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Understanding the Molecular Mechanisms of Transcrip-
tional Bursting

Alena Klindziuka and Anatoly B. Kolomeiskyb

In recent years, it has been experimentally established that transcription, a fundamental biological
process that involves the synthesis of messenger RNA molecules from DNA templates, does not
proceed continuously as was expected. Rather, it exhibits a distinct dynamic behavior of alternating
between productive phases when RNA molecules are actively synthesized and inactive phases when
there is no RNA production at all. The bimodal transcriptional dynamics is now confirmed to be
present in most living systems. This phenomenon is known as transcriptional bursting and it at-
tracts significant amounts of attention from researchers in different fields. However, despite multiple
experimental and theoretical investigations, the microscopic origin and biological functions of the
transcriptional bursting remain unclear. Here we discuss the recent developments in uncovering the
underlying molecular mechanisms of transcriptional bursting and our current understanding of them.
Our analysis presents a physicochemical view of the processes that govern transcriptional bursting
in living cells.

1 Introduction
It is well known that biological cells store their genetic mate-
rial in DNA molecules and that the information contained in the
DNA is transferred via a process called transcription.1–3 From the
chemical point of view, this process involves special enzymatic
molecules, known as RNA polymerases (RNAPs), that catalyze the
synthesis of messenger RNA molecules.4 An RNAP sequentially
translocates along the specific DNA segment, known as a gene,
producing RNA copies complementary to this DNA segment. Sev-
eral other types of protein molecules also participate in this pro-
cess to ensure that the RNAPs start on time from the correct posi-
tion on the DNA strand (beginning of the to-be-transcribed gene)
and that the transcription process terminates at the right position
(end of the transcribed gene).1,2,4–6 Because of the fundamental
importance of transcription in the functioning of all living sys-
tems, it has been intensively investigated for many years using
a wide spectrum of experimental and theoretical methods.5–10

However, there are still many unanswered questions about the
molecular mechanisms that govern transcription and related pro-
cesses.8

Messenger RNA molecules produced during transcription are
utilized in the synthesis of corresponding proteins that are needed
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to maintain the operation of the living organisms. However,
there are cellular processes that actively degrade RNA, requir-
ing a constant supply of newly synthesized species.11 Based on
these arguments, it was generally assumed that transcription is
more or less a continuous process of RNA synthesis. Surpris-
ingly, recent experimental studies that measured with high tem-
poral and spatial resolutions single-cell transcription dynamics re-
vealed that this process is very noisy and discontinuous: periods
with active RNA synthesis alternate with the periods of no RNA
production.7,12–14 Importantly, in these experiments, the tran-
scription dynamics was monitored at the single-cell level, avoid-
ing problems with ensemble-averaging measurements.15 This ob-
served phenomenon of discontinuous transcription dynamics is
called the transcriptional bursting. It attracted the attention of
researchers from different fields and prompted them to try to un-
cover the microscopic origin and biological relevance of these ob-
servations.6,9,10,15,16 Some progress has been achieved in recent
years, allowing for a better understanding of molecular mecha-
nisms and regulation of the transcription process.9,10 However,
many questions remain unanswered.

In this article, we discuss the underlying processes that lead
to bursting dynamics in transcription. We do not aim to present
a comprehensive description of transcriptional bursting account-
ing for all results and observations in this field since there are
already several recent excellent reviews that cover most biologi-
cal, biochemical and biophysical aspects of this fascinating phe-
nomenon.9,10,15 Rather, we would like to present a slightly dif-
ferent, physicochemical, view of the microscopic mechanisms be-
hind transcriptional bursting focusing on several of its most im-
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portant features and discussing the physics underlying the obser-
vations. Our goal is to stimulate more discussions and studies
on the microscopic origin of transcriptional bursting that would
better clarify its biological role.

2 Experimental Observations
A significant advance in our understanding of the transcriptional
process occurred after the developments in the single-molecule
fluorescent microscopy methods enabled researchers to monitor
and count the produced RNA molecules with unprecedented tem-
poral and spatial resolutions.7,12,14,17–21 In these experiments,
the newly synthesized messenger RNA molecules were labeled
by chemically associating them to fluorescent proteins. Then,
measuring the fluorescence signal, which is proportional to the
number of messenger RNAs in the system, allowed researchers to
directly observe the appearance and disappearance of the RNA
molecules as a function of time. An example of such investigation
on mammalian cells is presented in Fig. 1.19 One can see that, al-
though all these cells are genetically identical, they exhibit a very
heterogeneous behavior in the production of RNA molecules. This
leads to a broad distribution in the number of RNA transcripts per
cell. The analysis of these experimental results suggested that this
is a result of the transcriptional bursting, i.e., the production of
RNA was not a continuous process. Similar observations have also
been reported for various bacterial and yeast systems, suggesting
that transcriptional bursting is a universal common phenomenon
in living cells.6,7,12–14,21,22

Fig. 1 Observation of variations in the produced messenger RNA num-
ber in genetically identical mammalian cells from the fluorescence signal
of labeled RNA molecules. A. A view of cells with different levels of
fluorescence due to different numbers of synthesized RNA. B. Distribu-
tion of produced RNA molecules per cell. C. Mean (top) and normalized
standard deviation (bottom) of the distribution at different experimental
conditions. The figure is reproduced with permission from Ref.19.

Furthermore, the fluorescent measurements of transcription
dynamics provided a direct way to visualize its bursting behav-

ior.23 This is because the fluorescence s ignal f rom the produced 
RNA is proportional to its amount in the system and as soon as 
the RNA is degraded its signal disappears. Fig. 2 shows the 
very noisy real-time dynamics of the production of messenger 
RNA molecules in a in vitro single-molecule assay.23 Interestingly, 
the times when the transcription is ON (∼ 100 seconds) are sig-
nificantly s maller t han t he t imes w hen t he t ranscription i s OFF 
(∼ 1000 seconds). Although these measurements were made in 
vitro, similar results have been also found in vivo.7 These obser-
vations raised questions on the efficiency o f t he transcriptional 
process and the purpose of such stochastic behavior in biological 
systems. One would expect that to maintain the cellular processes 
the production of RNA molecules should always be active. But 
these experimental results do not agree with such arguments.

Fig. 2 Observation of fluctuations in the fluorescence signal that mea-
sures the amount of the produced RNA transcripts in single-molecule
experiments in vitro. The figure is adopted with permission from Ref.23

.

3 Theoretical Analysis
Experimental observations of transcriptional bursting at the
single-cell level stimulated extensive theoretical efforts to clar-
ify its underlying mechanisms.9,15,16,23–33 Many aspects of tran-
scriptional dynamics have been discussed and are much better
understood now.7,9,10 But at the same time, some features of the
transcriptional bursting remain unexplained. In this article, we
would like to concentrate on two topics that, as we subjectively
believe, should help better understand the molecular mechanisms
and biological relevance of transcriptional bursting.

The first topic that we discuss is related to the question of how
many states are needed to properly describe transcriptional burst-
ing.9 It is unclear how to define a state in a system where mul-
tiple biochemical reactions are taking place. In addition, we ad-
dress the problem of how to determine the optimal set of states
to describe this complex process. The second discussed topic
focuses on the molecular origins of transcriptional bursting. In
other words, we try to answer the questions of what microscopic
processes lead to the appearance of these states, what specifically
determines the number of states, and what is the biological rele-
vance of these occurrences.
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3.1 Multi-State Theoretical Models
The production of messenger RNA molecules involves multiple 
chemical reactions such as the binding and dissociation of vari-
ous proteins to and from DNA chains, the addition of nucleotides 
to growing RNA molecules, RNA degradation and many others1,2 

Because of the stochastic nature of the underlying chemical pro-
cesses, it is expected that the overall synthesis of RNA should be 
quite a noisy process. But why do the experimental observations 
of transcriptional bursting imply that a "multi-state" description is 
needed? And how many states of transcription are there?

To begin answering these questions, let us start with the sim-
plest minimal theoretical model of RNA production presented in 
Fig. 3a.34 In this model, the RNA is continuously synthesized with 
a rate α and it is also degraded with a first-order rate constant β . 
Each chemical state n = 0,1,2, . . . corresponds to having exactly n 
RNA molecules in the system. We are interested in the stationary 
state dynamics that can be reached at large times (t → ∞). It can 
be shown that in this limit most dynamical properties of the sys-
tem depend only on the parameter x = α/β , which can be viewed 
as an equilibrium constant for RNA synthesis/degradation.24,34 

Defining the stationary probability to find the system in  the state 
n as Pn, the calculations yield

Pn =
xne−x

n!
, (1)

which is a well-known Poisson distribution.12,24 One can now
evaluate the average number of RNA transcripts, 〈n〉,24

〈n〉=
∞

∑
n=0

nPn = x. (2)

In a similar way, higher moments of the distribution can be easily
calculated. For example, the second moment is given by24

〈n2〉=
∞

∑
n=0

n2Pn = x2 + x. (3)

A dimensionless parameter F , known as the Fano factor, has
been widely utilized for clarifying the mechanisms of transcrip-
tional bursting. It is defined as the normalized variance in the
number of produced RNA transcripts, and it is a convenient mea-
sure of noise and stochastic fluctuations in the system. It can be
shown that for the one-state model in Fig. 3a

F =
〈n2〉−〈n〉2

〈n〉
= 1, (4)

which is a signature of the Poisson process. This is an important
result because the Fano factors obtained from experimental mea-
surements of transcriptional processes in various living organisms
deviate significantly from unity (F > 1),12,14,22 suggesting that
the one-state kinetic model from Fig. 3a cannot describe the ap-
pearance of transcriptional bursting. This was the main reason
for researchers to explore more complex multi-state kinetic mod-
els illustrated in Figs. 3b, 3c, 3d and 3e.24,29,35

At this point, it is important to explain the confusing termi-
nology that exists in this field. The model presented in Fig. 3a is
called a "one-state" model even though the system can be found in

Fig. 3 Various multi-state kinetic models used to describe transcriptional 
bursting. a) one-state model, b) two-state model, c) "Poisson with zero 
spike" model, 23 d) general multi-state model, and e) three-state model. 
Reprinted with permission from the J. Phys. Chem. B 2018, 122, 11969-
11977. Copyright 2018 American Chemical Society.

one of an infinite number of chemical states n (n = 0,1,2, . . .). All
these states are chemically different because they contain a dif-
ferent number of RNA transcripts. The label "one-state" is associ-
ated then with a single mode of production of the RNA molecules
and with a single specific set of synthesis and degradation rates
{α,β}. In other words, the stationary distribution of the pro-
duced RNA transcripts has only a single peak: see Eq. 1. Then
the multi-state models, shown in Fig. 3 b-e, would correspond to
systems with multiple modes or channels of RNA transcript pro-
duction, i.e., multiple sets of synthesis/degradation rates {αi,βi}
for i = 1,2, ...,m: see Fig. 3d. To distinguish these macro-states
from real individual chemical states of the system, we sometimes
call them "biochemical states", emphasizing that the biochemical
products (RNA molecules) are made in different ways for each set
of the synthesis/degradation rates.24 Thus, the multi-state mod-
els of transcription reflect the multiple modes of RNA production
and degradation, and this is exhibited by the multiple peaks in
the stationary distributions of RNA transcripts.

The deviations of experimentally measured Fano factors from
unity not only demanded the development of multi-state kinetic
models, but it also raised a question of what is the appropriate
model to fully describe the transcriptional bursting phenomenon.
The majority of theoretical and experimental studies utilized for
their studies the two-state model presented in Fig. 3b.16,34,36

In this model, one state (ON) involves both the production and
degradation of RNA molecules while the other state (OFF) only

Journal Name, [year], [vol.], 1–9 | 3

Page 3 of 9 Physical Chemistry Chemical Physics



involves the degradation of RNA transcripts. However, no reasons
have been given for using the two-state model in transcriptional
bursting analysis beyond it being the simplest non-trivial exten-
sion of the unsuccessful one-state model. At the same time, sev-
eral experimental studies found that more than two biochemical
states might be involved in transcription.9,37–41 These observa-
tions stimulated the study of more complex multi-state kinetic
models; some examples of them are presented in Fig. 3.24,29,35

While the multi-state kinetic models have existed for a
while,9,29,35 a comprehensive theoretical framework to analyze
transcription processes has been developed only recently.24 In
this framework, it was assumed that the system can follow one of
m possible biochemical pathways of RNA production and degra-
dation, as presented in Fig. 3d. The synthesis of RNA was
assumed to be state-dependent with a rate α j ( j = 1,2, . . . ,m),
while the degradation rate constant β was assumed to be state-
independent. The transitions between different biochemical
states via state-dependent transition rates k( j)

on ( j→ j−1) and k( j)
o f f

( j→ j+ 1) are also allowed: see Fig. 3d. Using a master equa-
tions approach together with a generating functions method,42

it was shown explicitly how to evaluate all stationary dynamic
properties of the system, including the most relevant mean num-
ber of produced RNA transcripts and the Fano factor for a given
system.24 This general theoretical framework became a conve-
nient tool for understanding the mechanisms of transcriptional
bursting.

Several interesting results have been obtained by analyzing the
general theoretical framework for multi-state kinetic models of
transcription.24 First of all, it was shown that in the system with
originally m biochemical states, the actual number of observed
states, which corresponds to the number of peaks in the station-
ary distribution of produced RNA molecules, surprisingly might
be less than m. This can be clearly seen in Fig. 4 for the system
with m = 3 states (the kinetic scheme for this three-state system
is shown in Fig. 3e). Depending on the choice of kinetic parame-
ters, the stationary distributions of the produced RNA molecules
exhibit one, two or three peaks that correspond to the one, two or
three channels for RNA synthesis and degradation. The key factor
that determines the specific outcome is the choice of values of the
state-switching transition rates k( j)

on and k( j)
o f f in comparison with

the synthesis and degradation rates.
To understand these observations better, let us consider two

limiting cases. If the switching rates are much smaller than
synthesis and degradation rates α j and β , then the system has
enough time to fully explore each biochemical state (each path-
way in Fig. 3e) individually and the number of observed states
(as well as the number of peaks in the stationary distribution) will
be equal to m. In the opposite limit, if the state transition rates
are much faster than the synthesis/degradation rates, the system
will not have time to explore each state individually, so it will
exhibit a single equilibrated biochemical state with synthesis and
degradation rates averaged over all the states. This would lead to
a single-peak stationary distribution of produced RNA transcripts.
For all other ranges of parameters, the number of observed states
will vary from 2 to m− 1 depending on how fast are the local
switching rates in comparison with the local synthesis and degra-
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Fig. 4 Transcription dynamics of the three-state kinetic model. a)-
e) Examples of five different stationary distributions of produced RNA
molecules. f) A dynamic phase diagram that using a contour plot shows
how the Fano factor varies as a function of the normalized switching
rates. Solid lines give qualitative boundaries between different dynamic
regimes of RNA production presented in parts a)-e). Reprinted with
permission from the Journal of Physical Chemistry B 2018, 122, 11969-
11977. Copyright 2018 American Chemical Society.

dation rates. In this range, some local equilibria might be reached
lowering the number of observed biochemical states. These argu-
ments suggest that the question of what kinetic models should
be used to describe the transcriptional bursting is quite complex
since the number of experimentally realized biochemical states
might differ significantly from the number of actual states that
participate in transcription.9

Theoretical calculations24 also found an interesting correla-
tion. Increasing the number of observed biochemical states in-
creases the degree of stochastic fluctuations as measured by the
Fano factor (Fig. 4f). In other words, the system exhibits more
noise if it is capable of exploring all different modes of the RNA
production and degradation during transcription.

Another important result from the analysis of the multi-state
kinetic models is the proposed procedure to estimate the minimal
number of biochemical states. It can explain the experimental ob-
servations of various multi-state transcription dynamics.24 Since
the number of experimentally observed states might deviate from
the actual number of biochemical states, it seems reasonable to
study the optimal multi-state models with a minimal number of
parameters. It was shown that the parameter m (minimal number
of biochemical states) can be found from the simultaneous knowl-
edge of both the mean 〈n〉 and the Fano factor F of the produced
RNA transcripts. For realistic cellular conditions, the following
approximate relation was proposed,

m' 1+
F−1
〈n〉

. (5)

This result was used to analyze the minimal number of states in
many genes of E.coli bacteria, illustrated in Fig. 5.14 The two-
state kinetic model (m = 2) provides an adequate description for
the majority of genes and more complex multi-state kinetic mod-
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els typically are not needed.24 However, some genes require as
many as m ' 10 states to properly describe the transcription pro-
cess. These results suggest that the two-state kinetic models are
not the universal descriptions of the transcriptional bursting, but
that the proper minimal model can be selected using experimen-
tally measured mean and Fano factor of the stationary RNA num-
ber distribution.

0 5 10
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5

10
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0 10 20 30
<n>

0

5

10

m
 

Fig. 5 Estimates of the minimal number of biochemical states m from
experimental measurements of transcription dynamics (mean and Fano
factor) in different genes of E.coli bacteria. Data are taken from Ref.14

Reprinted with permission from the J. Phys. Chem. B 2018, 122, 11969-
11977. Copyright 2018 American Chemical Society.

At the same time, we have to emphasize that the theoretical
predictions of the dynamic phase diagrams (Fig. 4f) and of the
number of minimal biochemical states (fig. 5) should be consid-
ered very cautiously. Such characterizations of transcriptional sys-
tem’s dynamics might change depending on the existence of ad-
ditional genetic regulation mechanisms like feedback loops.30,31

In terms of the multi-state kinetic model shown in Fig. 3, this
would correspond to a situation where transition rates would also
depend on the number of the produced RNA molecules n. Fur-
thermore, there are experimental observations indicating that the
transcriptional burst frequency and the burst size may be time-
dependent, at least for some genes.43,44 For the multi-state ki-
netic scheme in Fig. 3 this would mean that the transition rates
would also depend on time.

3.2 Origins of Transcriptional Bursting

Clearly, one of the most important questions is what causes the
transcriptional bursting at the microscopic level.9,10 Since major
biochemical events taking place during transcription are reason-
ably well known,1,2 it has been suggested that the rate-limiting
step of the binding of transcriptional factors to the promoter re-
gion on DNA is the main event involved in starting the transcrip-
tional burst.9,10 There are multiple experimental observations
from biochemical and single-molecule studies of various organ-
isms that support this claim.10

However, a more complex question is what ends the transcrip-
tional burst. It was proposed that the duration of the burst is de-
termined by the lifetime of the RNAP bound to the DNA chain.10

But the fact that there are typically several simultaneously tran-
scribing RNAP enzymes puts this argument in doubt. Adding only
a few more polymerases can significantly increase the overall time
of active transcription as shown by the following simple argu-
ments. If we assume that the probability of one RNAP to dissoci-

ate during the time of transcription is p then for n independently
operating polymerases, the probability to dissociate simultane-
ously from the DNA decreases exponentially to pn. An alternative
suggestion was that chromatin remodeling is somehow respon-
sible for regulating the dynamics of transcription. However, a
detailed mechanism of how this might lead to the transcriptional
bursting remains unclear.9,10

Several bulk45–47 as well as single-molecule23,48 studies
pointed out to the importance of topological and mechanical
properties of DNA during transcription. When the RNAP enzyme
is engaged in transcription, it rotationally moves along the DNA
double helix. It is known that DNA molecules are frequently topo-
logically constrained in living cells (possibly via binding to other
components of the cell’s nucleus), and this leads to the buildup
of positive supercoiling in front and negative supercoiling behind
the RNAP. The supercoiling slows transcription down, but this
buildup of mechanical stress on the DNA can be released by the
action of several classes of topoisomerase enzymes. These ob-
servations led to the development of multiple theoretical models
which propose that transcriptional bursting is a result of coupling
between mechanical and chemical processes that are taking place
at the microscopic level in the system.23,25–28,49–51

To better understand the interplay between chemical and
mechanical forces involved in transcription, let us consider a
discrete-state stochastic mechanochemical model illustrated in
Fig. 6.25 This model takes into account the most relevant physic-
ochemical processes using a thermodynamically consistent ap-
proach. It considers transcription by a single RNAP molecule in
the presence or absence of the topoisomerase gyrase that can re-
lieve the supercoiling stress. When the gyrase is bound to DNA,
the stress buildup is not taking place due to its enzyme action.
This is labeled as the ON state in Fig. 6. In this case, RNA
transcripts are produced with a rate α and destroyed with a rate
constant β . However, after the gyrase dissociates from the DNA
chain with a rate ko f f , the supercoiling starts to increase with
every new produced RNA molecule and this slows down the tran-
scription: see Fig. 6. The synthesis rate is now given by the rate
α/y j+1, where j is the number of produced RNA transcripts af-
ter the last dissociation of the gyrase molecule. The parameter
y = exp(ε/kBT ) is called the mechanochemical parameter and it
plays a crucial role in the dynamics of the system. It quantifies
how the mechanical forces created by supercoiling are resisting
the chemical reaction of RNA synthesis.

Note that the parameter j can be viewed as a quantitative mea-
sure of the degree of supercoiling on the DNA strand. The syn-
thesis of every new RNA molecule (in the absence of the gyrase)
increases the mechanical stress on DNA. Therefore, j can also
be thought of as the number of transcripts produced after gy-
rase detached. Additionally, j along with the parameter y, help
describe the mechanochemical coupling in the system in a ther-
modynamically consistent way. This is because the parameter y is
associated with an additional energy ε that is needed for RNAP
to transcribe the supercoiled DNA. The stronger is the degree of
supercoiling, the slower is the rate of the RNA synthesis. Then,
following Kramer’s description of chemical rates, the decrease in
the RNA production rates will be exponential, α/y j+1.25
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[a]

[b]

Fig. 6 A schematic overview of the discrete-state mechanochemical
model of transcriptional bursting. a) A pictorial view of different states;
b) A corresponding chemical-kinetic scheme for the model. Reprinted
from Biophysical Journal, 118, Alena Klindziuk, Billie Meadowcroft and
Anatoly B. Kolomeisky, A Mechanochemical Model of Transcriptional
Bursting, 1213-1220, Copyright 2020, with permission from Elsevier.

The discrete-state mechanochemical model can be solved ex-
plicitly by two complementary theoretical methods: the forward
and backward master equations.25 This provides a full dynamic
description of the system that allows to clarify the molecular
mechanisms of transcription. Fig. 7a presents a stationary distri-
bution of produced RNA molecules for different mechanochem-
ical coupling strengths. If supercoiling does not affect the RNA
production (y = 1 and ε = 0), a single-peak distribution is ob-
tained (orange symbols) because, in this case, the system has a
single biochemical state with one set of synthesis/degradation
rates. However, the situation changes if the mechanochemical
coupling is strong (large y). Then, the system exhibits two peaks
in the distribution (blue symbols) and, therefore, has two bio-
chemical states. This bimodal distribution has one peak at n = 0,
where the gyrase is unbound so the synthesis rate approaches
zero, and a peak at n > 0, where the gyrase is bound and nor-
mal synthesis and degradation processes are taking place. In
agreement with these arguments, increasing the strength of the
mechanochemical coupling lowers the average number of pro-
duced RNA molecules, as indicated in Fig. 7b. Importantly,
the bimodal distribution of mechanochemical model explains the
appearance of multiple states of transcriptional bursting from a

more microscopic point of view.25
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Fig. 7 a) Stationary-state distributions for the production of RNA
molecules for different mechanochemical coupling streangths. b) The
mean number of synthesized RNA molecules as a function of the ener-
getic cost of supercoiling. The symbols are from computer simulations
and solid lines are analytical results. Reprinted from Biophysical Journal,
118, Alena Klindziuk, Billie Meadowcroft and Anatoly B. Kolomeisky, A
Mechanochemical Model of Transcriptional Bursting, 1213-1220, Copy-
right 2020, with permission from Elsevier.

Another advantage of the mechanochemical model is its abil-
ity to quantify the degree of supercoiling and explain how that
influences transcription dynamics, which is illustrated in Fig. 8.
The bimodal distribution of the mechanical stress in the system is
predicted for all ranges of parameters. This reflects the fact that
there are two types of states in the system at all times. The first
type corresponds to the states where gyrase is bound to DNA and
no stress is present (ON), while another type describes the states
where the gyrase is unbound and the supercoiling is taking place
( j > 0 ). Increasing the rate of gyrase association kon lowers the
overall degree of the mechanical stress and shifts the equilibrium
between two peaks in favor of the stress-free states: see Fig. 8a.
The degree of mechanochemical coupling also influences the dis-
tribution of stress in the system (Fig. 8b). For a small energy
expenditure in supercoiling (y∼ 1 and ε ∼ 0 kBT ), a broad distri-
bution is observed because the state with any level of supercoiling
j can be reached (blue symbols). Making the mechanochemical
coupling stronger (y� 1 and ε� 0 kBT ) narrows the distribution
and lowers the overall level of the mechanical stress (red sym-
bols). In this case, the states with a large j cannot be reached
due to the fast decrease in the synthesis rates after the gyrase
detaches.

The mechanochemical model has been applied for analyz-
ing in vitro measurements of transcriptional bursting in T7 and
E.coli bacteria.23 Using the experimental data of the decrease
in elongation speeds in the presence of supercoiling, the values
of mechanochemical coupling were quantitatively estimated for
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Fig. 8 Stationary-state distributions of mechanical stress on DNA. The
symbols are from computer simulations and solid lines between numer-
ical values of j are theoretical predictions. a) The effect of varying the
association rates of gyrase. b) The effect of varying the energetic cost
of supercoiling. Reprinted from Biophysical Journal, 118, Alena Klindz-
iuk, Billie Meadowcroft and Anatoly B. Kolomeisky, A Mechanochemical
Model of Transcriptional Bursting, 1213-1220, Copyright 2020, with per-
mission from Elsevier.

both bacterial systems.25 It was found that for T7, y = 1.61 and 
the energetic cost of supercoiling is ε = 0.48 kBT , while for E.coli 
bacteria the analysis predicts y = 1.89 and ε = 0.64 kBT . These 
results suggest the supercoiling has a relatively modest slowing 
effect on RNA production. But at the same time, it was argued 
that this leads to the most optimal regulation of transcription.25 

If the supercoiling would have a very strong effect, this would 
lead to very little RNA production, which is not good for tran-
scription. In the opposite limit of very weak mechanochemical 
coupling between RNA production and supercoiling, the ability 
to tune the number of produced RNAs would be lost, which is 
apparently also not beneficiary for the cell.

The mechanochemical model proposes the following micro-
scopic picture of the appearance of the transcriptional bursting. 
After the gyrase molecule binds to DNA, the RNAP begins to ac-
tively transcribe the gene with a constant RNA production rate. 
This is the beginning of the transcriptional burst. After some time, 
the gyrase will dissociate from the DNA strand and the mechan-
ical stress will start to build up quickly slowing the RNA produc-
tion. Soon after the dissociation event, the RNA synthesis rate be-
comes negligibly small and the burst ends. Thus, transcriptional 
bursting results from the balance between the chemical proper-
ties of gyrase and RNA synthesis, and the mechanical properties 
of DNA double helix that resist the RNA production.

Although we explained the transcriptional bursting mainly by 
multi-state model and the origin of the bursting phenomenon us-
ing the mechanochemical model, it is important to emphasize 
that these models should be still viewed as hypothetical. Avail-
able experimental observations can be reasonably well explained 
using these theoretical approaches, but this does not exclude the 
possibility that other microscopic pictures might be the origin of 
transcriptional bursting. More experimental studies are needed 
to test the validity of these theoretical models.

4 Future Directions and Open Questions
In recent years, big experimental and theoretical advances helped 
researchers to better clarify the mechanisms of transcription. 
While many aspects of this process are now understood, it is im-

portant to note that our knowledge of the underlying microscopic
picture is still very limited. Multiple questions need to be ad-
dressed in future studies of transcriptional bursting. Let us briefly
discuss several of them.

First of all, experiments show that the frequency and the
size of transcriptional bursts are not constant and change with
time.43,44,52 Moreover, it looks like each gene has its own tran-
scriptional signature. These observations suggest that new theo-
retical tools for the analysis of transcriptional busting need to be
developed since the current multi-state models can only have con-
stant transitions rates. Another important question is what causes
the modulation of transcriptional burst frequency and size. Is it a
mechanochemical coupling issue due to sequence-dependent su-
percoiling or is it another biochemical regulation pathway that
we still do not know?

Another interesting future direction is to understand the collec-
tive behavior of RNA polymerases in transcription. The relevant
questions are: Why does transcription sometimes involve multi-
ple RNAPs transcribing simultaneously? How does this influence
the transcriptional bursting? And what are the benefits of these
collective dynamics for the cellular systems? There are some in-
dications that multiple polymerases simultaneously engaged in
transcription might cooperate to achieve faster elongation rates,
decrease the transcriptional noise and avoid the buildup of the
mechanical stress.33,49,53–56 However, the molecular mechanisms
of such cooperativity largely remain unexplained.

Finally, a fundamentally important problem is to understand
how the transcriptional bursting relates to subsequent cellular
development. More specifically, it will be interesting to clarify
how the spatial modulation of transcriptional dynamics leads to
complex gene expression patterns in living embryos.57–59 The re-
cent advances in single-molecule experimental methods already
allowed researchers to collect a significant amount of quantitative
information on gene pattern formation and its relation to tran-
scriptional bursting.59 This should stimulate the development of
new theoretical methods to investigate these important questions.

Transcriptional bursting is a fascinating biological phenomenon
that has been at the center of recent research activities. Many mi-
croscopic features of this phenomenon have been uncovered due
to the outstanding work of scientists in different fields. But, in
our opinion, this is only the beginning of the road to a full under-
standing of transcriptional bursting. The future looks promising
as the close collaboration between experimental and theoretical
studies should help us uncover the mysteries of the fundamental
biological process of transcription.
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