑙𝑎𝑟𝑘  for solar PV and 

𝐶𝑎𝑝𝑊𝑖𝑛𝑑𝑤 for wind. Then, a positive continuous variable is used to select a given fraction 

(from 0 to 1) of that maximum power capacity of the plant: variable 𝑌𝑆𝑜𝑙𝑎𝑟𝑘 for solar PV and 

variable 𝑌𝑊𝑖𝑛𝑑𝑤 for wind.  

Additionally, the objective function considers the following cost components for 

storage technologies: power capacity capital cost (𝑃𝑆𝐶𝑎𝑝𝑒𝑥𝑗), energy capacity capital cost 

( 𝐸𝑆𝐶𝑎𝑝𝑒𝑥𝑗 ), FO&M cost ( 𝐹𝑂𝑀𝑗 ), and VO&M cost ( 𝑉𝑂𝑀𝑗 ). Note that some storage 

technologies—e.g., CAES (generic technology LD1) and hydrogen (generic technology SS)—

allow for decoupling charging and discharging power capacity; thus, SDOM uses a positive 

continuous variable for the installed charging power capacity (𝐶𝑎𝑝𝑃𝐶𝑗 ) and a different 

positive continuous variable for the installed discharging power capacity ( 𝐶𝑎𝑝𝑃𝐷𝑗 ). 

Accordingly, the parameter 𝐶𝑅𝑗  is used to denote the ratio of the cost for charging power 

capacity to the total power-related cost. Note that 𝐶𝑅𝑗 = 0.5 for technologies that do not 

allow for decoupling charging and discharging power capacity—Li-ion batteries (generic 

technology SD) and PHS (generic technology LD2). Capital cost for storage technologies is 
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annualized based on the corresponding capital recovery factor (𝐶𝑅𝐹𝑠𝑡𝑗). Regarding energy 

capacity, SDOM also optimizes the energy storage capacity (𝐶𝑎𝑝𝐸𝑆𝑗) for each technology. 

Total VO&M cost is expressed as a function of the hourly discharging power for each storage 

technology (𝑃𝐷ℎ,𝑗).  

Finally, the following cost components for the balancing unit—i.e., gas combined 

cycle—are included in the total system cost: capital cost (𝐵𝑈𝐶𝑎𝑝𝑒𝑥), fuel cost, FO&M cost, 

(𝐹𝑂𝑀𝑏𝑢), and VO&M cost (𝑉𝑂𝑀𝑏𝑢). Total fuel cost is calculated based on the fuel price 

(𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒), the heat rate (𝐻𝑅𝑏𝑢), and the hourly power generation from the balancing unit 

(𝐺𝑒𝑛𝐵𝑈ℎ). The investment cost associated with the balancing unit is annualized using the 

corresponding capital recovery factor (𝐶𝑅𝐹𝑏𝑢). Additionally, capital and FO&M costs are 

calculated based on the installed power capacity of the balancing unit (𝐶𝑎𝑝𝐵𝑈). 

 

 𝑀𝑖𝑛 𝑇𝑆𝐶 = ∑( 𝐶𝑅𝐹𝑠 ∙ (𝑆𝑜𝑙𝑎𝑟𝐶𝑎𝑝𝑒𝑥𝑘 + 𝑆𝑜𝑙𝑎𝑟𝑇𝑐𝑜𝑠𝑡𝑘) + 𝑆𝑜𝑙𝑎𝑟𝐹𝑂𝑀𝑘

𝑘∈𝐾

∙ 𝐶𝑎𝑝𝑆𝑜𝑙𝑎𝑟𝑘 ∙ 𝑌𝑆𝑜𝑙𝑎𝑟𝑘

+  ∑ (𝐶𝑅𝐹𝑤 ∙ (𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑒𝑥𝑤 + 𝑊𝑖𝑛𝑑𝑇𝑐𝑜𝑠𝑡𝑘) + 𝑊𝑖𝑛𝑑𝐹𝑂𝑀𝑘)

𝑤∈𝑊

∙ 𝐶𝑎𝑝𝑊𝑖𝑛𝑑𝑤 ∙ 𝑌𝑊𝑖𝑛𝑑𝑤

+  ∑ 𝐶𝑅𝐹𝑠𝑡𝑗

𝑗∈𝐽

∙ (𝐶𝑅𝑗. 𝑃𝑆𝐶𝑎𝑝𝑒𝑥𝑗 ∙ 𝐶𝑎𝑝𝑃𝐶𝑗 + (1 − 𝐶𝑅𝑗) ∙ 𝑃𝑆𝐶𝑎𝑝𝑒𝑥𝑗 ∙ 𝐶𝑎𝑝𝑃𝐷𝑗

+ 𝐸𝑆𝐶𝑎𝑝𝑒𝑥𝑗 ∙ 𝐶𝑎𝑝𝐸𝑆𝑗)  +   ∑ 𝐶𝑅𝑗 ∙ 𝐹𝑂𝑀𝑗 ∙ 𝐶𝑎𝑝𝑃𝐶𝑗

𝑗∈𝐽

+   ∑(1 − 𝐶𝑅𝑗) ∙ 𝐹𝑂𝑀𝑗 ∙ 𝐶𝑎𝑝𝑃𝐷𝑗

𝑗∈𝐽

+ ∑ 𝑉𝑂𝑀𝑗 ∙ ∑ 𝑃𝐷ℎ,𝑗

ℎ∈𝐻𝑗∈𝐽

+ (𝐶𝑅𝐹𝑏𝑢

∙ 𝐵𝑈𝐶𝑎𝑝𝑒𝑥 + 𝐹𝑂𝑀𝑏𝑢) ∙ 𝐶𝑎𝑝𝐵𝑈 + ( 𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒 ∙ 𝐻𝑅𝑏𝑢 + 𝑉𝑂𝑀𝑏𝑢)

∙ ∑ 𝐺𝑒𝑛𝐵𝑈ℎ

ℎ∈𝐻

  

1 

 

The capital recovery factor for solar PV, wind, energy storage, and the balancing unit 

is calculated using equations 2, 3, 4, and 5, respectively. The discount rate is represented by 

scalar 𝑟 (6.0%). Scalars 𝜏𝑠 and 𝜏𝑤 denote the lifetime (in years) for solar PV ( 30 years36) and 

wind power plants (30 years36), respectively. Additionally, parameter 𝜏𝑗  denotes the lifetime 

for the storage technology 𝑗. Finally, scalar 𝜏𝑏𝑢 represents the lifetime for the balancing unit 
(gas CC) (30 years)36. 

 

 
𝐶𝑅𝐹𝑠 =

𝑟 ∙ (1 + 𝑟)𝜏𝑠

(1 + 𝑟)𝜏𝑠 − 1
 2 
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𝐶𝑅𝐹𝑤 =

𝑟 ∙ (1 + 𝑟)𝜏𝑤

(1 + 𝑟)𝜏𝑤 − 1
 3 

 

 
𝐶𝑅𝐹𝑠𝑡𝑗 =

𝑟 ∙ (1 + 𝑟)𝜏𝑗

(1 + 𝑟)𝜏𝑗 − 1
     ∀ 𝑗 ∈ 𝐽 4 

 

 
𝐶𝑅𝐹𝑏𝑢 =

𝑟 ∙ (1 + 𝑟)𝜏𝑏𝑢

(1 + 𝑟)𝜏𝑏𝑢 − 1
 5 

 

 The power balance constraint for the system is expressed in equation 6. Parameter 

𝐿𝑜𝑎𝑑ℎ represents the total hourly load of the power system. Positive continuous variable 

𝑃𝐶𝑗,ℎ  denotes the hourly charging power for the storage technologies. Additionally, 

parameters 𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ , 𝐻𝑦𝑑𝑟𝑜ℎ , and 𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ  denote the time series for the power 

generation from the existing nuclear, hydro, and other renewable (e.g., biomass and 

geothermal) power plants, respectively. Scalar 𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑟  is used to activate nuclear 

generation for the carbon-free energy targets ( 𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑟 = 1 ) or to deactivate nuclear 

generation for the renewable energy targets (𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑟 = 0). Similarly, positive continuous 

variables 𝐺𝑒𝑛𝑆𝑜𝑙𝑎𝑟ℎ and 𝐺𝑒𝑛𝑊𝑖𝑛𝑑ℎ represent hourly power generation (used by the grid) 

from new solar PV and wind power plants, respectively. 

  

 𝐿𝑜𝑎𝑑ℎ + ∑ 𝑃𝐶𝑗,ℎ

𝑗∈𝐽

− 𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑟 ∙ 𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ − 𝐻𝑦𝑑𝑟𝑜ℎ − 𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ − 𝐺𝑒𝑛𝑆𝑜𝑙𝑎𝑟ℎ

− 𝐺𝑒𝑛𝑊𝑖𝑛𝑑ℎ − ∑ 𝑃𝐷𝑗,ℎ

𝑗∈𝐽

− 𝐺𝑒𝑛𝐵𝑈ℎ = 0     ∀ ℎ ∈ 𝐻 
6 

 

 The carbon-free or renewable energy mix target (𝐺𝑒𝑛𝑀𝑖𝑥𝑇𝑎𝑟𝑔𝑒𝑡) is enforced by 

equality constraint 7, which includes energy losses associated with the operation of storage 

technologies. Additionally, the power generation constraint for solar PV and wind facilities 

is described in equations 8 and 9, respectively. Hourly solar PV and wind curtailment is 

represented by positive continuous variables 𝐶𝑢𝑟𝑡𝑆𝑜𝑙𝑎𝑟ℎ  and 𝐶𝑢𝑟𝑡𝑊𝑖𝑛𝑑ℎ , respectively. 

Moreover, the hourly capacity factor for solar PV and wind facilities is represented by 

parameters 𝐶𝐹𝑆𝑜𝑙𝑎𝑟𝑘,ℎ  and 𝐶𝐹𝑊𝑖𝑛𝑑𝑤,ℎ , respectively. The required power capacity for the 

gas combined-cycle balancing unit is defined by equation 10. 

 

 

∑ 𝐺𝑒𝑛𝐵𝑈ℎ = (1 − 𝐺𝑒𝑛𝑀𝑖𝑥𝑇𝑎𝑟𝑔𝑒𝑡) ∙ ∑ (𝐿𝑜𝑎𝑑ℎ + ∑(𝑃𝐶𝑗,ℎ − 𝑃𝐷𝑗,ℎ) 

𝑗∈𝐽

)

ℎ∈𝐻ℎ∈𝐻

 7 
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 𝐺𝑒𝑛𝑆𝑜𝑙𝑎𝑟ℎ + 𝐶𝑢𝑟𝑡𝑆𝑜𝑙𝑎𝑟ℎ = ∑ 𝐶𝐹𝑆𝑜𝑙𝑎𝑟𝑘,ℎ ∙ 𝐶𝑎𝑝𝑆𝑜𝑙𝑎𝑟𝑘 ∙ 𝑌𝑆𝑜𝑙𝑎𝑟𝑘

𝑘∈𝐾

     ∀ ℎ ∈ 𝐻 8 

 

 𝐺𝑒𝑛𝑊𝑖𝑛𝑑ℎ + 𝐶𝑢𝑟𝑡𝑊𝑖𝑛𝑑ℎ = ∑ 𝐶𝐹𝑊𝑖𝑛𝑑𝑤,ℎ ∙ 𝐶𝑎𝑝𝑊𝑖𝑛𝑑𝑤 ∙ 𝑌𝑊𝑖𝑛𝑑𝑤

𝑤∈𝑊

     ∀ ℎ ∈ 𝐻 9 

 

 𝐺𝑒𝑛𝐵𝑈ℎ ≤ 𝐶𝑎𝑝𝐵𝑈     ∀ ℎ ∈ 𝐻 10 
  

 The installed charging and discharging power capacity for storage technologies is 

constrained by the maximum power capacity (𝑃𝑆𝑚𝑎𝑥𝑗), as defined by equations 11 and 12, 

respectively; however, these power capacities should be the same for storage technologies 

that do not allow for decoupling charging and discharging power capacity, as described by 

equation 13. This subset of technologies is defined by set 𝑁𝐷 = {𝐿𝑖 − 𝐼𝑜𝑛 (𝑆𝐷), 𝑃𝐻𝑆 (𝐿𝐷2)}. 

The maximum power capacity could be defined based on the peak load of the system. 

Similarly, the installed energy capacity for each storage technology is constrained by the 

minimum (𝐷𝑆𝑚𝑖𝑛𝑗) and maximum (𝐷𝑆𝑚𝑎𝑥𝑗) discharge duration, as defined by equations 14 

and 15, respectively. The minimum discharge duration is defined based on the temporal 

resolution used by SDOM, i.e., 1 hour, whereas the maximum discharge duration could be 

defined based on technical specifications (or industrial practices)—e.g., 12 hours for Li-ion 

batteries (generic technology short duration) or the estimated potential for a specific 

technology and power system territory, particularly for CAES, PHS, and hydrogen storage39–

41. Note that we make the following assumptions regarding the efficiency of the storage 

technologies: (i) the self-discharge rate is negligible, and (ii) the efficiencies for charging and 

discharging are equal; thus, 𝑛𝑗
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

= 𝑛𝑗
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

= √𝑛𝑗 , where parameter 𝜂𝑗  represents 

the round-trip efficiency for the storage technology 𝑗 . Additionally, hourly charging and 

discharging power should be less than the corresponding power capacity, as expressed by 

equations 16 and 17. Regarding the operation of storage technologies, SDOM considers that 

storage devices cannot charge and discharge simultaneously, as expressed by equations 18 

and 19. Binary variable 𝑌𝑆𝑗,ℎ is used to define the operation mode of the storage devices—

i.e., 𝑌𝑆𝑗,ℎ=1 for charging, and 𝑌𝑆𝑗,ℎ=0 for discharging. Note that for market-based operation 

of storage devices, the simultaneous charging and discharging could be beneficial during 

time periods with negative prices25. The energy balance for the SOC of storage units 

( 𝑆𝑂𝐶𝑗,ℎ) is represented by equation 20, whereas equation 21 is used to endogenously 

optimize the initial SOC of storage units. Using equation 21 to appropriately set the initial 

SOC is particularly important for seasonal storage devices. The SOC of storage should be less 

than the energy capacity of the storage devices, as expressed by equation 22. Finally, to limit 

the degradation of the short-duration storage technology (SD), e.g., Li-ion batteries, 

constraint 23 is included to limit the equivalent number of cycles per year based on the cycle 

life (𝑀𝑎𝑥𝐶𝑦𝑐𝑙𝑒𝑠𝑆𝐷), e.g., 325022, and the corresponding lifetime (𝜏𝑆𝐷). The domain for each 

variable used in the mathematical formulation of SDOM is defined in equations 24–29. Note 
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that SDOM neglects ramp rates, reserve requirements, and subhourly VRE fluctuations; 

however, it is likely that these items could be addressed by the diversity, rapid response, and 

installed capacity of the storage technologies considered in this study. For instance, 

regarding the flexibility, e.g., the ability of the power system to respond to variability and 

uncertainty in load and power generation (primarily addressing high net load ramp rates), 

the maximum net load up ramps for 100% renewable energy mix target are 34.0 GW/h and 

48.1 GW/h for CAISO and MISO, respectively (please see Supplementary Fig. 36). 

Additionally, the maximum net load down ramps for 100% renewable energy mix target are 

31.4 GW/h and 43.2 GW/h for CAISO and MISO, respectively (please see Supplementary Fig. 

36). On the other hand, the total optimal deployment of energy storage power capacity for 

100% renewable energy mix target is 36.0 GW and 77.0 GW for CAISO and MISO, 

respectively. Note that the corresponding optimal discharge duration for the storage 

technologies is greater than 2 hours. Moreover, the response time for the storage 

technologies used as a reference in this study, e.g., Li-ion, CAES, PHS, and hydrogen, is in the 

order of minutes or seconds (very high ramp rates)42. SDOM is implemented in GAMS43 as a 

MILP model and solved with CPLEX44, and the relative optimality gap was set to 3%.  

 

 𝐶𝑎𝑝𝑃𝐶𝑗 ≤ 𝑃𝑆𝑚𝑎𝑥𝑗     ∀ 𝑗 ∈ 𝐽 11 
 

 𝐶𝑎𝑝𝑃𝐷𝑗 ≤ 𝑃𝑆𝑚𝑎𝑥𝑗     ∀ 𝑗 ∈ 𝐽 12 
 

 𝐶𝑎𝑝𝑃𝐶𝑗 =  𝐶𝑎𝑝𝑃𝐷𝑗     ∀ 𝑗 ∈ 𝑁𝐷 13 
 

 
𝐶𝑎𝑝𝐸𝑆𝑗 ≥ 𝐷𝑆𝑚𝑖𝑛𝑗 ∙

𝐶𝑎𝑝𝑃𝐷𝑗

√𝜂𝑗

     ∀ 𝑗 ∈ 𝐽 14 

 

 
𝐶𝑎𝑝𝐸𝑆𝑗 ≤ 𝐷𝑆𝑚𝑎𝑥𝑗 ∙

𝐶𝑎𝑝𝑃𝐷𝑗

√𝜂𝑗

     ∀ 𝑗 ∈ 𝐽 15 

 

 𝑃𝐶𝑗,ℎ ≤ 𝐶𝑎𝑝𝑃𝐶𝑗     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 16 
 

 𝑃𝐷𝑗,ℎ ≤ 𝐶𝑎𝑝𝑃𝐷𝑗     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 17 
 

 𝑃𝐶𝑗,ℎ ≤ 𝑃𝑆𝑚𝑎𝑥𝑗 ∙ 𝑌𝑆𝑗,ℎ     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 18 
 

 𝑃𝐷𝑗,ℎ ≤ 𝑃𝑆𝑚𝑎𝑥𝑗 ∙ (1 − 𝑌𝑆𝑗,ℎ)     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 19 
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𝑆𝑂𝐶𝑗,ℎ = 𝑆𝑂𝐶𝑗,ℎ−1 + √𝜂𝑗 ∙ 𝑃𝐶𝑗,ℎ −

𝑃𝐷𝑗,ℎ

√𝜂𝑗

     ∀ ℎ ∈ 𝐻, ℎ > 1, 𝑗 ∈ 𝐽 20 

 

 
𝑆𝑂𝐶𝑗,ℎ=1 = 𝑆𝑂𝐶𝑗,ℎ=|𝐻| + √𝜂𝑗 ∙ 𝑃𝐶𝑗,ℎ=1 −

𝑃𝐷𝑗,ℎ=1

√𝜂𝑗

     ∀ 𝑗 ∈ 𝐽 21 

 

 𝑆𝑂𝐶𝑗,ℎ ≤ 𝐶𝑎𝑝𝐸𝑆𝑗     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 22 
 

 
∑ 𝑃𝐷𝑆𝐷,ℎ

ℎ∈𝐻

≤
𝑀𝑎𝑥𝐶𝑦𝑐𝑙𝑒𝑠𝑆𝐷

𝜏𝑆𝐷
∙ 𝐶𝑎𝑝𝐸𝑆𝑆𝐷 23 

 

 𝐺𝑒𝑛𝑆𝑜𝑙𝑎𝑟ℎ ⊆  ℝ≥0, 𝐶𝑢𝑟𝑡𝑆𝑜𝑙𝑎𝑟ℎ ⊆  ℝ≥0, 𝐺𝑒𝑛𝑊𝑖𝑛𝑑ℎ ⊆  ℝ≥0,
𝐶𝑢𝑟𝑡𝑊𝑖𝑛𝑑ℎ ⊆  ℝ≥0, 𝐺𝑒𝑛𝐵𝑈ℎ ⊆  ℝ≥0     ∀ ℎ ∈ 𝐻 

24 

 

 𝑌𝑆𝑜𝑙𝑎𝑟𝑘 ∈ [0, 1] ⊆  ℝ≥0     ∀ 𝑘 ∈ 𝐾 25 
 

 𝑌𝑊𝑖𝑛𝑑𝑤 ∈ [0, 1] ⊆  ℝ≥0     ∀ 𝑤 ∈ 𝑊 26 
 

 𝐶𝑎𝑝𝐵𝑈 ⊆  ℝ≥0 27 
 

 𝐶𝑎𝑝𝑃𝐶𝑗 ⊆  ℝ≥0, 𝐶𝑎𝑝𝑃𝐷𝑗 ⊆  ℝ≥0, 𝐶𝑎𝑝𝐸𝑆𝑗  ⊆  ℝ≥0      ∀ 𝑗 ∈ 𝐽 28 
 

 𝑃𝐶𝑗,ℎ ⊆  ℝ≥0, 𝑃𝐷𝑗,ℎ ⊆  ℝ≥0, 𝑆𝑂𝐶𝑗,ℎ  ⊆  ℝ≥0, 𝑌𝑆𝑗,ℎ ∈ {0, 1}     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 29 
 

ISO load, conventional generation data, and potential for energy storage  
Data regarding load time series as well as power generation time series for nuclear, 

hydro, and other renewable power plants were collected for every ISO based on 2019 
operational reports. In this work, we focus on the 2050 operation time frame; therefore, the 
2019 load time series (2019𝐿𝑜𝑎𝑑ℎ) for each ISO was scaled up based on projected data by 
the U.S. Energy Information Administration32, as described in equation 30. Parameter 
2050𝑇𝐿𝑜𝑎𝑑 denotes the projected total load for the corresponding ISO in 2050. On the other 
hand, power generation for nuclear, hydro, and other renewables is fixed based on the 2019 
time series, as follows: 𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ = 2019𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ ∀ ℎ ∈ 𝐻 , 𝐻𝑦𝑑𝑟𝑜ℎ = 2019𝐻𝑦𝑑𝑟𝑜ℎ  ∀ ℎ ∈
𝐻 , and 𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ = 2019𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ ∀ ℎ ∈ 𝐻 , where parameters 2019𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ , 
2019𝐻𝑦𝑑𝑟𝑜ℎ , and 2019𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ  represent the 2019 power generation time series for 
nuclear, hydro, and other renewable power plants, respectively. Note that the nuclear and 
hydropower generation in United States is projected to decline in the 2019–2050 time frame, 
whereas biomass power generation is projected to increase32. Moreover, there is flexibility 
in hydro, biomass, and geothermal power generation that we are not considering. Adjusting 
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the behavior of these renewable units can also mitigate the need for some storage, but it is 
unlikely to affect the overall results and trends. 

 The corresponding load and power generation time series used by SDOM are 

provided in the Supplementary Figs. 2-8. Regarding the potential for energy storage, we 

allow for the installation of any energy capacity for each generic storage technology in each 

ISO. Note that this assumption requires a more detailed analysis of the potential for 

technologies like PHS, CAES, and hydrogen storage in each ISO’s territory, which is out of the 

scope of this study.   

 
𝐿𝑜𝑎𝑑ℎ =

2050𝑇𝐿𝑜𝑎𝑑

∑ 2019𝑇𝐿𝑜𝑎𝑑ℎℎ∈𝐻
∙  2019𝐿𝑜𝑎𝑑ℎ      ∀ ℎ ∈ 𝐻 30 

     

VRE capacity, representative profiles, and transmission cost 
We used the reV model33 to estimate the maximum available capacities, required 

transmission investments, and representative generation profiles (with hourly resolution) 

for each ISO and for a 1-year optimization window. Specifically, we used reV to generate 

time-synchronous solar PV and wind generation profiles based on 2012 weather data. reV 

uses resource assessment cells of 2 km x 2 km for wind and 4 km x 4 km for solar PV, which 

are aggregated into a maximum area of 33.2 km2 considering spatial exclusions—i.e., the 

developable area is 33.2 km2 minus excluded areas. These exclusions can be classified into: 

(i) regulatory restrictions (local, state, or federal protected land, urban and suburban areas, 

and protected wildlife species habitat), (ii) technical barriers (steep terrain and water 

bodies), and (iii) stakeholder constraints (U.S. Department of Defense lands, U.S. Forest 

Service lands, and private conservation areas)33. Thus, this spatial granularity allows for a 

better representation of differences in VRE siting and generation profiles, land-use 

restrictions, and transmission capacity required to integrate a given VRE facility. Note that 

the spatial resolution feature of SDOM refers to the spatial modeling of VRE generation. For 

solar PV, the selected technology is 1-axis tracking utility-scale solar PV with a ratio of direct 

current (DC) to alternating current (AC) of 1.3, tilt angle of 0°, azimuth of 180°, power density 

of 32 MW per km2, and ground cover ratio of 0.433. For land-based wind, different 

technologies or classes—e.g., from Class 1 to Class 10—can be selected for each location 

based on the average wind speed (meter per second) as defined by NREL’s 2020 Annual 

Technology Baseline33,36 and using a power density of 3 MW per km2. Representative 

capacity factor time series are generated based on the weighted average approach. 

Additionally, required transmission investment or cost is calculated for each VRE location 

based on the distance to the interconnection point, a line cost of US$3,777.7 per MW-mile, 

and a line tie-in cost of US$14,422.5 per MW (if required)33. The total number of potential 

solar PV facilities varies from 2,000 to 3,000, depending on the ISO, whereas the total 

number of potential wind facilities varies from 3,477 to 6,000. A summary of the maximum 

power generation capacity and the yearly average capacity factor for each ISO is presented 
in Supplementary Figs. 9–15. 
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Metrics for VRE and energy storage deployment and operation 
To analyze the results from SDOM, we define some metrics for the optimal 

deployment of VRE generation capacity and the storage portfolio. First, the VRE share 

(𝑉𝑅𝐸𝑠ℎ𝑎𝑟𝑒 (%)) is calculated using equation 31, and VRE curtailment (𝑉𝑅𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 (%)) 

is evaluated via equation 32. Finally, the installed VRE generation capacity (𝑉𝑅𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) is 

calculated using equation 33. 

 
𝑉𝑅𝐸𝑠ℎ𝑎𝑟𝑒 = 100 ∙ ∑ (

𝐺𝑒𝑛𝑆𝑜𝑙𝑎𝑟ℎ + 𝐺𝑒𝑛𝑊𝑖𝑛𝑑ℎ

𝐿𝑜𝑎𝑑ℎ + ∑ (𝑃𝐶𝑗,ℎ − 𝑃𝐷𝑗,ℎ) 𝑗∈𝐽

)

ℎ∈𝐻

 31 

 

 
𝑉𝑅𝐸𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 = 100 ∙ ∑ (

𝐶𝑢𝑟𝑡𝑆𝑜𝑙𝑎𝑟ℎ + 𝐶𝑢𝑟𝑡𝑊𝑖𝑛𝑑ℎ

𝐺𝑒𝑛𝑆𝑜𝑙𝑎𝑟ℎ + 𝐶𝑢𝑟𝑡𝑆𝑜𝑙𝑎𝑟ℎ + 𝐺𝑒𝑛𝑊𝑖𝑛𝑑ℎ + 𝐶𝑢𝑟𝑡𝑊𝑖𝑛𝑑ℎ
)

ℎ∈𝐻

 32 

 

 𝑉𝑅𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = ∑ 𝐶𝑎𝑝𝑆𝑜𝑙𝑎𝑟𝑘 ∙ 𝑌𝑆𝑜𝑙𝑎𝑟𝑘

𝑘∈𝐾

+  ∑ 𝐶𝑎𝑝𝑊𝑖𝑛𝑑𝑤 ∙ 𝑌𝑊𝑖𝑛𝑑𝑤

𝑤∈𝑊

 33 

 

The storage discharge duration for each technology (𝑆𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗) is calculated based 

on equation 34. The normalized SOC (𝑛𝑆𝑂𝐶𝑗,ℎ) for storage technologies is calculated using 

equation 35. Additionally, total storage power capacity (𝑆𝑇𝑃𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ) and total storage 

energy capacity (𝑆𝑇𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) are calculated based on equations 36 and 37, respectively. 

Finally, the average residual load (𝐴𝑉𝑅𝑙𝑜𝑎𝑑) is calculated using equation 38 and is based on 

the total number of hours considered in the optimization window (|𝐻|).  

 
𝑆𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗 =

√𝜂𝑗 ∙ 𝐶𝑎𝑝𝐸𝑆𝑗

𝐶𝑎𝑝𝑃𝐷𝑗
     ∀ 𝑗 ∈ 𝐽 34 

 

 
𝑛𝑆𝑂𝐶𝑗,ℎ =

𝑆𝑂𝐶𝑗,ℎ

𝐶𝑎𝑝𝐸𝑆𝑗
     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽 35 

 

 
𝑆𝑇𝑃𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = (

1

2
) ∙ ∑(𝐶𝑎𝑝𝑃𝐶𝑗 + 𝐶𝑎𝑝𝑃𝐷𝑗)

𝑗∈𝐽

 36 

 

 𝑆𝑇𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = ∑ 𝐶𝑎𝑝𝐸𝑆𝑗

𝑗∈𝐽

 37 

 

 
𝐴𝑉𝑅𝑙𝑜𝑎𝑑 =

∑ (𝐿𝑜𝑎𝑑ℎ − 𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑟 ∙ 𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ − 𝐻𝑦𝑑𝑟𝑜ℎ − 𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ)ℎ∈𝐻

|𝐻|
 38 
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Storage cycling is measured using equivalent cycles, which represent a sum of storage 

charging power for a specific technology with respect to the total energy storage capacity of 
that technology. Equivalent discharge cycles are calculated using equation 39.  

 

 
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝐶𝑦𝑐𝑙𝑒𝑠𝑗 =

∑ 𝑃𝐷𝑗,ℎℎ∈𝐻

𝐶𝑎𝑝𝐸𝑆𝑗
     ∀  𝑗 ∈ 𝐽 39 

 

The average electricity supply cost or energy cost (𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 (𝑈𝑆$ 𝑝𝑒𝑟 𝑀𝑊ℎ)) is 

calculated using equation 40. Moreover, the cost of avoided CO2 emissions is calculated 

based on the fuel emission factor (𝐶𝑂2𝐸𝑚𝑖) (tonnes of CO2 per MMBtu) and the heat rate 

( 𝐻𝑅𝑏𝑢 ) of the balancing unit, as described in equation 41. Parameters 𝑇𝑆𝐶𝑟𝑒𝑓  and 

𝐺𝑒𝑛𝐵𝑈𝑟𝑒𝑓ℎ denote the total system cost and the hourly generation from the balancing unit 

for the reference case, respectively. The reference case corresponds to the optimal power 

system design without enforcing any target for carbon-free or renewable energy mix—i.e., 

removing equation 7 from the mathematical formulation. 

 

 
𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 =

𝑇𝑆𝐶

∑ (𝐿𝑜𝑎𝑑ℎ − 𝛼𝑛𝑢𝑐𝑙𝑒𝑎𝑟. 𝑁𝑢𝑐𝑙𝑒𝑎𝑟ℎ − 𝐻𝑦𝑑𝑟𝑜ℎ − 𝑂𝑡ℎ𝑒𝑟𝑅𝑒𝑛ℎ)ℎ∈𝐻
 40 

 

 
𝐶𝑜𝑠𝑡𝐶𝑂2 =

𝑇𝑆𝐶 − 𝑇𝑆𝐶𝑟𝑒𝑓

𝐶𝑂2𝐸𝑚𝑖 ∙ 𝐻𝑅𝑏𝑢 ∙ ∑ (𝐺𝑒𝑛𝐵𝑈𝑟𝑒𝑓ℎ − 𝐺𝑒𝑛𝐵𝑈ℎ)ℎ∈𝐻
 41 

 

Soft link of SDOM to long-term and large-scale energy planning and operation 
models 

Despite recent progress on the techno-economic modeling of energy storage45, 

modeling of energy storage—particularly for long-duration and seasonal applications—in 

long-term and large-scale energy planning and operation models remains a major 

challenge46. On the other hand, storage modeling tools, e.g., price-taker or copperplate tools, 

do not accurately represent power system details. For instance, SDOM assumes no 

transmission constraints, perfect foresight of electricity demand and VRE generation, and no 

power import/export with neighboring regions. In this section, we speculate on how SDOM 

and the framework established in this paper could be used to improve the modeling of 

storage technologies in long-term and large-scale power capacity planning and production 

cost models. Power capacity planning models are used to optimize long-term expansion—

based on a multidecadal time window—of generation and transmission power capacity. 

These models usually have lower temporal and spatial resolutions but wider geographic 

coverage than production cost models used for power systems operations optimization. For 

instance, power capacity planning models could be based on time slices or representative 

days and balancing areas with a limited representation of the chronology of operational 
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decisions, which is critical to accurately model storage technologies of any discharge 

duration.  

In contrast, production cost models are used to assess system operations by 

optimizing unit commitment and economic dispatch decisions based on exogenous power 

generation and transmission build-out and require higher temporal and spatial resolutions. 

For example, production cost models could use hourly resolution and nodal modeling of the 

transmission network, allowing for a better representation of the chronology of operational 

decisions; however, production cost models are usually run with a short optimization 

window (e.g., 1 day), and they are run sequentially because of the computational challenges 

of optimizing the hourly operation for the entire year. Thus, the optimization of long-

duration and seasonal energy storage in production cost models is challenging. In this 

context, SDOM can provide information regarding the scale of storage requirements—e.g., 

power capacity and discharge duration—and operational policies for short-duration, long-

duration, and seasonal storage technologies. For power capacity planning models, results 

from SDOM can be used to define the operational profile of storage devices as well as the 

scale of the associated power and energy capacities. Note that the power capacity planning 

model could be allowed to adjust these capacities based on just one or multiple devices for 

each storage technology. In summary, SDOM can be used to prescreen energy storage 

requirements and inputs for the power capacity planning model. Moreover, the production 

cost model can leverage SDOM to simulate long-duration and seasonal storage technologies 

based on the spatially distributed power and energy capacity deployment provided by the 

capacity planning model and the operational policies provided by SDOM. 
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