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Chalcogen-Atom Abstraction Reactions of a Di-Iron 
Imidophosphorane Complex
Luis M. Aguirre Quintana,a Yan Yang,b Arun Ramanathan,a Ningxin Jiang,a John Bacsa,a Laurent 
Maron,b and Henry S. La Pierre*a,c

Reaction of the complexes [Fe2(2-NP(pip)3)2(NP(pip)3)2] (1-Fe) and 
[Co2(2-NP(pip)3)2(NP(pip)3)2] (1-Co), where [NP(pip)3]1– is 
tris(piperidinyl)imidophosphorane, with nitrous oxide, S8, or Se0 
result in divergent reactivity. With nitrous oxide, 1-Fe forms 
[Fe2(2-O)(2-NP(pip)3)2(NP(pip)3)2] (2-Fe), with a very short Fe3+–
Fe3+ distance. Reactions of 1-Fe with S8 or Se0 results in the bridging, 
side-on coordination (-1:1-E2

2-) of the heavy chalcogens in 
complexes [Fe2(-1:1-E2)(2-NP(pip)3)2(NP(pip)3)2]  (E = S, 3-Fe, or 
Se, 4-Fe). In all cases, the complex 1-Co is inert.

Molecular metal-metal bonded compounds are a lodestone 
guiding the understanding of inorganic bonding, reactivity, and 
magnetism.1-4 Recently Berry, Lu, Thomas, and others have 
demonstrated the cooperative reactivity of bimetallic 
complexes in the formation of terminal metal-ligand multiple 
bonds via oxidative atom-transfer reactions.5-11 In the case of 
iron and cobalt, most of the compounds with metal-metal 
bonds, beyond those supported by carbonyl ligands, form 
paddlewheel clusters with sterically congested ligands that 
inhibit any cooperative, side-on (or “facial”) reactivity of the 
metal-metal bond. This limits the scope of atom-transfer 
reactions that can be accessed with diiron and dicobalt 
compounds. Recent examples of facial atom-transfer chemistry 
have been achieved with constrained geometry, strong-field, 
redox-active ligands.12, 13

An alternative approach is to employ monodentate, weak 
field ligands to construct reactive bimetallic complexes. Our 
group has recently employed tris(dialkylamido)-
imidophosphoranes to expand the redox chemistry of the 
lanthanides and actinides.14-18 Unlike its alkyl counterparts, the 
dialkylamido backbone in this ligand architecture better 

supports the zwitterionic character in the P–N moiety of 
imidophosphoranes, favoring a P+–N2- configuration. The 
pseudo-imido character results in a basic 1, 2 weak-field 
donor that is isoelectronic in its donor profile to 
cyclopentadienyls, or the more similar single-atom donor 
siloxides.19, 20 The steric profile and donor properties of this 
ligand framework support low-coordinate iron and give rise to 
clusters with metal-metal bonds. To date, few examples exist of 
homoleptic iron or cobalt imidophosphorane complexes, of 
which, most are supported by alkyl backbones and no atom-
transfer reactivity has been reported.20-23 To this end, we set 
out to employ one of the tris(dialkyl)imidophosphorane 
variants to explore the atom-transfer chemistry between well-
defined homoleptic Fe(II) and Co(II) complexes and N2O, S8, and 
Se0. 

The reaction of two equivalents of FeCl2 or CoCl2 with four 
equivalents of K[NP(pip)3] in THF16 results in the isolation of the 
bimetallic complexes [Fe2(2-NP(pip)3)2(NP(pip)3)2]  (1-Fe) and 
[Co2(2-NP(pip)3)2(NP(pip)3)2]  (1-Co) in 79% and 73% yield, 
respectively. Complex 1-Fe crystalizes in the P  space group 1
with two molecules in the asymmetric unit. Single-crystal XRD 
(SC-XRD) analysis of 1-Fe reveals the molecular structure shown 
in Figure 1. The product is a saddled Fe2

4+ bimetallic complex 
with two μ–[NP(pip)3]- ligands bridging each Fe2+ center and a 
terminal [NP(pip)3]-  ligand at each metal center. The average 
Fe–Fe distance in 1-Fe is 2.6141(6) Å, which falls within the 
range of a metal-metal bond24, 25 with a formal-shortness ratio 
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Scheme 1. Synthesis of 2-Fe.
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(FSR) of 1.05. Crystallographically, 1-Co is isomorphic and 
isostructural to 1-Fe (See ESI).

The [NP(pip)3]- ligand supports low-coordinate Fe2+ and Co2+ 
compounds with facially exposed metal-metal bonds. The 
reactivity of these dimetallic complexes was examined with 
chalcogen-atom transfer reagents: N2O, S, and Se0. Exposure of 
a solution of 1-Fe or 1-Co to an atmosphere of N2O led to a 
reaction in 10 minutes for 1-Fe.  The resulting brown product, 
[Fe2(2-O)(2-NP(pip)3)2(NP(pip)3)2], (2-Fe), was isolated in 95 % 
yield. Under the same conditions, 1-Co showed no reactivity 
with N2O. The molecular structure of 2-Fe is shown in Figure 1 
and crystalizes in the P  space group. Similar to 1-Fe, the 1
structure of 2-Fe reveals a bimetallic complex with two μ–
[NP(pip)3]- ligands bridging the Fe3+ centers and a terminal 
[NP(pip)3]-ligand at each metal center. Additionally, the metal 
centers are bridged by a μ–O2- ligand. The average terminal Fe–
Nimido distance in 2-Fe is 1.8372(12) Å and the average bridging 
Fe–Nimido distance is 2.0265(2) Å, which shows elongation in Fe–
Nimido distances in comparison to 1-Fe. The average terminal and 
bridging P–Nimido distances in 2-Fe are 1.5395(2) Å and 1.5475(2) 
Å, respectively, similar to those in 1-Fe. Notably, the distance 
between the Fe(III) centers in 2-Fe is 2.3396(6) Å, and is one of 
the shortest Fe–Fe distances, which typically involve Fe2

2+, Fe2
3+, 

Fe2
4+, and Fe2

5+ cores.24 There are no other examples of 
dinuclear complexes with an Fe2

6+ core with metal centers 
within the metric range for an Fe3+–Fe3+ bond. The Fe–Fe 
distance in 2-Fe is in fact shorter than that of a reported single 
bond distance (248 pm),26 giving it a formal shortness ratio (FSR) 
of 0.94. Whether this distance is the consequence of a metal–
metal bond or the geometric constraint of the bridging O2- is 
under further investigation.

Nitrous oxide is a greenhouse gas and its potential utilization 
as a green oxidant has become an important technological 
target.27 It is a thermodynamically potent oxidant, but 
kinetically poor.27-29 To date, few examples of molecular iron 
and cobalt compounds have been reported to bind or activate 
N2O under mild conditions and stable, oxidized complexes are 
rare.30-33 Therefore, the reactivity between 1-Fe and N2O is 
noteworthy since it produces an isolable oxygen-atom 
abstraction product that does not undergo further 
intramolecular reaction with ligand C–H bonds.  To gain insight 
into the observed reactivity, an energy profile for the reaction 
between 1-Fe and N2O was calculated at the DFT level 
(B3PW91) as shown in Figure 2. The energy profile reveals initial 
binding of N2O in the 1-O mode to one of the Fe(II) centers in 
1-Fe (a 2-N,O binding event was not found on the intrinsic 
reaction coordinate). This unsymmetrical coordination is 
exothermic by 2.1 kcal.mol-1. From this adduct, the system 
evolves to a N–O bond breaking transition state. The N–O bond 
breaking is favoured by the nucleophilic assistance of the 
second iron center (Fe–O distance of 1.99 and 2.53 Å). The 
associated barrier is 4.1 kcal.mol-1 from the adduct (2.0 
kcal.mol-1 from the entrance channel), which is much lower 
than that calculated for other systems.34, 35 Following the 
intrinsic reaction coordinate, it yields complex 2-Fe whose 
formation is thermodynamically favoured with the production 
and release of N2 gas. This reaction profile indicates that the 

metal-metal bonded iron centers in 1-Fe are able to participate 
synergistically to carry out the two-electron reduction of N2O by 
undergoing a one-electron oxidation at each metal center. 

To further assess the reactivity of 1-Fe and 1-Co with other 
chalcogen-atom transfer reagents their reactions with 
elemental sulfur (S8) and selenium metal powder (Se0) were 
examined. In both cases, 1-Fe or 1-Co were dissolved in THF and 
added to a stirring suspension of S8 or Se0. After isolation, 
[Fe2(-1:1-S2)(2-NP(pip)3)2(NP(pip)3)2]  (3-Fe) and [Fe2(-
1:1-Se2)(2-NP(pip)3)2(NP(pip)3)2]  (4-Fe) were recovered in 87 
% and 71 %, respectively (Scheme 1). As with the reaction with 
N2O, no reaction was observed between 1-Co and S8 or Se0. 
Compounds 3-Fe and 4-Fe both crystallize in the C2/c space 
group and are crystallographic dimers comprised of two μ–
[NP(pip)3]- ligands bridging each Fe3+ center and a terminal 
[NP(pip)3]- ligands at each metal center. The metal centers in 3-
Fe and 4-Fe are bridged by a (-1:1-S2)2- and (-1:1-Se2)2- 
ligand, respectively, which sits above and parallel to the to the 

Figure 1. Molecular structures of 1-Fe, 2-Fe, 3-Fe, and 4-Fe 
shown with thermal ellipsoids at 50% probability. Piperidinyl 
carbon and hydrogen atoms are omitted for clarity. Only one of 
the two molecules in the asymmetric unit of 1-Fe is shown here. 
See ESI for full structures.
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Fe–Fe axis in both compounds as shown in Figure 1. The average 
Fe–E and E–E distances in 3-Fe and 4-Fe (where E = S or Se, 
respectively) are 2.3258(4) and 2.0847(6) Å and 2.4582(8) and 
2.3532(8) Å which are consistent with in other reported iron-
sulfido and -selenido compounds.36-38 The Fe–Fe distances in 3-
Fe and 4-Fe are 2.5964(6) and 2.6072(6) Å which are longer than 
2-Fe, but have an FSR of 1.05 for both complexes, similar to that 
of 1-Fe in the Fe2

6+ core.24 
The “side-on” binding of the (-1:1-S2)2- and (-1:1-Se2)2- 

ligands is unique with E–E bind above and parallel to the Fe–Fe 
axis in 3-Fe and 4-Fe.38-41 Iron–sulfido cluster compounds are 
commonly produced oxidation products from the reduction of 
elemental sulfur and are bridged by a S2- ligand.42 Diiron 
compounds supported by a S2

2- ligand are rarer and often 
bridged by a S2

2- that is oblique and/or perpendicular to the Fe–
Fe axis.43 Of the few examples of non-carbonyl iron selenido 
molecular compounds, only one diiron compound presents a 
similar bridging (-1:1-Se2)2- ligand. 44, 45

In conclusion, we have reported the synthesis of the 
homoleptic bimetallic Fe2+ and Co2+ compounds 1-Fe and 1-Co 
supported by the [NP(pip)3]-  ligand, which featured low-
coordinate metal-metal bonds with readily accessible 
synergistic, facial reactivity in the case of 1-Fe. Compound 1-Fe 
displayed unique chalcogen-atom abstraction reactivity with 
N2O, S8, and Se0 to produce compounds 2-Fe, 3-Fe, 4-Fe. 
Structural analysis revealed that 2-Fe has one of the shortest Fe-
Fe distances observed in a diiron compound unsupported by 
carbonyl or guanidinate ligands and that 3-Fe and 4-Fe produce 
bimetallic compounds with an Fe2

6+ core and fairly short 
intermetallic distances, where the Fe(III) centers are bridged by 
(-1:1-S2)2- and (-1:1-Se2)2- ligands parallel to the metal-
metal axis. The electronic structure driving the unique and 
divergent reactivity of 1-Fe and the structures of 2-Fe, 3-Fe, and 
4-Fe will be reported soon.
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