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Breath Odor Based Individual Authentication by Artificial 
Olfactory Sensor System and Machine Learning  

Chaiyanut Jirayupat,a,b Kazuki Nagashima,*a,c Takuro Hosomi,a,c Tsunaki Takahashi,a,c Benjarong 
Samransuksamer,a Yosuke Hanai,d Atsuo Nakao,d Masaya Nakatani,d Jiangyang Liu,a Guozhu 
Zhang,a Wataru Tanaka,a Masaki Kanai,e Takao Yasui,c,f Yoshinobu Baba,f and Takeshi Yanagida*a,b,e 

Breath odor sensing based individual authentication was 

conducted for the first time using artifical olfactory sensor system. 

Using a 16-channel chemiresitive sensor array and machine 

learning, a mean accuracy of >97% was successfully achieved. 

Impacts of number of sensors on the accuracy and the 

reproducibility were also demonstrated. 

 

Biometric authentication is a convenient and secure individual 

authentication method in the information technology (IT) field. 

Its application range covers not only immigration control at 

airport but also access control of banking, personal computer 

(PC)/mobile phone and emerging intelligent vehicle (IVs).1 To 

date, various techniques have been developed for biometric 

authentication, which include fingerprint/palmprint 

verification,2 iris/retina recognition,3 facial recognition,4 hand 

and finger geometry,5 voice biometry,6 finger vein recognition7 

and ear acoustic authentication.8 All these techniques solely 

rely on physical information, and thus have the risks of being 

unusable by information alternation with injury or being 

compromised by malicious information theft. 

Human scent analysis/sensing is a new class biometric 

authentication technique using chemical information.9-15 Since 

human scents such as exhaled breath and percutaneous gas 

have a strong genetic basis,11,16,17 their chemical composition 

profiles are inherently different among individuals and 

therefore can potentially be utilized for individual 

authentication with low risks of information alternation/theft. 

Previously, human scent analysis/sensing based biometric 

authentication has been conceptualized and attempted mainly 

via percutaneous gas.9-15 For example, Penn et al. analyzed the 

chemical component profiles of sweat odors from 197 adults 

using gas chromatograph-mass spectrometry (GC-MS) and 

identified 44 individual specific volatile organic compounds 

(VOCs).10 Zheng et al. performed skin odor sensing by using 

artificial olfactory sensor system so-called electronic nose (e-

nose) and classified the sensing data with 91.67 % of accuracy 

by machine learning.13 Despite these previous achievements, 

the percutaneous gas sensing based individual authentication 

must have a limitation in its performance because the VOCs 

concentrations in percutaneous gas are usually lower (ppt to 

several tens ppb, ppt: parts per trillion, ppb: parts per billion) 

than the detection limit level of conventional chemical sensors 

and therefore the detectable number of VOCs species is 

restricted.18 On the other hand, exhaled breath is known to 

have thousand VOCs and their concentrations are about three 

orders of magnitude higher than those of percutaneous gas 

(ppb to several ppm, ppm: parts per million).18 In this respect, 

the breath odor sensing has a great potential to detect larger 

number of human-related VOCs species and achieve the higher 

performance in individual authentication compared with 

percutaneous gas sensing. However, the breath odor sensing 

has been mainly directed for pathology/disease diagnosis (e.g. 

cancer, diabetes, COVID-19),19 and to best our knowledge, the 

feasibility of breath odor sensing based individual 

authentication has not been demonstrated so far. 

In this study, we demonstrate a primary study for the breath 

odor sensing based individual authentication using artificial 

olfactory sensor system (the workflow is shown in Fig. 1 and the 

experimental details are shown in ESI† with Table S1). In order 

to investigate the potential usage of breath odor for individual 

authentication, firstly we performed a GC-MS measurement 

and analyzed the individual-specific molecular fragments. For 
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the analysis, two-dimensional (2D) MS maps (m/z vs. retention 

time) were created and processed by using the recently 

developed data analysis program–NPFimg,20 which combines 

an image processing and a machine learning. Fig. 2A-C show the 

2D MS maps of breath odor samples collected from 3 persons 

(3 males). For the visibility, the 2D MS maps are shown in the 

restricted range (Full range 2D MS maps are shown in Fig. S1 

(ESI†)). Numerous molecular fragment signals are seen in the 

maps and many of them were common among the tested 3 

persons. By learning the datasets of 2D MS maps, we succeeded 

in the individual authentication of 3 persons with 100% of 

accuracy. Fig. 2D-F show the 2D feature score maps of 

molecular fragments contributed to discriminate the individual 

from the other two persons. Contrary to the 2D MS maps, the 

feature score maps were significantly different between the 

tested three persons. Note that the influence of exogenous 

compounds originating from the diets and the tested 

environment was negligible because the breath odor samples 

were simultaneously collected in the same environment from 

the persons who fasted for 6 h. We identified the individual-

specific marker compounds, e.g. benzophenone, decanal, 

octane, tetradecane, undecane, which were consistently seen 

in the previous study of sweat odor based individual 

authentication (see details in Table S2(ESI†)).10,12,15 Thus these 

results imply that each person has an original breath print 

derived from endogenous compounds and also indicate the 

potential feasibility of breath odor based individual 

authentication. 

We next examined the individual authentication via the 

breath odor sensing. The breath odor samples were first 

collected using a gas sampling bag (Fig. 1A). The collected 

breath odor sample was then flown into the sensing chamber 

installed with a 16-channel chemiresistive sensor array and the 

breath odor sensing was performed (Fig. 1B). The sensing 

materials used for the 16-channel sensor array, which were 

developed for this study, are listed in Table S3 (ESI†). The sensor 

responses were acquired from the sensing curves of 16-channel 

sensors (Fig. 1C) and used as dataset for machine learning (Fig. 

1D). We employed neural network algorithm for the machine 

learning (Fig. 1E) and demonstrated the individual 

authentication together with the feature profile evaluation of 

used sensors (Fig. 1F). The sensing was repeated 256 times for 

each person. We tested 6 persons (3 males, 3 females and ages 

23-40) with various nationalities (Thai, Chinese and Japanese) 

as summarized in Table 1. Fig. 3A shows the five successive 

sensing curves obtained from 16-channel sensor array in the 

breath odor sensing of subject–V#1. The sensing characteristics 

such as the maximum sensor response, the initial sensing curve 

and the recovery curve were different between the sensors. 

These tendencies were also seen for the other subjects (V#2-V#6, 

Fig. S2-S6 (ESI†)), while the sensing characteristics of each 

sensor strongly depended on the tested person. Fig. 3B shows 

the heatmaps of sensor responses of 16-channel sensor array 

for the tested 6 persons. The heatmaps were clearly different 

between the subjects. Such results are consistent with those of 

the GC-MS measurements and therefore anticipate the 

feasibility of breath odor sensing based individual 

authentication. 

Fig. 4A shows the box-and-whisker plot of the accuracy of 

individual authentication for 6 persons, calculated by machine 

Fig. 2 (A-C) 2D MS maps and (D-F) 2D feature score maps of 3 tested 

persons (3 males) in wide rage view (left) and narrow range view (right). 

The 2D feature maps were obtained in comparison with the other two 

breath odor samples. The 2D feature maps were obtained in comparison 

with the other two breath odor samples. 

Fig. 1 Graphical workflow of breath odor sensing based individual 

authentication. (A) Breath odor sample collection using a gas sampling 

bag. (B) Breath odor sensing measurements using 16-channel sensor 

array. (C) Acquisition of sensor responses. (D) Dataset preparation for 

machine learning. (E) Machine learning with neural network algorithm. 

(F) Individual authentication and evaluation of feature profile of sensors. 

Table 1. The details of tested subjects for breath odor sensing based 

individual authentication. 
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learning. The data is displayed as a function of the number of 

used sensors and the used sensors are arranged in the 

descending order of the amplitude of sensor responses for 

maximizing the performance of data analysis (Table S4(ESI†)). 

The mean accuracies when using a single sensor were 96.9% 

84.1%, 80.1%, 68.5% and 54.3% for individual authentications 

of 2 persons, 3 persons, 4 persons, 5 persons and 6 persons, 

respectively. The results indicate that the individual 

authentication tends to be difficult when the number of tested 

subjects increases. On the other hand, the accuracy of individual 

authentication was significantly improved when increasing the 

number of used sensors. The mean accuracy for discriminating 

6 persons successfully reached to 97.8% by 16 sensors. The 

relationship between the number of subjects and the number 

of required sensors for individual authentication is displayed in 

Fig. 4B. The results indicate that a larger number of sensors are 

needed to discriminate complex odors, which is consistent with 

the claim in the recent review paper reported by Lee et al.21 In 

other words, further discrimination of breath odors would be 

possible by increasing the number of used sensors. We next 

evaluated the reliability of the above breath odor sensing 

results. Fig. 4C and D show coefficient of variation (CV) values 

for the accuracy of individual authentication and the averaged 

area under curve (AUC) of receiver operating characteristic 

(ROC) curve for the classifiers, which are presented as a function 

of number of used sensors. CV values in the accuracy 

significantly decreased and the averaged AUC of ROC curves 

increased as the number of used sensors increased. This shows 

that both the reproducibility of individual authentication and 

the reliability of classifiers also can be improved by using a 

larger number of sensors. Furthermore, we found that our 

sensor was capable of electrically detecting the marker 

compound at the concentration range in breath odor (Fig.S7, 

ESI†). All above results highlighted the potential feasibility of 

the breath odor sensing based individual authentication and the 

impact of number of integrated sensors on the performance of 

individual authentication.  

Here we discuss what critically determined the performance 

of breath odor sensing based individual authentication 

presented above. Fig. 4E shows the confusion matrix for the 

individual authentication of 6 persons. While the slight false 

identifications occurred, the errors were randomly distributed, 

and their pattern was different in analytical batch. This result 

indicates that gender, age and nationality did not significantly 

affect the observed false identifications. Fig. 5 shows the 

feature score profiles of used sensors for each tested subject. 

The data indicates that all sensors contributed to the individual 

authentication, and the profiles were significantly different 

between the tested 6 persons. These results reasonably explain 

why the individual authentication was successfully performed. 

We found that the accuracy was not degraded even increasing 

the number of subjects up to 20 persons as shown in Fig.S8 and 

Table S5 (ESI†). This suggested that the false identification in our 

study might be caused by the fluctuation/instability of sensor 

responses and the performance of individual authentication 

would be better by improving the robustness of sensing 

system/material.22 

    In conclusion, we demonstrated the primary study of breath 

odor sensing based individual authentication using artificial 

olfactory sensor system. The breath odor samples were tested 

by 16-channel chemiresistive sensor array and the acquired 

sensor responses were analyzed by machine learning with 

neural network algorithm. The mean accuracy of >97% was 

successfully achieved for the individual authentication of up to 

20 persons. We found that the accuracy and the reproducibility 

Fig. 3 (A) Sensing curves of 16-channel sensor array for the breath odor 

sensing of subject-V#1 after the baseline corrections. (B) Heatmaps of 

sensor responses of 16-channel sensor array for the breath odor sensing 

of each tested person (subject V#1-V#6). 

Fig. 4 (A) Accuracy of breath odor sensing based individual authentication 

as a function of number of used sensors for 6 persons. (B) A relationship 

between the number of persons and the number of required sensors with 

various threshold in accuracies (>95%, >96% and >97%). (C) Coefficient of 

variation in accuracy as a function of number of used sensors. (D) 

Averaged AUC of ROC curves as a function of number of used sensors. (E) 

Confusion matrix for the breath odor sensing based individual 

authentication for 6 persons. 
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significantly improved by increasing the number of used sensors. 

While the breath odor sensing based individual authentication 

was demonstrated for the fasted subjects in this study, it still 

remains a challenging issue to demonstrate its feasibility under 

the interferences of disease related metabolites and exogenous 

compounds originating from the diets and the tested 

environment towards the practical application.23 The barrier 

must be overcome by utilizing a larger number of sensors and 

extracting a larger number of features from the sensing curves. 

We believe that our findings in this study provide an important 

foundation towards breath odor sensing based biometrics. 
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Fig. 5 Feature score patterns of 16-channel sensor array (heatmaps and 

radar charts) for (A) V#1 vs. V#2-#6, (B) V#2 vs. V#1,#3-#6, (C) V#3 vs. V#1,#2,#4-#6, 

(D) V#4 vs. V#1-#3,#5,#6, (E) V#5 vs. V#1-#4,#6, (F) V#6 vs. V#1-#5, respectively. 
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