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8 Abstract
9 We developed a multivariate curve resolution (MCR) calculation combined with the mapping of 

10 cosine similarity (cos-s) for multiple mixture spectra of chemicals. The cos-s map was obtained by 

11 calculating the similarities of the variation of the signal intensities at each scanning parameter, such 

12 as the wavelength. The cos-s map was utilized for the initial estimation of the spectra for pure 

13 chemicals and also for the restriction of the iterative least-square calculation of MCR. These 

14 calculations were performed without arbitrary parameters by introducing the soft clustering to the 

15 cos-s map. The chemically meaningful initial estimation could prevent the convergence at an 

16 incorrect local minimum, which frequently happens for the wrong initial estimation of spectra far 

17 away from the real answer. Herein, we demonstrated the robustness of this calculation method by 

18 applying it for UV/Vis spectra and XRD patterns of multiple unknown chemical mixtures, whose 

19 shapes were totally different (broad overlapped peaks and multiple complicated peaks). Pure 

20 spectra/patterns were recovered as >84% consistency with the reference spectra, and <6% accuracy 

21 of the concentration ratios was demonstrated.

22

23
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1 Introduction
2       Multivariate curve resolution (MCR) has been extended for various applications of the 

3 separation of spectral data of chemical mixtures.1 In analytical chemistry, much effort is devoted to 

4 the separation of chemicals to purify a single species for qualitative and quantitative determination. 

5 However, if we could obtain this information only from the spectra of chemical mixtures, 

6 tremendously chemical processes will be reduced for the analyses. This is the main reason why the 

7 MCR has been studied and developed in the field of analytical chemistry. 

8 Two-dimensional correlation spectroscopy (2D-COS) is also an active research field  to assign 

9 peaks and study their correlation in the spectra of chemical mixtures from 2D synchronous and 

10 asynchronous spectra obtained by applying a perturbation such as a temperature and concentration 

11 change.2–4 The temperature dependent mixture spectra were used for demonstration of the 

12 identification of different protein moieties.5 The correlation between the functional groups could be 

13 analyzed by applying temperature for polymer blend films.6 2D synchronous spectra obtained by 

14 changing temperature could reveal minor spectral differences for mixture of olive oils.7 Recently, 2D 

15 asynchronous spectra can be used for the identification of the implicit isolated peaks from severely 

16 overlapped peaks and could successfully analyze bilinear data from mixture spectra.8

17        In MCR, spectral data of chemical mixtures as a number matrix is decomposed into a matrix of 

18 the spectra of pure chemicals (S) and a matrix of the concentration ratios (C) in the mixtures. This 

19 calculation accuracy has been drastically improved after the introduction of the alternating least 

20 square method (MCR-ALS).9,10 The C and S matrixes are iteratively optimized sequentially, and also 

21 various restraints can be included in each iteration, such as non-negativity, limitation of 

22 concentrations, number of species,11 area correlation,12 etc. This chemically informative 

23 reconstruction of C and S is an advantage over the traditional methods such as the principal 

24 component analysis (PCA) and the partial least square (PLS). 

25         In analytical chemistry, it was initially applied for the chromatography data,13–15 and extended 

26 for the chromatographic spectral data,12,16 and for many other analytical data such as UV/Vis,17–19 

27 NIR,20,21  X-ray absorption.22 Recently, an inhomogeneous sample surface was scanned combined 

28 with microscopic technique, and the mixture spectra were used for the component analysis, 

29 especially for biological applications using Raman spectroscopy.23–26 For other utilities, it has been 

30 utilized for the data reduction for hyperspectral imaging data and for denoising for 2D-NMR data.27 

31 Furthermore, MCR was combined with deep learning and improved for the component analysis of 

32 the gas chromatography-mass spectrometry data.28

33         Still, there are several problems for MCR when the spectra include strong background,29 

34 several unidentified components,30 rotational ambiguities,31 and unprecedented initial estimations.32 

35 In the initial estimation, the spectra for pure chemicals are conventionally obtained by the singular 
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1 value decomposition (SVD). However, it is sometimes far from the real answer, and the iteration 

2 calculation often stops at the local minimum. To overcome this problem, there have been several 

3 efforts to improve the initial estimation, and one of the methods is called PURE used in 

4 SIMPLISMA, 33,34, where pure data points for each species are used for the prediction of the pure 

5 spectra. There are several other methods to solve the drawback of PURE that needs a pure 

6 component in the data, such as independent component analysis (ICA) 35 and orthogonal projection 

7 approach (OPA).36 We also  have developed the categorization of the spectral components by using 

8 the cosine similarity (cos-s) of the peak intensity correlation in the previous paper.37 The cos-s 

9 estimation could provide a reasonable initial estimation, and the following MCR process could refine 

10 the spectra and obtain the concentration profile with high reliability. This reasonable initial 

11 estimation can reduce the uncertainty of the matrix decomposition, which solved the problem of 

12 rotational ambiguity.38 This method was applied for NMR spectra.

13 In principle, this calculation can be applied to any mixture spectra measured by different 

14 analytical methods without any prior information about the sample system. However, in practice, 

15 there are several difficult cases where this calculation cannot be applied as it is. One of the difficult 

16 cases is for the spectra with overlapped multiple broad peaks such as absorption spectra. In the initial 

17 estimation, the overlapped peaks must be separated at each wavelength for different chemical 

18 species, and the accuracy is lowered compared with the peak-isolated spectra like NMR. The other 

19 problem is the misclassification for the spectra with strong background or low signal-to-noise (SN) 

20 ratio. In this case, it is necessary to use multiple threshold parameters for better categorization, but 

21 these parameters are adjusted depending on analytical methods.

22 To overcome these problems, we have developed a new, improved initial estimation and 

23 optimization method with reasonable assignments of overlapped peaks without adjustable 

24 parameters by employing the similarity map and soft clustering. The similarity map visualizes the 

25 internal correlation of the whole region of spectral data, and this map is basically same as the 2D 

26 synchronous spectra used in 2D-COS except that the spectral intensities are normalized in the cosine 

27 similarity, and can provide the coincidental intensity changes of signal pairs in the sampling.39 And 

28 each peak region can be automatically assigned without manual assignments, meaning that no 

29 parameter tuning was necessary by utilizing the clustering for the similarity map. The highly-

30 trustable initial estimation was also utilized for the restraints in the iterative MCR optimization. 

31 Hereinafter we call the cos-s map estimation and the following MCR calculation as cos-s map MCR. 

32 This calculation could extract the pure spectra and their concentration profiles with high accuracy 

33 without adjustable parameters by users and does not need any prior information. We selected two 

34 general problems of chemical mixtures, which can be solved by other initial estimation methods; 

35 UV/Vis absorption spectra and X-ray diffraction (XRD) patterns. In this paper, we applied our 

36 calculation techiniqe to two distinct general problemsand showed the robustness and versatility of 
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1 this calculation technique for the mixture spectra. 
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5

1 Theory and method
2 Assuming that multiple spectra for mixture samples with different compositions are obtained, the 

3 spectrum for the ith mixture is represented as  (j: parameter for the spectrum such as wavelength). 𝑆𝑖𝑗

4 We processed the spectral data matrix in Scheme 1; (a): data pre-processing and initial estimation of 

5 pure spectra by cos-s mapping, (b): iterative calculation of pure spectra and concentration ratios by 

6 MCR.

7 In Scheme 1(a), the background was removed by a built-in function of MATLAB (R2020a) 

8 named msbackadj, which regresses the background to the multiple shifted windows using spline 

9 approximation. It is used only when the background level was similar to the signal level. When 

10 spectra have isosbestic points, observed for UV/Vis absorption spectra, random numbers (0.5-1.5) 

11 were multiplied to the mixture spectrum to provide the dispersion at the isosbestic points 

12 intentionally. The signal variation is necessary for the peak intensity assignment for the overlapped 

13 peaks. Next, the peak shifts due to the equipment and sampling errors were removed by the icoshift 

14 algorithm.40 These pre-processing calculations for mixture spectra were general methods for spectral 

15 analyses, and they are effective for the MCR optimization because the intensities of the original data 

16 are directly proportional to the finally obtained concentrations and spectra. Even after application of 

17 icoshift, peak distortion or peak splitting could cause non-proportionality of the peak intensity.37 To 

18 solve this, each spectrum was convoluted by a Gaussian function with a width less than 5% of the 

19 total window size. When no-signal regions of the spectra exceed 50 %, such as NMR and XRD 

20 patterns, no-signal regions were removed to reduce the data points. 

21 The pre-processed spectra were centered by their average spectra for all the mixture samples 

22 ( ) to extract the variation for different samples as shown in Eqn. (1)𝒔𝑗

23 (1),𝑠𝑖𝑗 = 𝑆𝑖𝑗 ― 𝒔𝑗

24 where  reflects the spectral intensity variation for each mixture spectrum. 𝑠𝑖𝑗

25 From the similarity of the spectral intensity trend for different mixture samples, the spectral 

26 regions for pure chemicals were decided, and those for the overlapped regions were separated, as 

27 shown in Scheme 1(a). Cosine similarity was used to understand the spectral intensity tendency 

28 quantitatively and was calculated as:

29 (2),f(𝒔𝑗1,𝒔𝑗2
) = (𝑐𝑜𝑠𝜃)𝑗 = 𝑗1,𝑗2 =

𝒔𝑗1 ∙ 𝒔𝑗2

|𝒔𝑗1||𝒔𝑗2| =
∑𝑛

𝑖 = 1𝑠𝑖𝑗1𝑠𝑖𝑗2

∑𝑛
𝑖 = 1𝑠𝑖𝑗1

2 ∑𝑛
𝑖 = 1𝑠𝑖𝑗2

2
  (𝑖 = 1…𝑛, 𝑗 = 1…𝑚)    

30 where n and m represent the total sample number and the number of discrete data-points in a 

31 spectrum. This calculation provides the correlation matrix indicating the correlation between the 

32 spectral intensities for the two wavelengths, j1 and j2 in the direction of the sample number. The size 

33 of the correlation matrix is , converted into a heat map, and this two-dimensional correlation 𝑚 × 𝑚

34 map is called a similarity map. This is the normalized version of the 2D synchronous spectrum in 
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1 2D-COS, providing information on the coincidental intensity changes of pairs of peaks.39 From the 

2 analysis of the similarity map, the spectral regions for the same chemical species were decided. 

3 Furthermore, the overlapped regions for multiple chemical species could be recognized and 

4 separated for each chemical species based on the similarity values as described in the previous 

5 paper.37 However, the separation criteria depended on the threshold value of the similarity, 

6 determined by analysts. Fuzzy c-means (FCM) clustering41 has been introduced for the automatic 

7 feature extraction of the similarity map to avoid the baseless decision. Clustering is one of the 

8 unsupervised learning methods for data classification based on the distance function. The distance 

9 function evaluates the internal pattern of the data, and the data is divided into groups according to 

10 the similarity of the recognized patterns. In the calculation of FCM, similarity vectors,  (j = 𝒙𝑗

11 1,2,…m) ( ), which were the row vectors in the similarity map, were classified into q clusters, 𝑚 × 1

12 and the center of each cluster (  ( ): central vector of the k-th cluster ), and its weight to all 𝒗𝑘 𝑚 × 1

13 clusters (uj,k: contribution of the j-th feature value to the cluster k) were obtained by solving this 

14 equation.

15  (3),arg 𝑚𝑖𝑛
𝒖,𝒗

(∑𝑚
𝑗 = 1

∑𝑞
𝑘 = 1𝑢𝑗,𝑘

𝑝‖𝒙𝑗 ― 𝒗𝑘‖2) 

16 where p is the exponent for u. The number of species q was iteratively determined by assessing the 

17 finally obtained mean square error. 

18 From the similarity matrix of , ( ),   and its weight uj,k are 𝑋 = (𝑐𝑜𝑠𝜃)𝑗 = 𝑗1,𝑗2 𝑚 × 𝑚 𝒗𝑘

19 estimated. The result of FCM clustering can be directly utilized to estimate the shape of the pure 

20 spectra because uj,k is regarded as the contribution of the k-th chemical species to the similarity map, 

21 and p was regarded as 2. (Appendix in Supporting Information (SI)). Since the spectral intensities 

22 were centered, the differences from the averaged values over samples were obtained. The initial 

23 estimation of the spectra was calculated based on the averaged spectra as:

24   (4)𝑆𝑒𝑠𝑡,𝑗,𝑘 = 𝑢𝑗,𝑘
2𝑠𝑗    

25   represents the initial estimation of the spectrum of the k-th component at wavelength j.  is 𝑆𝑒𝑠𝑡,𝑗,𝑘 𝑠𝑗

26 the average spectral intensity in the whole mixture samples.

27 Scheme 1 (b) represents the updated alternating least square (ALS) optimization process under 

28 several constraints after the initial estimation. Before the ALS optimization, the number of spectral 

29 data for the calculation was augmented about 100-500 by mixing the measured mixture spectra with 

30 arbitrary ratios to improve the calculation accuracy. During the ALS optimization, the weight matrix 

31 was multiplied to the estimated spectra in every iteration to reflect the initial estimation to the final 

32 result. This procedure can avoid unrealistic peaks during the iteration. The weight matrix was 

33 obtained in Scheme 2, as described below. The ALS algorithm was performed until the convergence 

34 was reached for both the concentration and spectrum profiles. The calculation was converged when 

35 the difference between the lack of fit of each iteration was below 0.1%. The lack of fit is the ratio of 
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7

1 the data matrix and the residual after the fitting.42 If the calculation diverges, additional constraints 

2 were also used in the optimization process by restricting the spectral area from 5% to 2000% to the 

3 spectra obtained by the initial estimation. Finally, the optimized spectra were deconvoluted by the 

4 Gaussian function used for the convolution in Scheme 1.

5

6 Scheme.1 The analysis flow charts for the cosine-similarity map multivariate curve resolution (cos-

7 s map MCR) are shown. (a) Data pre-processing of cos-s map MCR and initial estimation process of 

8 cos-s map MCR are shown. (b) corresponds to the alternating least square (ALS) optimization based 

9 on the initial estimation with constraints.

(a)

(b)
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1

2 Scheme 2 represents the calculation process for the weight matrix W=wj,k, at wavelength j and 

3 k-th species. The weight matrix was determined within each peak region defined in Scheme 1(a) and 

4 controls how much the initial estimation of the spectra is reflected by multiplying it to the estimated 

5 spectra in all iterations. This weight matrix was introduced to maintain the spectral assignment to 

6 species in the initial estimation because the peak shape was not accurate in the initial estimation, 

7 though the peak assignment for species was correct. First, count , a label for the species with the 𝐿𝑗,𝑘

8 largest contribution to the spectral intensity at j by evaluating .𝑢𝑗,𝑘

9   (6)𝐿𝑗,𝑘 = {1
0      

𝑖𝑓 𝑘 = arg 𝑚𝑎𝑥
𝑘′

(𝑢𝑗,𝑘′)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

10 By summation of the number of labels ( ) for the k-th species in each peak region defined in 𝑁𝑟,𝑘

11 Scheme 1(a). The ratio of the k-th species contribution to the r-th peak region ( ) was calculated 𝑝𝑟,𝑘

12 as: 

13 (7),𝑝𝑟,𝑘 =
𝑁𝑟,𝑘

∑𝑁
𝑘 = 1𝑁𝑟,𝑘

=  
𝑁𝑟,𝑘

𝑀𝑟
 

14 where  is the wavelength size of each peak region. If the ratio   < 0.05, the weight matrix 𝑀𝑟 𝑝𝑟,𝑘

15 W=wj,k was set to 0.2 to suppress the unnecessary peak evolution during the iteration. Otherwise, it 

16 was set to 1 and do nothing in the iteration. This threshold was set to improve the robustness for the 

17 peak assignment about the pure peak region. Since a pure peak was typically consisted of at least 20 

18 data points, the peak was properly classified even if it includes a different species component, and 

19 this process was helpful for the assignment around the boundary of peak regions. This improved 

20 ALS optimization can refine the spectral shape of each species while keeping the peak assignment of 

21 the initial estimation. 

22

23 Scheme 2 Determination of weight matrix based on the initial estimation for convergence in 
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1 the ALS optimization.

2

3

4 Experiment
5 For the demonstration purpose of this calculation, bromothymol blue (BTB) (Wako) was 

6 dissolved into 1 M HCl or 1 M NaOH aqueous solutions (Wako), and the pH of each solution was 

7 adjusted by deionized (DI) water and phosphate buffer (Wako) (4.5~9). The molecular structure of 

8 BTB is provided in Fig. S1 in Supporting Information (SI), together with two moclecular structures 

9 in acidic and basic solutions, where the absorption spectrum changes due to the electrolytic 

10 dissociation. BTB solutions with eight different pH were prepared at the same final concentration of 

11 BTB. The UV/Vis absorption spectra were measured at room temperature (Shimadzu, UV-3600) and 

12 shown in Fig. 1. For the reference spectra, BTB solutions of pH = 1.13 and 12.68 were used as 

13 strongly acidic or basic conditions. (Fig. S2 in SI). The pKa value was 7.1.43 

14

15 Fig. 1  Absorption spectra of BTB solutions for different pHs from 4.5 to 9 are shown.

16

17 With regard to XRD data, iron(III) oxide (Fe2O3), iron(II, III) oxide (Fe3O4), aluminum (III) 

18 oxide (Al2O3), and silicon dioxide (SiO2) (Wako) were utilized. These four powders of chemicals 

19 were scaled as the ratios described in Table 1, and mixed by a mortar for five minutes The total mass 

20 of each mixutre was 300 mg. The XRD patterns were measured by an X-ray diffractometer (Rigaku, 

21 Ultima IV) using Cu-Kα radiation (40 kV and 30 mA). The diffraction patterns were recorded from 

22 20° to 70° (2θ) with a step size of 0.02° (2θ) and a scan rate was 1° per minute. The XRD patterns of 

23 12 samples with different mixture ratios are shown in Fig 2. The reference spectra of the pure 
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10

1 powders are shown in Fig. S3 in SI. 

2

3
4 Fig. 2  12 XRD pattern of chemical mixtures of 4 chemicals (Fe2O3, Fe3O4, Al2O3, and SiO2) 

5 are shown.

6

7 Table. 1 The mass fractions of the inorganic mixture samples for XRD measurements. (wt%)

8

9 Results and discussions 

10 The demonstration for the spectra, including broad overlapped peaks, is shown as a first 

11 example. The absorption spectra of the BTB solutions for different pHs were used, as was 

12 demonstrated by Shimada et al.43 In the procedures as described in theory, the data was pre-

13 processed as Scheme 1(a). Since there were merely minor baseline shifts among each spectrum, the 

Sample number Fe2O3 Fe3O4 Al2O3 SiO2
1 21 61 5.6 12 
2 35 25 11 30 
3 30 6 14 50 
4 33 26 14 27 
5 6.6 9.3 36 48 
6 29 29 35 7.0
7 32 28 17 23 
8 7.8 52 29 11 
9 42 6.2 25 27 

10 20 17 38 26 
11 25 60 8.4 6.1
12 7.1 19 34 40 
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11

1 msbackadj was not used, and they  were removed by simple subtraction using the average intensity 

2 from 745 nm to 900 nm.. Then, the background correction and peak separation were skipped because 

3 they had no strong background nor isolated peaks. Before the convolution, random numbers were 

4 multiplied to each mixture spectrum since there were two isosbestic points in the spectra, as shown 

5 in Fig. 1. In Scheme 1(a), the initial estimation was conducted based on the similarity map. The 

6 similarity values were obtained from any two wavelengths j1 and j2 by Eqn. (2), which evaluates the 

7 spectral intensity variation in the sample number direction. The similarity values were converted into 

8 a heat map as shown in Fig. 3.  The map showed a specific pattern corresponding to spectral features 

9 of pure chemicals.

10

11 Fig. 3  The cosine similarity map of the UV/Vis spectra of the BTB solutions with different pHs 

12 obtained as Scheme 1(a) (cos-s map estimation).

13

14 Based on the fuzzy c-means clustering of the similarity map and the following calculation in 

15 Eqn (4), the initial estimation of the spectra was obtained as shown in Fig. 4(a). Two components 

16 were extracted and it was consistent with the previous research for BTB acid base equilibrium using 

17 spectroscopy.43 Compared with the reference spectra in Fig. 4(b), the positions of the initial 

18 estimation of the spectra were reasonable; however, the spectral shape needs to be optimized, as 

19 described in the theory section. 
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12

1 Fig. 4  (a) The initial estimation of the spectra is shown, which were obtained from the mixture 

2 spectra of the BTB solutions by using the cos-s map estimation. (b)  The UV/Vis absorption spectra 

3 of the BTB solutions under highly acidic or basic conditions (pH = 1.13 and 12.68) are shown. (c) 

4 The absorption refined by the MCR calculation from the initial estimation of the spectra is shown. 

5 (d) The concentration ratios of the two components were obtained in the MCR calculation.

6

7 Then, the updated ALS optimization was followed as in Scheme 1(b). The recovered spectra 

8 were shown in Fig. 4(c), and they matched well with the reference spectra in Fig. 4(b). The spectral 

9 shape was refined from the initial estimation of the spectra. The correlation coefficients of the two 

10 predicted spectra and the reference spectra under the acidic and basic conditions had a consistency of 

11 >99 %.

12 The concentration profile corresponding for each pure spectrum was obtained in Fig. 4(d). The 

13 plots correspond to the concentration ratio of each species. The calculation results were fitted by the 

14 least square minimization based on Eqns. (8) from the acid-base equilibrium of BTB. 

(a) (b)

(c) (d)
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13

1      (8),[HA] =
[H + ]

[H + ] + Ka
, [A ― ] =

Ka

[H + ] + Ka

2 where Ka is the equilibrium constant. The concentration profiles were well fitted with these 

3 equations as a parameter of pKa, and the estimated pKa was 7.07, in agreement with the literature 

4 value.36 This result indicates that this new calculation technique can be applied for the spectra 

5 including broad overlapping peaks.

6 We would like to mention that this problem can be also solved by the general procedure using 

7 PURE in SIMPLISMA and the following MCR calculation. The results were summarized in Fig.S4 

8 in SI. The correlation coefficients between the predicted and the reference spectra was 0.99 on 

9 average, and the prediceted pKa was 6.86, which is 3% smaller than reported value. For this simple 

10 example, our method had a similar accuracy compared with the results by the PURE-based initial 

11 estimation from the comparison between Fig. 4 and Fig. S4. 

12 Next, the cos-s map MCR was applied for the XRD patterns. In the pre-processing of the data, 

13 the procedures in Scheme 1 were performed except the random number multiplication because the 

14 XRD patterns had no isosbestic points. The peak intensity trend at every diffraction angle in the 

15 sample number direction were converted to cosine similarty values by Eqn. (2). All the similairty 

16 values were converted into a heat map as  shown in Fig. 5(a), and it represents the internal 

17 correlation of the peak intensity at each diffraction angle. The FCM clustering was applied and, the 

18 initial estimation of the XRD patterns was calculated. We could confirm four species from the map 

19 (Fig. 5(b)). Finally, the updated ALS optimization was applied to refine the pure patterns and to 

20 obtain the concentration profiles. For the calculation, weight matrix W was used in the calculation 

21 (Scheme 2). The recovered patterns and concentrations profile is shown in Figure. 6. 

22
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1 Fig. 5 (a) The cos-s map for the XRD patterns obtained in the process of cos-s map estimation 

2 is shown. (b) The initial estimation of the XRD patterns by using the cos-s map estimations in the 

3 whole angle region. 

4

(a)

(b)
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(a) (b) 

(c) (d)

1 Fig. 6  (a) The final estimation of pure XRD patterns obtained by the cos-s map MCR and (b) 

2 The reference XRD patterns for four chemicals (Fe2O3, Fe3O4, Al2O3, and SiO2) are shown. (c) The 

3 concentration profile obtained by the cos-s map MCR and (d) the prepared concentrations are shown. 

4

5 From the comparison between the initial estimation of the XRD patterns (Fig. S5(a) in SI) and 

6 the optimized XRD pattern (Fig. S5(b) in SI), the spectral shape and intensities were optimized. 

7 Compared with the reference XRD pattern (Fig.6 (b)) and the optimized spectra (Fig. 6(a)), the peak 

8 positions of each calculated spectra mostly matched with those of the reference patterns. The 

9 detailed comparison between the calculated patterns and pure patterns was shown in Fig. 7. The 

10 correlation coefficients were 0.90 on average (Table 3), and they were sufficiently accurate for the 
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(a) (b) 

(c) (d)

1 assignment of chemical species. 

2

3

4 Fig. 7 The comparison between the calculated patterns  and the corresponding pure patterns of 

5 (a) Fe2O3 (b) Fe3O4 (c) Al2O3 (d) SiO2 is shown.

6

7 Table 2 The correlation coefficients of agreement between the predicted and the reference spectra.

Chemicals Correlation coefficients
Fe2O3 0.84
Fe3O4 0.93
Al2O3 0.98
SiO2 0.87
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1

2 The absolute errors for the concentration ratios were tabulated in Table 3. From the 

3 comparison of the concentration profiles between the predicted ratios and the actual preparation, the 

4 absolute error was less than 6% on average. The errors of the prediction were suppressed both for the 

5 large and small portions of chemicals. The prediction error was in the same range as the preparation 

6 errors.

7

8 Table 3 The absolute errors (%) of the predicted concentrations from the prepared conditions.

9 Finally, we compared the calculation results by our method and PURE (SIMPLISMA) initial 

10 estimation-MCR. The pure XRD patterns and concentration profiles are shown in Fig. S6.  The 

11 correlation coefficients between the predicted and the reference spectra was 0.38 on average, and the 

12 absolute error of the concentrations was 14% on average. It is obvious that the errors were much 

13 worse than the ones obtained by our method. The reason for this discrepancy is not fully understood, 

14 however, the initial estimation of the spectra was much worse than the one obtained by our method. 

15 It can be said that the proposed initial estimation and the updated optimization  scheme was effective 

16 and necessary for the extraction of the pure XRD patterns  and the concentration ratios with high 

17 accuracy.

18 Based on these two demonstrations, our calculation method could be applied to various types 

19 of spectral data composed of sharp and broad peaks with overlapped regions. Both of the mixture 

20 spectra, whose shapes were totally different, were analyzed by the same schemes, and we could 

21 obtain accurate results without using any prior information about pure spectra and the concentration 

22 profile in the sample system. Since the reasonable initinal estimation is used and the following MCR 

23 optimiazation is performed with the constraints using the initial estimation in this calculation 

24 technique, the process can reduce the uncertainty of the matrix decomposition and solve the problem 

25 of rotational ambiguity.38

Sample number Fe2O3 Fe3O4 Al2O3 SiO2

1 -2.3 -5.6 11 -2.7
2 -4.1 7.9 3.1 -6.9
3 -0.78 13 -1.8 -10
4 -2.2 5.6 5.0 -8.3
5 2.6 4.6 3.6 -11
6 -2.3 3.0 1.9 -2.6
7 -2.6 4.5 5.9 -7.8
8 4.6 -11 9.9 -3.9
9 -3.8 16 -3.8 -8.2

10 -0.50 5.9 -2.6 -2.8
11 2.4 -12 11 -1.4
12 1.7 6.9 2.1 -11
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1

2 Conclusion
3  We could develop a parameter-less multivariate curve resolution (MCR) method by the 

4 improved initial estimation and its integration into the MCR optimization and demonstrated the 

5 extraction of pure spectra and the estimation of the concentration ratios for totally different types of 

6 analytical spectroscopic data of unknown chemical mixtures. We could develop the robust initial 

7 estimation of pure spectra by a combination of cosine similarity mapping and soft clustering. The 

8 initial estimation was integrated into the MCR optimization calculation as a new constraint for the 

9 alternating least square algorithm. By applying this method for the UV/Vis spectra and XRD 

10 patterns of unknown chemical mixtures, we could recover the pure spectra/patterns and 

11 concentration ratios with high accuracy in both cases. Although general problems were solved in this 

12 paper, more difficult problems with featureless and large-overlapped peaks must be solved and 

13 compared with other calculation techniques, and we are now in progress on it.  Since this method 

14 was applied to various types of spectral data (broad overlapped peaks multiple complicated peaks) 

15 obtained by different analytical equipment, it will be a general spectral analysis method to quantify 

16 and qualify chemical species in mixture samples.

17
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20 ChuoU/cos_s_map_mcr). 

21

22 Author Contribution Statement
23 YN made the experiments and analyses, and YN and KK discussed the results. YN and KK wrote 

24 the manuscript, and both of them reviewed it.

25

26 Conflict of interests
27 I declare that the authors have no competing interests or other interests that might be perceived 
28 to influence the results and/or discussion reported in this article.
29

30 Acknowledgments
31 The research was financially supported by JST PRESTO (#JPMJPR1675), KIOXIA corporation, and 

32 the Institute of Science and Engineering, Chuo University.

Page 18 of 22Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

1 References
2 1 A. de Juan and R. Tauler, Anal. Chim. Acta, , DOI:10.1016/j.aca.2020.10.051.

3 2 P. Lasch and I. Noda, Appl. Spectrosc., 2019, 73, 359–379.

4 3 Y. Park, I. Noda and Y. M. Jung, Front. Chem., , DOI:10.3389/fchem.2015.00014.

5 4 Y. Park, S. Jin, I. Noda and Y. M. Jung, J. Mol. Struct., 2020, 1217, 128405.

6 5 I. Noda, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2017, 187, 119–129.

7 6 Y. Park, S. Jin, E. Park, M. Hwang, I. Noda, B. Chea and Y. M. Jung, J. Mol. Struct., 2020, 

8 1216, 128344.

9 7 W. Sohng, Y. Park, D. Jang, K. Cha, Y. M. Jung and H. Chung, Talanta, 2020, 212, 120748.

10 8 R. Guo, X. Zhang, A.-Q. He, F. Zhang, Q.-B. Li, Z.-Y. Zhang, R. Tauler, Z.-Q. Yu, S. Morita, 

11 Y.-Z. Xu, I. Noda, Y. Ozaki and J.-G. Wu, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 

12 2019, 220, 117103.

13 9 B. G. M. Vandeginste, W. Derks and G. Kateman, Anal. Chim. Acta, 1985, 173, 253–264.

14 10 P. J. Gemperline, J. Chem. Inf. Comput. Sci., 1984, 24, 206–212.

15 11 J. Jaumot, A. de Juan and R. Tauler, Chemom. Intell. Lab. Syst., 2015, 140, 1–12.

16 12 M. Ghaffari and H. Abdollahi, Chemom. Intell. Lab. Syst., 2019, 189, 121–129.

17 13 D. W. Osten and B. R. Kowalski, Anal. Chem., 1984, 56, 991–995.

18 14 E. Bezemer and S. Rutan, Anal. Chem., 2001, 73, 4403–4409.

19 15 J. C. Nicholson, J. J. Meister, D. R. Patil and L. R. Field, Anal. Chem., 1984, 56, 2447–2451.

20 16 M. B. Anzardi, J. A. Arancibia and A. C. Olivieri, J. Chromatogr. A, 2019, 1604, 460502.

21 17 M. A. Hegazy, N. S. Abdelwahab and A. S. Fayed, Spectrochim. Acta. A. Mol. Biomol. 

22 Spectrosc., 2015, 140, 524–533.

23 18 S. Nigam, A. de Juan, R. J. Stubbs and S. C. Rutan, Anal. Chem., 2000, 72, 1956–1963.

24 19 M. R. Alcaráz, A. Schwaighofer, H. Goicoechea and B. Lendl, Spectrochim. Acta. A. Mol. 

25 Biomol. Spectrosc., 2017, 185, 304–309.

26 20 J. Jaumot, B. Igne, C. A. Anderson, J. K. Drennen and A. de Juan, Talanta, 2013, 117, 492–

27 504.

28 21 R. R. de Oliveira, K. M. G. de Lima, R. Tauler and A. de Juan, Talanta, 2014, 125, 233–241.

29 22 P. Conti, S. Zamponi, M. Giorgetti, M. Berrettoni and W. H. Smyrl, Anal. Chem., 2010, 82, 

30 3629–3635.

31 23 M. Ando and H. Hamaguchi, J. Biomed. Opt., 2013, 19, 011016.

32 24 J. P. Smith, F. C. Smith and K. S. Booksh, Analyst, 2017, 142, 3140–3156.

33 25 D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner and J.-X. Cheng, Anal. 

34 Chem., 2013, 85, 98–106.

35 26 H. Noothalapati and S. Shigeto, Anal. Chem., 2014, 86, 7828–7834.

Page 19 of 22 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

1 27 F. Bruno, R. Francischello, G. Bellomo, L. Gigli, A. Flori, L. Menichetti, L. Tenori, C. 

2 Luchinat and E. Ravera, Anal. Chem., 2020, 92, 4451–4458.

3 28 X. Fan, P. Ma, M. Hou, Y. Ni, Z. Fang, H. Lu and Z. Zhang, J. Chromatogr. A, 2020, 461713.

4 29 J. Kuligowski, G. Quintás, R. Tauler, B. Lendl and M. de la Guardia, Anal. Chem., 2011, 83, 

5 4855–4862.

6 30 C. Fauteux-Lefebvre, F. Lavoie and R. Gosselin, Anal. Chem., 2018, 90, 13118–13125.

7 31 R. B. Pellegrino Vidal, A. C. Olivieri and R. Tauler, Anal. Chem., 2018, 90, 7040–7047.

8 32 J. A. Johnson, J. H. Gray, N. T. Rodeberg and R. M. Wightman, Anal. Chem., 2017, 89, 

9 10547–10555.

10 33 P. De B. Harrington, E. S. Reese, P. J. Rauch, L. Hu and D. M. Davis, Appl. Spectrosc., 1997, 

11 51, 808–816.

12 34 W. Windig, A. Bogomolov and S. Kucheryavskiy, in Comprehensive Chemometrics (Second 

13 Edition), eds. S. Brown, R. Tauler and B. Walczak, Elsevier, Oxford, 2020, pp. 107–136.

14 35 L. Valderrama, R. P. Gonçalves, P. H. Março, D. N. Rutledge and P. Valderrama, J. Adv. Res., 

15 2016, 7, 795–802.

16 36 F. C. Sánchez, J. Toft, B. van den Bogaert and D. L. Massart, Anal. Chem., 1996, 68, 79–85.

17 37 Y. Nagai, W. Y. Sohn and K. Katayama, Analyst, 2019, 144, 5986–5995.

18 38 H. Abdollahi and R. Tauler, Chemom. Intell. Lab. Syst., 2011, 108, 100–111.

19 39 I. Noda, J. Mol. Struct., 2020, 1211, 128068.

20 40 F. Savorani, G. Tomasi and S. B. Engelsen, J. Magn. Reson., 2010, 202, 190–202.

21 41 J. C. Bezdek, R. Ehrlich and W. Full, Comput. Geosci., 1984, 10, 191–203.

22 42 A. de Juan, J. Jaumot and R. Tauler, Anal Methods, 2014, 6, 4964–4976.

23 43 T. Shimada and T. Hasegawa, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2017, 185, 104–

24 110.

25

26

Page 20 of 22Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

1

2 Figure captions
3

4 Fig. 1  Absorption spectra of BTB solutions for different pHs from 4.5 to 9 are shown.

5
6 Fig. 2  12 XRD pattern of chemical mixtures of 4 chemicals (Fe2O3, Fe3O4, Al2O3, and SiO2) 

7 are shown.

8

9 Fig. 3  The cosine similarity map of the UV/Vis spectra of the BTB solutions with different pHs 

10 obtained as Scheme 1(a) (cos-s map estimation).

11

12 Fig. 4  (a) The initial estimation of the spectra is shown, which were obtained from the mixture 

13 spectra of the BTB solutions by using the cos-s map estimation. (b) The absorption 

14 refined by the MCR calculation from the initial estimation of the spectra is shown. (c) 

15 The concentration ratios of the two components were obtained in the MCR calculation.

16

17 Fig. 5 (a) The similarity map for the XRD patterns obtained in the process of cos-s map 

18 estimation is shown. (b) The initial estimation of the XRD patterns by using the cos-s 

19 map estimations in the whole angle region.

20

21 Fig. 6  (a) The final estimated pure XRD patterns obtained by the cos-s map MCR. (b) The 

22 concentration profile obtained by the cos-s map MCR and (c) the prepared concentrations 

23 are shown.

24

25 Fig. 7 The comparison between the calculated patterns and the corresponding pure patterns of 

26 (a) Fe2O3 (b) Fe3O4 (c) Al2O3 (d) SiO2 is shown.

27
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