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Hierarchical Assemblies of Superparamagnetic Colloids in Time-
Varying Magnetic Fields

Aldo Spatafora-Salazar,‡ Dana M. Lobmeyer,‡ Lucas H. P. Cunha,‡ Kedar Joshi,‡ and Sibani
Lisa Biswal

Magnetically-guided colloidal assembly has proven to be a versatile method for building hierarchical
particle assemblies. This review describes the dipolar interactions that govern superparamagnetic
colloids in time-varying magnetic fields, and how such interactions have guided colloidal assembly
into materials with increasing complexity that display novel dynamics. The assembly process is driven
by magnetic dipole-dipole interactions, whose strength can be tuned to be attractive or repulsive.
Generally, these interactions are directional in static external magnetic fields. More recently, time-
varying magnetic fields have been utilized to generate dipolar interactions that vary in both time and
space, allowing particle interactions to be tuned from anisotropic to isotropic. These interactions
guide the dynamics of hierarchical assemblies of 1-D chains, 2-D networks, and 2-D clusters in both
static and time-varying fields. Specifically, unlinked and chemically-linked colloidal chains exhibit
complex dynamics, such as fragmentation, buckling, coiling, and wagging phenomena. 2-D networks
exhibit controlled porosity and interesting coarsening dynamics. Finally, 2-D clusters have shown
to be an ideal model system for exploring phenomena related to statistical thermodynamics. This
review provides recent advances in this fast-growing field with a focus on its scientific potential.

1 Introduction
From chains to sheets, magnetically responsive colloids can be di-
rected into unique materials that span multiple dimensions. Un-
der an applied external magnetic field, paramagnetic particles
acquire magnetic dipoles whose interparticle interactions can be
made attractive or repulsive, governing their assembly.1,2 The di-
rection and intensity of the field tunes these interactions and al-
lows for the formation of different types of structures, ranging
from linear3–5 to higher-dimensional arrangements.6–10 By in-
creasing the complexity of the applied field and/or particles used,
e.g. anisotropy in size and shape, researchers have accessed new
colloidal assemblies with a multitude of structures, which have
new properties and dynamics.11–17 Considering spatial unifor-
mity, the complexity of a magnetic field is defined by how it varies
in time. Figure 1 depicts several configurations of applied mag-
netic fields that are possible with a triaxial electromagnetic coil
apparatus. The complexity of magnetic particles is introduced
through anisotropy in shape13,18 and composition.12,19 However,
even simple spherical particles can be assembled into complex
structures with dynamics that are far from fully explored.

In this review, the assembly of spherical superparamagnetic col-
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loids into hierarchical structures, and their resulting dynamics un-
der the action of time-varying magnetic fields, are discussed. In
time-varying fields, magnetic colloidal systems can assemble into
a multitude of structures that display novel dynamics. Under low-
frequency rotating magnetic fields, colloidal chains that follow
the field are realized, with lengths and phase lag angles defined
by the balance between magnetic and viscous forces.29–33 By in-
creasing the field frequency, breakup dynamics21,34,35 and subse-
quent shortening of the chains are observed.36,37 In contrast, for
high-frequency rotating magnetic fields, the attractive magnetic
interactions dominate in an effectively isotropic manner. Such a
phenomenon results in the formation of two-dimensional (2-D)
clusters in the plane of the field.8 By increasing field strength
or particle concentration, the cluster packing fraction increases,
leading to the formation of colloidal crystals.7 This behavior is
of great value to investigate fundamental problems in condensed
matter physics, such as phase transitions and crystal defects.38–40

Hard spherical colloidal particles have long been used as anal-
ogous models for atomic and molecular systems.38,40,41 The ad-
vantage has been that colloidal systems are of sizes that can be
visualized with optical microscopy, while their dynamics are still
governed by thermal energy. Colloidal systems have illustrated
phenomena such as glass transition, crystallization, and melting.
Paramagnetic colloids have the additional advantage in that their
interactions can be tuned by an applied magnetic field. Moreover,
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Fig. 1 Schematic representation of several types of fields that can be achieved with a set of three orthogonal and independent pairs of Helmholtz
coils. The magnetic field equations for each type are presented as follows. For a static field: H0 = H0ê, where ê is a unit vector and H0 is
the field strength. For a circular field: H0(t) = H0[cos(ωt) êx + sin(ωt) êy], where ω = 2π f is the angular frequency of the field. For an elliptical

field: H0(t) = Hmax cos(ωt) êx +Hmin sin(ωt) êy, with time-dependent strength H0(t) =
√

H2
max cos2(ωt)+H2

min sin2(ωt). For a precessing (conical) field:

H0(t) = Hxy[cos(ωt) êx + sin(ωt) êy]+Hz êz, where β = tan−1(Hxy/Hz) is the precessing angle, and the constant strength is H0 =
√

H2
xy +H2

z . For a tilted
precessing field: H0(t) = Hxy[cos(ωt) êx + sin(ωt) êy]+Hz cos(ωt +φz) êz, where the phase, φz, controls the direction of inclination of the field, and β (t)

corresponds to the time-dependent precessing angle. The time-dependent strength of this field is H0(t) =
√

H2
xy +H2

z cos2(ωt +φz).

Fig. 2 Illustrative representation of the hierarchical colloidal assemblies that can be obtained with superparamagnetic colloids in static and time-varying
fields. This review outlines how increased complexity spans from 1-D chains to 2-D networks and clusters. Reprinted figures with permission from
ref. 20, Copyright (2017) by the American Physical Society; ref. 21, Copyright (2012) by the American Physical Society; ref. 22, Copyright (2018)
by the American Physical Society; ref. 7, Copyright (2018) by the American Physical Society; ref. 23, Copyright (2014) by the American Chemical
Society; ref. 24, Copyright (2014) by the American Chemical Society; ref. 25 from the Royal Society of Chemistry; ref. 26 from the Royal Society of
Chemistry; ref. 27 from the Royal Society of Chemistry; and ref. 28 from PNAS.
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this tunability broadens the range of colloidal assemblies that can
be investigated.42

Aggregates of paramagnetic colloidal particles can assemble
into structures of increasing hierarchy, from 1-D chains to 2-D
networks and 2-D clusters. This spatial dimension refers to the
hierarchy of the assembly conformation, but their dynamics can
span multiple dimensions. The pathways to build these hierar-
chical colloidal assemblies using static and time-varying fields are
illustrated in Fig. 2. This review highlights the increasing com-
plexity in structure and dynamics that is possible with these di-
rected colloidal assemblies. Section 2 presents background in-
formation regarding the theoretical aspects and numerical com-
putations that describe the interactions of magnetizable particles
under the action of an external magnetic field. Following the
scheme presented in Fig. 2, the dynamics of chains of paramag-
netic particles in static and time-varying fields are described in
Sec. 3. Cross-linked chains of paramagnetic particles are then
discussed in Sec. 4. These more recent assemblies display novel
configurations and dynamics because of their elasticity. Section 5
is devoted to network-like structures that arise in static and pre-
cessing fields. Section 6 describes clusters formed through mag-
netically induced isotropic interactions. Finally, Sec. 7 provides
a perspective of possible future directions of these magnetic col-
loidal assemblies.

2 Magnetic Dipolar Interactions

Particle magnetization, characterized by a magnetic susceptibility,
is an important variable that can be used to control colloidal as-
sembly.2 However, magnetization will vary based on the type of
magnetic particle used. Ferromagnetic particles have permanent
dipoles. A common colloidal suspension of this type of particle is
a ferrofluid, where magnetic nanograins are suspended in a liq-
uid. In contrast, paramagnetic particles contain magnetic dipoles
that are induced by an external magnetic field. An important
aspect of paramagnetic particles is that they have no net mag-
netization in the absence of an applied field. Superparamagnetic
colloids consist of single-domain ferromagnetic nanoparticles em-
bedded in a diamagnetic medium, e.g. iron oxide nanoparticles
in a polystyrene matrix. These particles present the same mag-
netic behavior as paramagnetic particles, but with a much higher
magnetic susceptibility. Note that it is common to see superpara-
magnetic colloids referred to as paramagnetic colloids in the lit-
erature. For the purpose of this review, paramagnetic is used
when describing the governing equations and superparamagnetic
is used when describing experimental results.

This section summarizes the interactions that arise when para-
magnetic colloids are placed in external magnetic fields. Under-
standing the magnetic interactions of paramagnetic particles, un-
der an external magnetic field, is essential to describe the assem-
bly dynamics of magnetic colloids. Such interactions are typi-
cally described using the dipolar model (DM), which assumes that
spherical particles subjected to an external magnetic field, H0, ac-
quire a uniform magnetization:

m =
4πa3χH0

3
(1)

where a is the particle radius, and χ = 3χm/(3+ χm) is the effec-
tive magnetic susceptibility for a spherical particle, χm being the
susceptibility of the material. Equation 1 assumes the magneti-
zation of the particle is linearly related to the applied external
field, i.e. far from the saturation magnetization of the particle.
By treating the particle as a single dipole with magnetic moment
m located at its center, x0, the magnetic field produced by the
particle at the position x is given by:1

Hdip(r) =
1

4π

[
3(m · r)r

r5 − m
r3

]
(2)

where r = x−x0 and r =
√

r · r. It is important to note that Eq. 2
recovers the exact solution for the magnetic field induced by a
spherical particle in a uniform magnetic field for r > a.43

In the absence of electric fields and nonsteady currents,
Maxwell’s equations reduce to the magnetostatic regime: ∇ ·B= 0
and ∇×H = 0, where B and H correspond to the magnetic in-
duction field and magnetic field, respectively. These two vec-
torial quantities relate to each other by B = µ0(H+M), where
µ0 = 4π×10−7 N·A−2 is the magnetic permeability of free space,
and M is the magnetization of the medium. In general, medium
refers to both the particle and background solution in the event
both can be magnetized. For paramagnetic materials far from
the saturation magnetization, M = χmH. Under such conditions,
B = µH and ∇ · (µH) = 0, where µ = µ0(χm + 1) is the magnetic
permeability of the medium. Since the magnetic field is irro-
tational, it can be rewritten as the gradient of a magnetic po-
tential field, ζ , such that H = −∇ζ . Therefore, the magnetic
equations reduce to: ∇ · (µ∇ζ ) = 0, or more simply, µ∇2ζ = 0,
a Laplace equation that assumes constant magnetic permeability
throughout the medium. By applying the superposition princi-
ple, the magnetic field around the particle can be expressed as
H = H0 +Hdip.

In the magnetostatic limit, the force experienced by a dipole
subjected to a magnetic field is given by Fmag = −∇U , where
U = −µ0m ·H0 is the potential energy. In a uniform magnetic
field, a single particle experiences no magnetic forces. However,
neighboring particles exert forces on each other because of their
induced magnetic fields. The potential energy between two inter-
acting dipoles, mi and m j, can be written as:

Ui j =
µo

4π

[
mi ·m j

r3
i j
−

3(mi · ri j)(m2 · ri j)

r5
i j

]
(3)

where ri j is the distance vector between mi and m j.

From the superposition principle, for a system of M dipoles,
the magnetic force on the ith dipole is a result of the magnetic
interactions between all other dipoles in the system:

Fi =−
M

∑
j 6=i

3µ0

4πr5
i j

[
(mi · ri j)m j +(m j · ri j)mi

+(mi ·m j)ri j−5
(mi · ri j)(m j · ri j)ri j

r2
i j

] (4)

Continuing with the DM, Eq. 1 inherently assumes that the
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magnetic field is produced by a single dipole, such that Eq. 2 is
not influenced by the magnetization of other particles.33,44 By as-
suming this is the case, Eq. 3 can be rewritten as a function of the
angle θ between r and the particles’ parallel magnetic moments:
Ui j ∼ [1− 3cos2(θ)]. Figure 3 illustrates the relevant parameters
to determine the interaction potential between two particles, ac-
cording to this model. This interaction can either be attractive,
Ui j < 0, or repulsive, Ui j > 0, and the transition from one to the
other exists at Ui j = 0. The angle at which this occurs is θ = 54.7◦

and is referred to as the magic angle.43 The strongest attractive
interaction occurs at θ = 0, which leads to the assembly of lin-
ear chain structures, further discussed in Sec. 3. For the scope
of this review, another important phenomenon arises from the
application of high-frequency rotating magnetic fields. In such
cases, the time period of the applied field is much shorter than the
characteristic relaxation time of the particle in the background
solvent. Essentially, the magnetic dipole is time-averaged over
the particle, resulting in an effective isotropic interaction between
particles. The equivalent potential between particles is given by
−µ0mim j/4r3

i j, which is easily verified by integrating Eq. 3 with
respect to θ , from 0 to 2π, i.e. over one period. These effective
isotropic interactions result in 2-D colloidal clusters, as is further
discussed in Sec. 6.

Fig. 3 According to the DM, the dipolar interactions between two spher-
ical magnetic colloids (i and j), upon application of a uniform magnetic
field, depend on the external magnetic field (H0), the center-to-center
interparticle distance (ri j), and the angle (θ) formed between them. The
black arrows inside the particles represent the magnetic moments (mi
and m j), which are equal to each other and parallel to the direction of
the external magnetic field.

The DM is widely used to describe the dynamics of paramag-
netic colloidal systems. One motivation for using the DM is that it
simplifies the analytical calculations. It also lends itself to being
computationally efficient for simulating systems of thousands of
particles. However, the DM assumes a constant dipole, as given
by Eq. 1, and neglects the additional magnetization induced by
neighboring particles. Thus, the computed magnetic forces be-
come inaccurate, particularly when the particles are in close prox-
imity, i.e. dense systems. To overcome this limitation, the mutual
dipolar model (MDM) was developed to provide a better descrip-
tion of a particle’s magnetization, while still assuming that the
particles are uniformly magnetized.45 This methodology leads to
a linear system of equations. The dipole moment for particle i in

a solution of N particles can be written as:

mi =
4
3

πa3
χ

[
H0 +

N

∑
j=1, j 6=i

M ·m j

]
(5)

where M= (3ri jri j/r5
i j− I/r3

i j)/4π is the grand potential tensor,46

and ri j = x j−xi. Note that M ·m j results in the induced dipolar
magnetic field in Eq. 2. The magnetic moments are determined by
solving the linear system of equations, which can then be used to
compute the magnetic force acting on each particle, according to
Eq. 4. The MDM is considerably more computationally intensive
when compared to the DM because of the need to solve a large
system of equations (3N × 3N) for each time step.43

Furthermore, despite the greater accuracy of the MDM when
compared to the DM, particles may not have a homogeneous mag-
netization throughout their volume. This inhomogeneity is par-
ticularly evident for particles in close contact or anisotropic parti-
cles.43,44 Figure 5 illustrates the inhomogeneity of the magnetic
field for particles in close contact or of varying shape. For exam-
ple, when two spheres are considerably close to each other, the
magnetic field intensity within the spheres is highest in the region
where the particles are closest. For square-shaped particles, the
inhomogeneous magnetic field leads to a torque that rotates the
particle. Lastly, variations in the magnetic field within ferrofluid
droplets can be observed due to deformations of the interface.

The most accurate method to compute the magnetic force on
each particle is to solve Maxwell’s equations. This procedure in-
volves computing the solution of the magnetic field through the
system domain, followed by the integration of the magnetic force
density (∇ ·σM) over the volume of each particle, or by the in-
tegration of the magnetic stress (n ·σM) over the surface of each
particle, where σM is the Maxwell stress tensor, and n is the nor-
mal direction on the particle surface. To accomplish this task,
different numerical methodologies can be used, such as finite ele-
ment, boundary element, and finite difference methods.47,48 The
greatest challenge in applying these methods is the proper appli-
cation of the boundary conditions at the particles’ surfaces. Some
groups have implemented a Heaviside function to smooth the in-
terface between the particle and solvent.49,50 When this continu-
ous function is used in place of a discrete interface, boundary con-
ditions are no longer necessary. Such a technique is of great value
when considering anisotropic particles because it does not require
further modifications.51 Additionally, this method is straightfor-
ward for simulating soft particles, e.g. ferrofluid droplets.52,53

Du et al.44 compares the solutions from the DM and MDM
methodologies, where the exact solutions obtained use a numer-
ical Laplace’s equation solver (LES) with a smoothing interface
technique. As shown by Fig. 5, the MDM method leads to a close
estimate of the magnetic force between a pair of spherical parti-
cles; however, it deviates from the exact solution when the parti-
cles are in close proximity. Additionally, the magic angle of 54.7◦

only applies for the DM model. With the LES method, the magic
angle becomes a function of the particle distance, e.g. ≈ 60◦ when
the interparticle distance is 10% greater than the particle diam-
eter. Du & Biswal54 proposed a new methodology to compute
particle interactions, known as the micro-mutual-dipolar model
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Fig. 4 a) Magnetic field intensity for a pair of interacting paramag-
netic spheres subjected to a uniform magnetic field, H0. The tilde refers
to the non-dimensionalization with respect to the particles’ diameter.
Reprinted figure with permission from ref. 44. Copyright (2014) by the
American Physical Society. b)-c) Magnetic field intensity for a paramag-
netic square subjected to a uniform magnetic field, H0. The tilde refers
to the non-dimensionalization with respect to the length of the squares’
sides. Reprinted from ref. 51, Copyright (2016), with permission from
Elsevier. d)-e) Magnetic field lines and intensity for a ferrofluid droplet
subjected to a shear flow and an external field d) parallel to and e)
perpendicular to the main flow direction. The tilde refers to the non-
dimensionalization with respect to the applied field strength. Reprinted
from ref. 53, with the permission of AIP Publishing. f) Magnetic field
lines and intensity for three interacting paramagnetic star-shaped parti-
cles subjected to an external field, where the magnetic permeability ratio
equals 2. The tilde refers to the non-dimensionalization with respect to
the applied field strength. The solution is obtained in a 2-D space using
the finite difference method and the interface smoothed technique. The
inset elucidates the smooth transition of the local magnetic permeabil-
ity from inside the particle (red) to outside the particle (blue), with the
squares representing the mesh discretization.

(MMDM). This methodology considers the nonuniformity of the
magnetic field within the particles by shifting the magnetic mo-
ments away from their centers. Such a model presents a great
improvement in accuracy when compared to the MDM, however,
its implementation is not simple, and the computational cost is
considerably greater.

3 1-D Chains of Superparamagnetic Colloids
Linear chains of superparamagnetic colloids are the simplest type
of assemblies formed upon the application of an external mag-
netic field. This chain formation is due to the induced dipoles’
preference to align in a tip-to-tail manner. However, the dynamics
of these chains under the action of time-varying magnetic fields
stray far from simplicity because of the interplay between mag-
netic and viscous forces. Steady rotation, breakup instabilities,
higher-order fragmentation events, and structural collapse are
examples of the various phenomena displayed. Through these
complex dynamics, chains can form precursor structures that as-
semble into higher-order colloidal systems, which are presented
in Sec. 5 and Sec. 6.

This section begins with a description of the magnetic forces
involved in the thermodynamics and kinetics of colloidal chain
assembly. Next, the growth kinetics are emphasized because they
determine the average chain length, which governs chain dynam-
ics. Lastly, the core of this section focuses on detailing the dynam-

Fig. 5 a)-b) Magnetic forces between a pair of paramagnetic spheres,
subjected to an external field that is applied a) parallel and b) perpen-
dicular to their distance vector. The forces are computed with the DM
(light blue dashed lines), MDM (dark blue solid lines), and LES (red
dots), as a function of the interparticle distance, r, normalized by the
particle diameter, 2a. Negative values represent attractive interactions
and positive represent repulsive. The insets in both graphs display the
ratio of the force computed with LES to the force computed with the
DM. Reprinted figures with permission from ref. 44. Copyright (2014)
by the American Physical Society.

ics of colloidal chains exposed to circular time-varying magnetic
fields.

3.1 Chain assembly
3.1.1 Principles of chain formation

As described in Sec. 2, paramagnetic particles acquire dipole mo-
ments parallel to the direction of the magnetic field and begin to
interact with each other through the pair potential described by
Eq. 3. The magnetic moments acquired by the colloids can be ap-
proximated by the dipolar model (DM) from Eq. 1. As a result,
the magnetic interactions between two identical superparamag-
netic particles can be expressed in terms of a particle’s moment,
m, and the angle, θ , between the external field and the interpar-
ticle separation, ri j:

Ui j(ri j,θ) =
µom2

4πr3
i j

[
1−3cos2

θ

]
(6)

where cosθ = m · ri j/mri j.
As shown in Fig. 6, the interactions between paramagnetic col-

loids are governed by θ . The strongest repulsion and attraction
between two particles occurs when their dipoles are arranged
side-by-side (θ = 90◦, Fig. 6a) and head-to-tail (θ = 0◦, Fig. 6b),
respectively. The potential energy in Eq. 6 vanishes at the magic
angle (θmagic = 54.7◦). Above this threshold (θmagic < θ ≤ 90◦),
the particles become repulsive, whereas below the threshold
(0◦ ≤ θ < θmagic) they are attractive,55 with a minimum at θ = 0◦.
Thus, this pair interaction potential is spatially anisotropic.56 As
a result of these interactions, the jth particle exerts a magnetic
force on the ith particle with radial and tangential components
described by:

Fr
i (ri j,θ) =

3µom2

4πr4
i j

(1−3cos2
θ) (7)

Fθ
i (ri j,θ) =−

3µom2

4πr4
i j

sin(2θ) (8)
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These magnetic forces drive the organization of the particles into
chains aligned with the field direction,57 as shown in Fig. 6c.

Fig. 6 Dipolar interactions are anisotropic based on the angle (θ) be-
tween the external magnetic field and the interparticle separation. a)
Two dipoles aligned side-by-side (θ = 90◦) experience the strongest re-
pulsion (Ui j > 0). b) Two dipoles aligned head-to-tail (θ = 0◦) experience
the strongest attraction (Ui j < 0). c) The particles assemble into chains
because the head-to-tail alignment of the dipoles minimizes the dipolar
interactions.

Oftentimes, the colloids have surface coatings that render them
electrostatically charged. In such cases, the interparticle spacing
between two particles is dictated by the balance between the at-
tractive magnetic forces (Eq. 7) and repulsive surface forces.58,59

This property has been previously utilized to accurately measure
short-ranged electrostatic or steric forces using micron-sized par-
ticles.60,61 For a long chain of N particles, rather than a pair, the
total radial magnetic force acting on each bead can be approxi-
mated using the scheme proposed by Zhang & Widom62 for an
infinitely long chain of equally spaced particles:

Fr
i,total(ri j,θ = 0◦) =−1.202

3µom2

2πr4
i j

(9)

Equation 9 is derived from the total magnetic interaction po-
tential for a particle in such a chain: Ui j(ri j, θ = 0◦) =

−µom2/2πr3
i j ∑

∞
k=1 1/(k−1)3, where ∑

∞
k=1 1/(k−1)3 ≈∑

∞
k=1 1/k3 =

ξ (3) = 1.202 is the Riemann-Zeta function.

The competition between magnetic and thermal forces is mea-
sured in terms of the dimensionless magnetic coupling parameter
(λ):63

λ =−Umin

kBT
=

µoπa3χ2H2
0

9kBT
(10)

where kB is the Boltzmann constant, T is the temperature of the
fluid, and Umin is the strongest attraction between two beads,
computed from Eq. 6 as Umin = Ui j(ri j = 2a, θ = 0◦). For λ < 1,
thermal fluctuations dominate over magnetic interactions, in-
hibiting the particle aggregation process. This situation occurs
when applying weak fields to particles with low χ. In contrast,
for λ > 1, the magnetic interactions dominate over thermal fluc-
tuations, making the formation of chains possible. However, this
formation is not guaranteed when working at λ ∼ 1 and with very
low particle concentrations.56,64 Upon removal of the external

field, superparamagnetic particles lose their net magnetization in-
stantaneously, such that thermal fluctuations cause the disassem-
bly of the chains and the redispersion of colloids in the fluid.57,63

Alternatively, ferromagnetic particles retain a net magnetization
under zero-field conditions. If the residual dipolar interactions
are strong enough such that λ > 1, then the ferromagnetic chain
structures persist. The competition between the residual mag-
netization and thermal fluctuations drive the reorganization of
the ferromagnetic chains into bent configurations, and eventually,
some close into rings or lassos.4,65,66

3.1.2 Chain aggregation kinetics

Although the magnitude of λ indicates that the formation of
chains is possible, this parameter by itself does not provide any
information about how fast the assembly occurs. The chaining
process itself is not immediate because several length-scales and
time-scales become relevant when defining the overall mecha-
nism of chain growth. During field-induced aggregation, multiple
chains of different sizes are formed throughout the sample, lead-
ing to a polydisperse size distribution that broadens over time as
new particle-particle, particle-chain, and chain-chain coalescence
events transpire.67,68 However, the average length evolves with
time. Hence, the amount of time a suspension is exposed to a
static field will dictate the possibility of finding a chain of a de-
sired size for subsequent single-level actuation dynamics. Length
is a characteristic property of the chain-like structure that al-
ters the dynamical behavior during actuation with a time-varying
field. The importance of length will become more evident in
Sec. 3.2 and 4.2. Therefore, characterizing the kinetics of chain
assembly represents the first step in probing novel types of dy-
namical complexity in magnetic colloids.

The kinetics of field-induced chain assembly can be described
as either diffusion-limited or deterministic (ballistic) cluster ag-
gregation, based on two relevant length-scales.56,70 The first of
these length-scales is the capture radius, the interparticle separa-
tion at which the attractive dipolar interactions (for θ < 54.7◦ in
Eq. 6) are equal to the thermal energy, kBT :71

Rc = [4(3cos2
θ −1)]

1
3 aλ

1
3 (11)

Particles separated beyond this threshold are not influenced by
one another. Therefore, such particles must rely on random dif-
fusion to bring them to a distance shorter than Rc. Within Rc,
the magnetic interactions dominate, changing the particle mo-
tion from diffusive to ballistic, which drives head-to-tail aggre-
gation.69 The threshold distance Rc decreases with θ and has a
maximum value at θ = 0◦. This maximum value, R1, only depends
on the magnetic coupling parameter and the particle size:

R1 = 2aλ
1
3 (12)

The second important length-scale, R0, defines the initial average
interparticle spacing of the randomly distributed suspension prior
to field exposure:

R0 =

{√
πa/(φ3D)

1/3, for 3-D systems
√

πa/(φ2D)
1/2, for 2-D systems

(13)
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Fig. 7 Kinetics of superparamagnetic particle aggregation into linear chains under the application of a uniform, static magnetic field, H0. a) Schematic
of diffusion-limited aggregation between two particles, characterized by R1 < R0. b) Schematic of deterministic aggregation kinetics between two
particles, characterized by R1 > R0. The interactions in a) and b) are modeled in terms of a capture volume, defined by the interaction potential Ui j,
that has an attractive region (enclosed in purple) and a repulsive region (enclosed in orange). c) Experimental observation of deterministic chain
kinetics. Reprinted from ref. 69, with the permission of AIP Publishing. d) Log-log plot of the size-weighted average chain length, S(t), as a function
of t for different particle fractions in deterministic aggregation. At long times, S(t) grows linearly with t and the slope corresponds to the dynamic
exponent z. Adapted from ref. 70 with permission from the Royal Society of Chemistry.

where φ3D and φ2D are the volume and surface packing fractions,
respectively.72,73 In experiments, the first definition (for 3-D sys-
tems) is applicable for particles that diffuse unrestrictedly and for
which gravity is negligible compared to thermal fluctuations. The
second definition of R0 (for 2-D) systems is employed for dense
particles that sediment to a quasi-2-D plane and remain confined
due to negligible out-of-plane fluctuations. If R1/R0 ≤ 1, and
equivalently λφ3D ≤ (

√
π/2)3 for 3-D and λ 1/3φ

1/2
2D ≤

√
π/2 for

2-D, the thermal energy dominates over magnetic interactions,
such that the colloidal system follows diffusion-limited cluster-
cluster aggregation (DLCA) kinetics.55 Else if R1/R0 > 1, the mag-
netic interactions dominate over the thermal energy, such that
the kinetics are deterministic and therefore, faster than the DLCA
scenario.69,74 However, even for the deterministic case, chaining
does not occur immediately because of the viscous drag acting on
the particles. Schematics illustrating the relevant length-scales
for both types of kinetics are presented in Fig. 7a and b. Overall,
the transport process that leads to chain formation is completely
defined by λ and φ , since the relevant length-scales (R1 and R0)
depend on these two parameters.

Both kinetic mechanisms have corresponding characteristic
time-scales that represent the amount of time required for two
magnetic particles to form a dimer.75 For the diffusion-limited
case, this time is defined as tB ∼ a2/Dλφ ,71,76,77 with D being
the diffusion coefficient of a single bead. On the other hand,
the characteristic time for ballistic aggregation behaves as tdet ∼
a2/Dλφ

5/2
2D (or tdet ∼ a2/Dλφ

5/3
3D for 3-D). This expression was ini-

tially derived from a force balance between Stokes’ drag and the
maximum magnetic force acting on the particle (Eq. 7).75,78 Note
that from this point forward, φ refers to φ2D because the systems
in reference are confined to a quasi-2-D plane.

The temporal evolution of the elongated structures in the sus-
pension is usually assessed in terms of the size-weighted average
chain length, S(t) = ∑N N2GN(t)/NGN(t), where N is the number
of particles within a chain, and GN(t) is the total number of chains
containing N particles at time t.79 Experimentally, this statistical
measurement can be computed via image processing of optical
microscopy, such as the snapshots in Fig. 7c, or from the effec-
tive diffusion coefficient of the aggregates, determined with dy-
namic light scattering (DLS).67,80,81 After a short-time transient
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regime of practically null growth determined by the characteristic
time-scale, S(t) scales as a power law, S(t) ∼ tz, for intermediate
to long times. The dynamic scaling exponent, z, measures the
steady growth rate of the chains and is determined from the slope
of the linear region of the log-log plot of S(t) and t,82 as shown in
Fig. 7d. Furthermore, curves of S(t) and t can be collapsed into a
single master curve that fully characterizes the kinetics by using
the appropriate characteristic time-scale (tB or tdet).

Early DLCA theoretical studies predicted that z = 1/2 for 2-
D and 3-D aggregation, and z = 1/3 for the low limit of 1-D
aggregation, based on the assumption that the drag coefficient
of a chain increases linearly with the number of particles.83,84

Subsequent experiments and simulations showed that z = 0.6 for
2-D chains. This deviation is a result of the anisotropic shape
of the chains.85,86 For ballistic aggregation, theory predicts that
z = 2/3;69 though a broad range of values, as high as z = 1.01
and as low as z = 0.12, have been reported.87,88 The impact of
salt concentration, surfactant, and confined spaces on z and S(t)
have also been analyzed recently,68,73,74,81,89 allowing for more
control over the average chain size.

3.1.3 Lateral chain aggregation

Lateral chain aggregation is a long-time coarsening process that
is a result of short-range attractive interactions between neigh-
boring chains. If the chains are within a certain distance from
one another, bundling occurs at large φ and λ , i.e. when S(t) sat-
urates. Furst et al.90 studied the lateral aggregation kinetics of
two chains using the Halsey-Toor (HT) equation to calculate the
magnetic field around an infinite chain of dipoles:

H(rl ,y) =−(2π)2

(
m

4πµ0r2
l a

)(
a
rl

)2
exp
(
−2πrl

a

)
cos
(

2πy
a

)
(14)

where rl is the lateral separation between two chains, y is the
position along the chain in the applied field direction, and m is
defined according to Eq. 1.

The lateral interactions between two rigid chains can be cal-
culated by integrating Eq. 15 with respect to y for infinitely long
chains:

Ul(rl) =±(2π)2 2m2

4πµ0r2
l a

exp
(
−2πrl

a

)
(15)

Since both the field and interaction potential are periodic in
space, particles out-of-registry are attractive and particles in-
registry are repulsive, as shown in Fig. 8a. However, the HT
model applies to perfectly rigid chains. For colloidal chains that
exhibit thermal fluctuations, there are instantaneous changes in
the particle dipoles that enhance long-range attraction between
two colloidal chains. These interactions are analogous to the
London and Keesom dispersion forces observed in molecular sys-
tems. Furst et al.90 and Laskar et al.91 derived more detailed
models based on statistical fluctuations that account for these at-
tractive interactions, resulting in a long-term coarsening of the
chains with a power law of t0.75. Figure 8b illustrates the dif-
ferent degree of lateral aggregation as the applied magnetic field
increases.

Fig. 8 a) Interaction energy between two chains, each containing 50
superparamagnetic particles, as a function of their lateral spacing. The
energy values are calculated for two fields and two chain configurations:
in-registry and out-of-registry. The insets depict the two types of chain
configurations. b) Schematic of superparamagnetic particle arrangement
before, and after, magnetic field application for increasing field strengths.
Reprinted figures with permission from ref. 91. Copyright (2009) by the
American Physical Society.

3.2 Chain dynamics in circular time-varying magnetic fields

The previous section, Sec. 3.1, focused on chain dynamics in
the form of assembly and aggregation kinetics in static magnetic
fields. When time-varying magnetic fields are utilized, the dy-
namics of these paramagnetic particle chains take on a host of
complex phenomena. One of the simplest time-varying magnetic
fields is the rotating magnetic field, defined by two sinusoidal
waves that are separated by a phase of π/2:

H0 = H0

[
cos(ωt)êx

sin(ωt)êy

]
(16)

where H0 is the field strength, and ω is the angular frequency of
the magnetic field.

Chains of paramagnetic particles undergo rotational motion at
low frequencies. The resultant dynamics depend on the external
field parameters, the magnetic nature of the particles, and the
rheological properties of the continuous phase. For a Newtonian
medium, these dynamics are captured by the Mason number, a
dimensionless quantity that gives the ratio between viscous and
magnetic forces, defined as:

Ma≡ 72ηω

µoχ2H2
0

(17)
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Fig. 9 Schematic of chain configurations of paramagnetic particles in circular time-varying magnetic fields. Chain orientation is determined by the
field angle, ωt, where ω is the angular frequency of the field and t is time. a) The linear chain model assumes the driving tangential forces act only on
the terminal particles, resulting in a single phase lag angle, α. b) More accurately, the rotating chain adopts an S-shaped configuration with a phase
lag angle, αi, for each particle pair. The largest αi occurs at the center of the chain. Compared to the linear model, the S-shaped chain experiences
deviations from the theoretical Mac.

where η is the viscosity of the solvent. The prefactor in Ma de-
pends on the assumptions used for the Stokes’ drag and magnetic
forces. For example, the prefactor of 72 in Eq. 17 describes the
breakup of dimers when Ma > 1. Thus, large differences in the
Mason number can be found in the literature under the same ex-
perimental conditions. Furthermore, modifications to this def-
inition have been proposed for charged suspensions (and vali-
dated experimentally) to account for greater interparticle spacing
(ri j > 2a) caused by repulsive electrostatic forces between the par-
ticle surfaces.92

A chain rotates due to a magnetic torque that seeks to realign
the dipoles and ultimately minimize the potential energy (see
Eq. 6). An opposing viscous torque impedes complete alignment
between the chain’s long-axis and the external magnetic field.
Consequently, the chain’s orientation follows behind the exter-
nal field with a phase lag angle, α, as shown in Fig. 9a. Since α

defines the linear chain orientation with respect to the external
magnetic field, it therefore describes the angle between the inter-
particle spacing and the external field for all particle pairs along
the chain. Consequently, α can be substituted for θ for all angular
dependencies in the magnetic interactions and forces induced by
time-varying magnetic fields.

To understand α, it is necessary to analyze the magnetic and
viscous torques acting on the chain. The chain is modeled to
be rigid and linear,34,93 where the particles remain in close con-
tact, but do not overlap. In this sense, the dynamics of the chain
depend exclusively on the forces perpendicular to its main axis.
Moreover, each particle is treated as a point dipole with a mag-
netic moment, m, located at its center, calculated using the DM.
Lastly, the particles only interact with their nearest neighbors. Fol-

lowing these assumptions, the net magnetic force on a particle
within the chain is zero, because the neighboring particle inter-
actions cancel each other. The exception is the terminal particles,
which have opposing tangential forces, Fα

i (Eq. 8), as shown in
Fig. 9a. The magnetic torque based on this model is:

Γm = 2Fα
i

(
2a

N
2

)
=

1
6

πNa3
µoχ

2H2
0 sin(2α) (18)

where N is the number of particles. Note that different expres-
sions for the magnetic torque have been reported in the literature
based on varying assumptions of the tangential dipolar force and
chain length.29,94,95

The viscous torque on a chain can be determined using a shish-
kebab model for N aligned spheres in contact:96

Γv =
8πa3N3η

3ln(N/2)
dθL

dt
(19)

where dθL/dt is the angular velocity of the chain, and θL is the
angle between the chain orientation and the reference axis. Note
that θL can be also expressed in terms of the field angle, ωt,
and α: θL = ωt−α. The balance between magnetic and viscous
torques leads to a nonlinear differential equation for α, given by:

dα

dt
= ω−

µoχ2H2
0 ln(N/2)

16ηN2 sin(2α) (20)

Note that this expression is for λ > 1 and low Reynolds numbers,
where thermal and inertial forces can be neglected. Solutions
to this equation are given by Singh et al.93 and Petousis et al.34

At steady-state, the chain rotates with the same frequency as the
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external magnetic field. Therefore, α can be expressed in terms
of N and Ma:20

sin(2α) =
2MaN2

9ln(N/2)
(21)

Longer chains rotate with a larger α because length increases the
drag force. In addition, α increases with η and ω, whereas it
decreases with H0.

Fig. 10 Fragmentation dynamics of superparamagnetic chains under the
action of an external rotating magnetic field at high Ma. a) Experiments
and simulations of single fragmentation in a N = 13 chain, occurring
above Mac. b) Higher-order fragmentation of an N = 12 chain at Ma >
Mac of the original chain length. Images a) and b) reprinted with permis-
sion from ref. 21. Copyright (2012) by the American Physical Society.
c) Master curve predicting the time-averaged number of fragments, 〈n〉,
as a function of the rescaled frequency, ωN2(µoH0)

−2. At sufficiently low
values, the chain rotates synchronously with the external field as a single
intact object. Adapted from ref. 97 with permission from PNAS.

The regime of synchronous rigid-rod rotation is restricted to
relatively low Ma. As Ma increases, α rises, increasing Γm until

the chain reaches the critical phase lag value of αc = π/4. This
threshold represents the limit between steady phase-locked rota-
tion and chain instability. Substituting the critical angle in Eq. 21
yields a critical Ma, at which a chain of length N∗ breaks symmet-
rically at its midpoint:30,31,33,34

Mac =
9
2

ln(N∗/2)
N∗2

(22)

Above Mac, the magnetic torque is not sufficient to rotate the
chain with the same angular velocity as the external magnetic
field, resulting in a continuous increase in α . Once α reaches
the magic angle of αmagic = 54.7◦, the radial magnetic restoring
forces vanish (Eq. 7), culminating in chain breakup. Mac de-
lineates the separation between the synchronous and unsteady
regimes. However, thermal fluctuations may drive a chain to rup-
ture below Mac. Because of these fluctuations, a metastable chain
regime exists over a range of phase lag angles.33

There have been a number of deviations from Eq. 22 demon-
strated in both experiments and numerical simulations. The pre-
vious analysis assumes a linear shape, which is only valid at low
Ma. However, as Ma increases, the relative motion of each parti-
cle results in phase lag angles that vary along the chain, leading to
an S-shaped configuration.33,34 As shown in Fig. 9b, the terminal
particles of a chain are able to follow the external rotating mag-
netic field more closely than the center section of the chain.33,95

At the center of the chain, the interparticle interactions are weak-
est, and therefore, α is largest. Thus, the chain ruptures sym-
metrically (at its midpoint) and forms daughter chains that can
synchronously rotate with the external field because of a smaller
viscous torque.30,31,33,34 This interesting phenomenon of cyclical
chain breakup and reformation is shown in Fig. 10a.21,35 Further-
more, the chains can also break up asymmetrically (off-center)
as a result of nonuniform magnetic properties among the parti-
cles.34

Breakup at multiple points along the chain is possible at Ma
> Mac.21 A single chain may fragment into multiple daughter
chains to achieve synchronous rotation, as shown in Fig. 10b.
Such higher-order fragmentation occurs because the operating
Ma exceeds the Mac of the daughter chains obtained in a single
breakup event. Breaking a chain into multiple fragments has been
shown to enhance mixing via chaotic advection in microfluidic de-
vices.35 Thus, characterizing the breakup according to external
field parameters is of practical importance. By varying different
parameters, Sing et al.97 showed that the time-averaged number
of fragments, 〈n〉, could be collapsed onto a master curve when
scaled with a normalized frequency (ωN2(µoH0)

−2), as shown in
Fig. 10c.

Lastly, chain collapse is observed for even higher Ma. In such
cases, the fast field frequency results in time-averaged dipolar in-
teractions. As shown by Fig. 11a, a chain rearranges into a 2-D
cluster with increasing field frequency. The pathway from a chain
to a cluster displays unique dynamics and depends on the chain
length. Shorter chains exhibit a do-si-do and other unstable dy-
namics, whereas longer chains curl at the ends and ultimately
coil into cluster configurations, as shown in Fig. 11b. These at-
tractive interactions are pseudo-isotropic with a limited angular

10 | 1–36Journal Name, [year], [vol.],

Page 10 of 37Soft Matter



Fig. 11 Superparamagnetic chains can transition to clusters at high Ma,
via different pathways determined by the chain length. a) Short chain:
a chain of N = 4 transitions from synchronous rotation to asynchronous
rotation and eventual collapse into a stable cluster at a high field fre-
quency. Reprinted figure with permission from ref. 37. Copyright (2018)
by the American Physical Society. b) Long chain: the ends of a chain
with N = 35 initially curl to form equilateral triangular conformations that
then grow and coil towards the center. This coiling causes the transition
from a 1-D chain to a 2-D cluster-like assembly. Reprinted from ref. 36
with permission from IOP Publishing.

dependence. The dynamics of these 2-D cluster assemblies are
discussed in more detail in Sec. 6.

While Mac in Eq. 22 is a good predictor of chain breakup, its
value can deviate considerably from experimental and computa-
tional results because of inherent assumptions in the torque calcu-
lations. Recent analytical models of Mac have been developed to
account for lubrication forces between neighboring particles, as
well as additional corrections to the shish-kebab approximation
of the viscous torque.95 These models accurately predict chain
fragmentation under a variety of conditions.

4 Cross-linked 1-D Superparamagnetic Chains
Thus far, the dynamics have been analyzed for chains that can be
disassembled when the external field is removed. More recently,
colloidal particles have been cross-linked to result in chains that
persist in the absence of a magnetic field. Chemical and physi-
cal cross-linking methods can be used to confer elasticity to the
chains. Introducing elasticity further complicates the observed
dynamics in time-varying magnetic fields. Elastic resistance de-
velops novel modes of motion such as buckling instabilities and
asynchronous rotation. Interest in harnessing these magnetoelas-

tic dynamics has led to advanced microrobotics, as well as analo-
gous polymer-like systems.

In this section, different linking strategies are first introduced.
Afterward, the discussion focuses on the increased structural
and dynamical complexity of these chains under static and time-
varying magnetic fields. Finally, applications of both linked and
unlinked chains are presented to showcase the practical relevance
of colloidal chain dynamics.

4.1 Chain cross-linking strategies

The chain structures of superparamagnetic particles can be pre-
served upon removal of the external magnetic field if neighboring
particles along the chain backbone are physically or chemically
bonded during the assembly procedure. These linking strategies
provide elasticity to the overall chain structure. For instance, un-
der a strong magnetic field and sufficient screening of electro-
static repulsion, particles align in close proximity and become
physisorbed to one another because of attractive van der Waals
interactions, resulting in rigid chains.77,98 Another type of phys-
ical adhesion consists of the adsorption of polymers to the sur-
face of the particles, followed by entanglement of these polymers
during field alignment. This process yields semiflexible chains
whose stiffness decreases with the molecular weight of the poly-
mer.99,100 Lastly, Huang et al. reported that aligned superparam-
agnetic particles embedded in soft polymer gels behave like elas-
tic filaments.101

Chemical cross-linking of functionalized particles under an ex-
ternal magnetic field allows for greater control of the elastic prop-
erties of the chains. Conjugation between functional groups on
the particle surface and small molecules yields rigid chains. For
example, amine groups on neighboring particles will covalently
bond with glutaraldehyde.102 More flexible chains are generated
with thiol-coated beads that react with bis PEG-maleimide,103 or
streptavidin-coated particles that form strong noncovalent bonds
with bis PEG-biotin or bis DNA-biotin.23,104

Upon removal of the external magnetic field, the chains un-
dergo thermal fluctuations. The magnitude of the shape fluctua-
tions are governed by the chain’s bending rigidity, EI. Note that
for macroscopic materials, the bending rigidity is the product of
the Young’s modulus, E, and the moment of inertia, I. From poly-
mer physics, the persistence length (lp =EI/kBT ) defines the ratio
of bending energy to thermal energy. Rigid chains are character-
ized by large EI, whereby their contour length is much shorter
than their persistence length (L << lp). Semiflexible chains have
lower EI, where their contour length is of the same order of mag-
nitude as lp (L ∼ lp). Regardless of the chemistry used for link-
ing, increasing the length of the linker decreases EI, making the
chain more flexible.23,103 The impact of linker length on flexibil-
ity can be seen in Fig. 12a. In the absence of an external magnetic
field, chains connected with longer DNA linkers, i.e. 4k base pairs
(bp), exhibit more pronounced shape fluctuations compared with
shorter DNA, i.e. 2k base pairs. In contrast, when increasing field
strengths are used during chain assembly, EI increases, resulting
in stiffer chains. This increased stiffness is caused by the strong
field bringing the particles into proximity, allowing for a larger
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cross-linking area. Figure 12b illustrates how the rigidity of the
chain can be modified by changing the DNA linker length and the
strength of the external magnetic field.

Experimentally, EI can be measured from thermal fluctuations,
as demonstrated for actin filaments and microtubules.105,106 A
Fourier mode analysis of the dynamics in the chain shape due to
thermal fluctuations provides EI.107 Additionally, force methods
such as optical tweezers108 and orthogonal magnetic fields have
been used to bend the chain and compute EI.99,109

Fig. 12 a) Microscopy images of streptavidin-coated particles of 2a = 1
µm connected by biotinylated DNA linkers of different length. Straight
chains (left) are initially aligned in a static magnetic field of 60 Gauss.
Upon removal of the field, the chains exhibit flexibility (right). When
the magnetic field is removed, the chain linked by the longer 4k bp DNA
(bottom) experiences more pronounced shape fluctuations compared to
the chain linked by shorter 2k bp DNA (top). b) A plot illustrating how
DNA linker length and magnetic field strength can be used to tune the
rigidity of a chain from rigid to semiflexible and flexible. An unlinked
region exists where stable chains cannot be generated. Adapted with
permission from ref. 23. Copyright (2014) American Chemical Society.

4.2 Dynamics of cross-linked chains
4.2.1 Configurations in orthogonal static fields

Linked chains present more complex shapes and dynamics com-
pared to unlinked chains. The tethers between particles intro-
duce chain elasticity, which competes with magnetic and viscous
forces. For example, chain buckling is observed under orthogonal
magnetic fields, resulting in hairpin, S-shaped, and multifolded
configurations.110 If the dipolar interactions are strong enough
to overcome the elastic energetic penalty, the chain buckles, such
that the dipoles recover their preferred alignment to the greatest
possible extent.111

The simplest buckled structure is the U-shaped hairpin, shown
in Fig. 13a. For longer, more flexible chains, or strong magnetic

fields, multiple buckling modes (arches) can develop along the
chain length. The resultant number of bending modes, nb, and
their curvature depend on several parameters of the system, in-
cluding EI, aspect ratio, and magnetization.109,112 Consequently,
the ratio of magnetic to elastic forces is described by the magne-
toelastic number (Mn), which is commonly used to analyze chain
buckling:

Mn =
πµoχ2H2

0 a4N2

6EI
(
1− χ

6
)(

1+ χ

12
) (23)

High values of Mn represent more buckled structures.
Guidelines to generate higher-order buckled structures have

been derived based on Mn. To generate nb bending modes, Belovs
& Cebers113 and Roper et al.109 determined that the minimum
Mn scales with n2

b, using slender-body theory for a magnetic fil-
ament. Figure 13b shows that a long semiflexible chain can de-
velop more than 10 bending arches with pronounced amplitudes,
whereas shorter chains acquire less bending modes (e.g. a hair-
pin) or simply rotate to reorient with the applied field. Buckling
of magnetoelastic filaments in viscous fluids has been recently
reviewed by Cebers & Erglis114 with emphasis on the mathemat-
ical models and numerical simulations. Recently, Zhao et al.22

presented higher-order buckling dynamics using experiments and
numerical analysis. Their analysis demonstrates that upon buck-
ling, the bending modes coarsen by growing in amplitude, while
the original long-axis of the chain contracts, until a quasi-stable
configuration is realized. Figure 13c and d demonstrate the
growth and coarsening buckling dynamics in experiments and
simulations, respectively. Furthermore, unlinked particle chains
suspended in a viscoelastic medium have been reported to depict
a similar buckling behavior when an orthogonal field is applied.
Longer chains develop more arches for the same field conditions
and additionally, follow the scaling between Mn and n2

b. In such
cases, the amplitude of the bending modes can be correlated to
the elastic modulus of the suspending polymer gel.101

4.2.2 Cross-linked chain dynamics in circular time-varying
fields

The buckling dynamics of magnetoelastic chains in static orthogo-
nal fields are precursors for more complex phenomena displayed
in time-varying fields. In contrast to unlinked chains, linked
chains are unable to fragment. In addition to magnetization,
field frequency, and chain length, EI plays a significant role on
linked chain dynamics.109,112 Therefore, rigid and semiflexible
filaments behave very differently when actuated with the same
field conditions. In these systems, both the Ma and Mn numbers
are needed to describe and classify the dynamical states.

The linear chain model, introduced in Sec. 3.2, is useful to de-
lineate the conditions that separate phase-locked (synchronous)
rotation from more complex dynamics that arise because of the
chain elasticity in a 2-D circular rotating magnetic field (Eq. 16).
Below Mac (Eq. 22), a linked chain rotates at a steady phase
lag, α, with the same angular frequency, ω, as the external
field.104 While a linked chain may also deform into S-shaped
structures,116 as was in the unlinked case, the linear chain model
remains a good approximation.

When Ma > Mac, rigid chains exhibit an asynchronous back-
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Fig. 13 Buckled configurations of linked superparamagnetic chains subjected to a static field. The field is initially used to align each chain, and then
an orthogonal field is applied to buckle the chains. a) A chain linked by adsorbed polyacrylic acid bends into a hairpin configuration, which is the lowest
bending mode. Reprinted figure with permission from ref. 99. Copyright (2003) by the American Physical Society. b) Long semiflexible chains buckle
with up to 14 bending modes. Shorter chains display less or no bending modes, such as in the case of the hairpin structure and the reoriented chain,
respectively. c) Experiments and d) simulations of buckling dynamics in long semiflexible chains show the development and coarsening of high-order
bending modes. While the final number of arches differs between the experiment and simulation, both illustrate the same process of buckling initiation
and evolution. Scale bars = 24 µm. Images b)-d) reprinted with permission from ref. 22. Copyright (2018) by the American Physical Society.

Fig. 14 Asynchronous rotation of rigid chains under a time-varying magnetic field. a) Time series images of asynchronous rotation of a linked chain.
The black arrows indicate the instantaneous direction of the external field. At 0.5s, the field is orthogonal to the chain. After which, the chain reverses
rotation until it realigns with the field. Reprinted figure with permission from ref. 104. Copyright (2004) by the American Physical Society. b) Plot
of angular frequency of a linked chain (Ω) as a function of the angular frequency of the field (ω). Below the critical frequency (ωc), the chain rotates
with the same frequency as the field. Above ωc, the rotation becomes asynchronous and Ω decreases with increasing ω. Adapted with permission
from ref. 115. Copyright (2006) American Chemical Society. c) Ω as a function of the phase lag angle (α). A single chain is compared with doublet
and triplet chain bundles that rotate asynchronously. Increasing the number of chains in a bundle increases Ω because of an increase in magnetization.
Adapted with permission from ref. 93. Copyright (2005) American Chemical Society.
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and-forth rigid-rod rotation, denoted as the phase-slipping
regime,93,104 shown in Fig. 14a. Initially, the rigid chain ro-
tates with an increasing phase lag angle, α. At the critical an-
gle αc = π/4, a chain experiences the maximum driving torque
(Eq. 18). As α increases beyond αc, the magnetic torque de-
creases, resulting in a decrease in the angular frequency of the
chain. Once α surpasses αmagic, the radial interactions switch
from attractive to repulsive, but the tethers prevent chain frag-
mentation. At α = π/2 the chain temporarily halts and reverses
its direction of rotation until it is able to realign with the external
magnetic field. Once it realigns, the entire cycle restarts.

Even though the chain rocks back-and-forth, its net rotation
follows the same direction as that of the field, but with a slower
angular frequency.93 The effective angular frequency of the chain
(Ω) in the asynchronous regime follows:115

Ω(ω) = ω−
√

ω2−ω2
c (24)

where ω is the field frequency and ωc = µoχ2H2
0 ln(N/2)/16ηN2

is the critical frequency necessary to undergo asynchronous mo-
tion (see the factor multiplying sin(2α) in Eq. 20). Equation 24 is
only valid for ω > ωc since ωc is the frequency that produces the
Mac that leads to asynchronous rotation (Eq. 22). For ω ≤ωc, the
chain rotates synchronously with an angular frequency Ω = ω.
Figure 14b shows how Ω changes with ω. Experimentally, Ω

can be determined by computing the discrete Fourier transform
(DFT) of the vertical displacement of one of the terminal ends of
the chain over time, and these results have very good agreement
with the predictions from Eq. 24.115 Additionally, as shown in
Fig. 14c, chain bundles consisting of laterally linked doublet and
triplet chains rotate asynchronously at a higher Ω compared to a
single chain under the same Ma.93 It is also worth noting that this
asynchronous motion is observed at high Ma for other rigid dipo-
lar systems, such as superparamagnetic ellipsoids,117 irregularly
shaped ferromagnetic colloids,115 unlinked dimers of either dia-
magnetic or paramagnetic spherical particles,42,118 and optically
actuated nanorods.119 Furthermore, chains with a high aspect ra-
tio may buckle as they rotate because of an interplay between the
rod elasticity and viscous drag forces, similar to buckling of chains
in static fields.104,120

When considering semiflexible chains of particles, more com-
plex dynamics are observed because of the development of elas-
tic deformations during the phase-slipping regime. For exam-
ple, particles linked with DNA form filaments that can achieve
higher Mn values. For these chains, various dynamical regimes
are characterized by wagging, coiling, and folding, as shown in
Fig. 15a.20 The wagging regime occurs at high Ma for chains
of N > 20 particles. Wagging chains rotate while displaying a
cyclical beating motion that is characterized by rapid bending
into highly curved S-shapes, followed by immediate relaxation
into straight configurations. Coiling consists of long filaments
(N ≥ 35) whose terminal ends initially bend, while the rest of the
chain remains unresponsive to changes in α.20,121 As the field
rotates, the bent ends curl into ellipses that continue to coil to-
wards the center. Once the chain sufficiently reduces its drag, it
sustains synchronous rotation with the external field. This be-

havior is analogous to the folding pathway of longer unlinked
chains collapsing into clusters, presented in Fig. 11b. However,
for linked chains, the chain elasticity inhibits the transition into a
cluster. Finally, chains of N≥ 40, buckle into pronounced S-shapes
and rotate synchronously in a folded configuration. The folded
structure arises from the lateral attractions between parallel seg-
ments of the chain that are out-of-registry.104 This mechanism is
the same that produces zippered bundles of chains, described in
Sec. 3.1.3.90,91 These dynamical regimes can be described by a
state diagram of Ma versus N, as shown in Fig. 15b. Boundary
lines that separate the various regimes can be derived by balanc-
ing magnetic, viscous, and elastic torques.

4.2.3 Cross-linked chain dynamics in precessing time-
varying fields

The complexity of linked chain structures and dynamics can be
expanded when actuated with precessing time-varying magnetic
fields. These 3-D rotating magnetic fields can be generated by a
combination of an in-plane rotating field (Eq. 16) and an orthog-
onal static field:

H0 = H0

sinβ cos(ωt)êx

sinβ sin(ωt)êy

cosβ êz

 (25)

where H0 =
√

H2
xy +H2

z , Hxy and Hz being the field strengths of

the in-plane rotating field and the out-of-plane static field, re-
spectively, and β the precessing angle between the resultant field
and the precessing axis (β = tan−1(Hxy/Hz)). A schematic for this
type of field is shown in Fig. 1.

Recent numerical simulations of chains in these precessing
fields highlight the formation of hairpin and S-shaped configu-
rations, whose tip-to-tip separation vector lies along the precess-
ing axis.122,123 Under certain conditions of β and Mn, the chains
adopt more interesting configurations, such as a quasi-static heli-
cal arrangement that coils around the precessing axis.

To understand these configurations, consider the time-
averaged pair dipolar interactions, based on the DM, in a high-
frequency precessing field:

〈Ui j(ri j,β ,ϑ)〉= µom2

8πr3
i j
(1−3cos2

β )(3cos2
ϑ −1) (26)

where ϑ is the angle formed between the center-to-center sepa-
ration, ri j, and the precessing axis. The precessing magic angle,
βmagic = 54.7◦, delineates two different regimes of magnetic inter-
action that dictate the final structure of the chain. In the attractive
regime (0◦< β < βmagic), the magnetic interactions are minimized
when ϑ → 0, favoring an overall orientation along the precessing
axis. However, due to competition with elastic forces, the filament
buckles, resulting in short, curved segments that lie perpendicu-
lar to the precessing axis. This configuration is shown in Fig. 16a.
Increasing Mn leads to the bent regions becoming more local-
ized, thus creating structures that have very long, straight seg-
ments aligned with the precessing axis, separated by very short,
but highly curved arches. The repulsive regime (βmagic < β < π/2)
presents greater structural complexity. In this case, minimization
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Fig. 15 DNA-linked superparamagnetic semiflexible chains undergo complex dynamics in circular time-varying magnetic fields. a) Snapshots of the
different types of chain dynamics: rigid rotation, wagging, coiling, and folding. Rigid rotation corresponds to typical synchronous rotation with respect
to the magnetic field. Wagging, coiling, and folding dynamics represent asynchronous motion observed in the chains. b) State diagram delineating
each of the dynamical regimes according to the chain length (expressed as the number of particles N along the chain) and Ma. Boundary line 1 marks
the Mac, from Eq. 22, that separates synchronous from asynchronous rotation, according to the linear chain model. Boundary line 2 marks the critical
Ma that accounts for interparticle spacing along the chain. Boundary line 3 marks the Ma at which the Mn buckles the chain into higher-ordered
bending modes. This boundary separates wagging from coiling and folding. The symbols in the state diagram correspond to the various regimes: rigid
rotation (black squares), wagging (green triangles), coiling (purple inverted triangles), folding (red circles). Filled symbols represent simulations and
unfilled symbols are experimental observations. Reprinted figures with permission from ref. 20. Copyright (2017) by the American Physical Society.

of the magnetic interactions occurs as ϑ → π/2, so that preferred
alignment of the chains is perpendicular to the precessing axis. At
very high Mn, in this repulsive regime, the chains can also adopt
planar buckled structures, but the orientations reverse. Localized
bending regions are aligned parallel to the precessing axis, while
the long straight segments approach orthogonality with respect to
the axis, as shown in Fig. 16b. In addition, at low to intermediate
Mn, helices become the preferred configuration in this regime.
This novel phenomenon emerges from the competition between
elastic and magnetic forces in a helical segment.122 Briefly, the
magnetic forces seek to collapse the chain into a closed circular
loop confined to the plane perpendicular to the precessing axis.
However, this loop comes at the expense of a large bending en-
ergy. To balance this energy cost, the elastic energy attempts to
minimize the curvature by straightening the chain along the axis
to minimize the curvature by distributing it throughout the length
of the chain. The balance between both contributions dictates the
final pitch of the quasi-static helix.

Experimental realization of this helical configuration in pre-
cessing fields has been recently reported.28 As depicted in
Fig. 16c, a chain initially curls at its terminal ends, similar to
circular fields, and then coils and rotates with respect to the pre-
cessing axis. The rotation and coiling generates bending waves
that propagate toward the center, leading to contraction of the
chain length along the precessing axis and radial expansion in the
rotating plane. This phenomenon produces the helical shape that
changes dynamically as it rotates; however, the helix maintains a

constant pitch to circumference ratio. Additionally, the helix dis-
plays self-propulsion because of its proximity to the substrate and
elastic heterogeneity along the chain. Simulations show that the
helices form for β > βmagic,123 but experimental demonstration
occurs in a much narrower window of β above βmagic. When
β >> βmagic, the chains coiled and collapsed into the rotating
plane since the rotational component of the magnetic field was
stronger than the static component. In contrast, for β ≤ βmagic,
the chains remained in a mostly linear configuration aligned with
the static component of the magnetic field. Thus, none of the
hairpin configurations predicted by simulations were observed in
these experiments. Furthermore, the initial configuration prior
to application of the precessing field can lead to even more com-
plex dynamics, as shown in Fig. 16d and e. Depending on the
initially folded configuration (hairpin or S-shape), the chain can
transition into different types of twisted and knot-like morpholo-
gies that continually evolve as a result of rotation and bending
wave propagation.

Colloidal assemblies that reversibly coil into helices or knot-
like structures via external actuation provide an opportunity to
generate microscale propulsive systems. Nature often employs
chirality of helical filaments to sustain motion at low Reynolds
number (Re), such as in the case of prokaryotic flagella.124,125 In
fact, soft ferromagnetic helices have been manufactured through
sequential steps of photolithography, metal deposition, and etch-
ing;126,127 and have proved to be efficient artificial swimmers
during magnetic actuation. However, inducing a helical shape
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Fig. 16 Static and dynamic chain structures under precessing time-varying fields. a) For β ≤ βmagic, chains turn into hairpin structures with localized
segments of curvature perpendicular to the precessing axis. b) For β > βmagic, chains turn into hairpin structures with localized segments of curvature
perpendicular to the precessing axis. This shape is one of the possible configurations for β > βmagic. Images in a) and b) reprinted with permission
from ref. 123. Copyright (2017) by the American Physical Society. c) For β slightly above βmagic, the chain coils into a dynamic helix. d) A hairpin
and e) an S-shaped chain acquire different knotted shapes in a precessing field. Images in c)-e) adapted from ref. 28 with permission from PNAS.
The insets indicate the orientation of the precessing field for each case.

in a simple colloidal chain provides an alternative, tunable, and
cheaper method to produce artificial filaments for transport ap-
plications. Further applications that utilize the dynamics of these
chains are detailed in the subsequent section.

4.3 Applications of 1-D chains

A chains’ ability to interact hydrodynamically with the suspend-
ing fluid and magnetically with applied fields make these systems
of great interest for flow control in microfluidic devices. Both
linked and unlinked chains have been designed as pumps, valves,
mixers, and microswimmers in time-varying magnetic fields. In
general, cross-linked chains display more complex dynamics, and
consequently, can be used in a broader range of applications com-
pared to unlinked chains.

One of the first applications demonstrated for linked chains
was micromixing. Biswal & Gast128 experimentally showed that
linked chains in rotating fields could be used to enhance the ef-
fective mixing between fluids in a microfluidic channel, as shown
in Fig. 17a. Within the creeping flow regime, the rotating chains
lead to a cyclical stretching and folding of the fluid’s lamella, anal-
ogous to kneading dough. Kang et al.35 demonstrated a similar
phenomenon with unlinked chains. Here, the periodic dynamics
of chain breakup into smaller daughter chains, followed by their
recombination, lead to a highly efficient mechanism of chaotic
mixing, as shown in Fig. 17b.

Linked and unlinked rotating chains have also been used to
transport cargo. The asymmetric hydrodynamic interactions of

Fig. 17 Chains of superparamagnetic particles acting as micromixers. a)
A three-lane channel geometry filled with a suspension of linked chains
shows enhanced mixing of dye when a rotating magnetic field is ap-
plied. Adapted with permission from ref. 128. Copyright (2004) Amer-
ican Chemical Society. b) Numerical simulations of unlinked rotating
chains mixing two fluids, blue and white, at different Mason numbers.
Adapted figure with permission from Ref. 35. Copyright (2007) by the
American Physical Society.

the chains near substrates lead to their translation, as observed in
Fig. 18a i. This tunable motion generates a net flow in the sys-
tem, transporting suspended cargo with a high degree of control.
Figure 18a ii presents the experimental realization conducted by
Sing et al.,97 where a carpet of rotating unlinked chains trans-
port a vesicle through a microfluidic device. More recently, Yang
et al.100 presented a new methodology to capture and transport
cargo, based on the coiling dynamics of linked chains in rotating
fields. Due to the reversibility of the coiling mechanism, this tech-
nique permits active loading and unloading of the cargo. More-
over, the translating mechanism of the system, which relies on the
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Fig. 18 a) Representation of rotating chain dynamics near a substrate (i.) and experimental realization of vesicle transport due to the flow generated
by this mechanism (ii.). Scale bar = 20µm. Adapted from ref. 97 with permission from PNAS. b) Experimental realization of cargo transport using
coiling dynamics of linked chains in rotating magnetic fields. Reprinted with permission from ref. 100. Copyright (2017) American Chemical Society.

inclination of the coiled system with an interacting wall, is proven
to be precise, as demonstrated by the predetermined M-like path
in Fig. 18b.

The design of linked and unlinked chain propulsion systems
has led to the development of microswimmers and micropumps.
Swimming dynamics at the microscale depend on breaking spa-
tial symmetry. Dreyfus et al.129 designed a microswimmer com-
posed of a linked magnetic chain that had one end attached to a
red blood cell. The chain was actuated with an oscillating (trans-
verse) magnetic field, where a static and sinusoidal magnetic field
were combined to generate a cyclical wave that propagated from
the free end to the cargo, breaking spatial symmetry, as shown
in Figs. 19a and 19b iii. Due to its similar motion, this linked
chain has been referred to as an artificial flagellum. An alterna-
tive method to break spatial symmetry is to utilize elastic defects
along the chain backbone,109,114 as presented in Fig. 19b i. In
another scheme, a hairpin chain translates by effectively form-
ing two flagella with propagating bending waves, as shown in
Fig. 19b ii. Roper et al.112 provides an extensive analysis of the
self-propulsion dynamics of magnetic filaments due to the appli-
cation of time-varying fields. The magnitude and angular fre-
quency of the applied magnetic field dictates the ratio between
viscous to bending forces, also known as the dimensionless sperm
number.130

Magnetic chains have also been implemented as artificial cilli-
ated surfaces to generate flow. Vilfan et al.131 reported unlinked
chains attached to a substrate via nickel anchoring sites, shown
in Fig. 20a. A tilted precessing magnetic field is applied to rotate
the chain in a conical motion. The precessing angle, β , and the
tilt angle dictate the resulting hydrodynamic flow. A zero tilt an-
gle represents a standard precessing field. In general, larger tilted
precessing angles generate faster fluid velocities near the rotating
chains. Additionally, a higher field frequency and smaller dis-
tance between tethered chains influence the dynamics between
the chains.132 Babataheri et al.133 showed that linked chains can
induce fluid flow when actuated with an oscillating magnetic field
that varies with time. As illustrated in Fig. 20b, these linked
chains capture the beating cilia motion more effectively, but the
observed pumping efficiency is low.

Fig. 19 Linked magnetic chains as artificial flagellated swimmers in a
combined static and sinusoidal magnetic field. a) Snapshots (from a
to t) of the swimming dynamics of a linked chain with a red blood
cell attached to one of its ends. The direction and magnitude of the
magnetic field is represented by the length of the white arrows. The
arrow at the top of the image represents the direction of the swimmer.
Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Nature, ref. 129, Copyright (2005). b) Images of three types of
swimming patterns: i. Spatial symmetry breaking due to elastic defects,
as highlighted by the white arrow; ii. Chain with an imposed hairpin
shape forms effectively two flagella; and iii. Chain with attached cargo
to one end. Image republished with permission of The Royal Society
(U.K.), from ref. 112, Copyright (2008); permission conveyed through
Copyright Clearance Center, Inc.

5 2-D Networks of Superparamagnetic Colloids
The interplay between different colloidal interactions, e.g. mag-
netic, electric, or hydrodynamic, can also be controlled to form
large-scale 2-D network systems. These structures are more com-
plex and interconnected than the 1-D magnetic chains previously
discussed. Oftentimes, 1-D magnetic chains are the precursors to
network structures. Moreover, these networks enable the design
of tunable materials with hierarchical organization and multilevel
functionality. Furthermore, investigations with these colloidal as-
semblies have led to new insights into the principles behind net-
works used in biological organization.134,135 The assembly dy-
namics of these colloidal networks will be first explained with
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Fig. 20 Cilia-like motion of paramagnetic chains. a) Unlinked chains
anchored to a substrate via nickel sites are placed in a tilted precessing
magnetic field. Tracer particles illustrate the fluid motion created by the
rotating chains. The fluid velocity generated by the chains is shown as a
function of the height from the wall, obtained by numerical simulations
(lines) and experiments (symbols), for different tilt angles: 20◦ (red),
30◦ (blue) and 40◦ (black). Reprinted from ref. 131 with permission
from PNAS. b) Images illustrating the motion of a linked chain driven
by a constant oscillating field (i. and ii.) and a time-varying oscillating
field (iii. and iv.). The dashed lines show experimental results and solid
lines are for numerical predictions. The arrows represent the orientation
of the instantaneous magnetic field. Adapted from ref. 133, Copyright
(2011), with permission from Cambridge University Press.

static fields. Next, the influence of particle heterogeneity, e.g.
magnetization, size, and dipolar interactions, on network forma-
tion will be described. Finally, networks formed in time-varying
fields will be presented.

5.1 Networks assembled by lateral chain aggregation
Lateral interactions between chains have led to interconnected,
network-like structures in static fields. As described in Sec. 3.1.3,
the lateral aggregation of chains is a result of short-range dipolar
interactions, which are diffusion-limited. Because of this short-
range attraction, network formation is mainly observed in highly
concentrated superparamagnetic suspensions, i.e., where the par-
ticle fraction, φ , is greater than 0.5.136 In such concentrated sys-
tems, column-like structures are formed in the direction of the
field and become interconnected because of lateral chain aggre-
gation. The existence of these segments requires some chains to
bend away from the field direction, resulting in an elastic-like po-
tential energy that is a function of the chains’ curvature and the
applied magnetic field. This energy is reflected in the magne-
torheological response of the system, a property widely explored
in the design of tunable damping materials.137–139

Fermigier & Gast136 reported the first entangled network-like
structures with superparamagnetic colloidal particles in static
field. They showed that the chains would bundle into fibers with a
thickness that could be tuned by varying the applied field strength
and surface particle packing fraction, φ . Interesting behavior was
observed, analogous to condensed matter. For example, when the
magnetic coupling parameter, λ , was decreased, the networks re-
leased individual particles into the dilute phase, thus thinning
the fibers. A state diagram, shown in Fig. 21, details the various
structures formed.70,136

Fig. 21 Superparamagnetic colloids assemble into fiber and network-
like structures in static magnetic fields as a function of φ and λ . Each
colored section of the state diagram represents a different formed struc-
ture. Network-like structures are shown in purple at φ ≥ 0.5 for all λ . The
other colored regions reference the various chain and fiber structures that
form at either equilibrium or nonequilibrium conditions. Adapted from
ref. 136, Copyright (1992), with permission from Elsevier.

Fig. 22 Microscopy images of a 2-D system of superparamagnetic par-
ticles subjected to a static magnetic field pulsed at varying frequencies.
Networks are initially formed, but then reorganize to form more ordered
structures at intermediate frequencies. Reproduced from ref. 27 with
permission from the Royal Society of Chemistry.

The networks formed with static magnetic fields are de-
termined by the kinetics of particle aggregation, resulting in
metastable, kinetically arrested states. Because structural repro-
ducibility and control are difficult to achieve, several researchers
have utilized toggled magnetic fields to generate more stable
structures. For example, a square wave, which is generated by
pulsing the field on and off at a given frequency, results in net-
work structures that rearrange into condensed ellipsoidal aggre-
gates aligned with the magnetic field direction.141 Swan et al.27

studied network breakup and crystallization as a function of pulse
frequency and time, as shown in Fig. 22. The authors found that
the pulse-off time governed the relaxation and resulting struc-
ture. There is a characteristic time associated with the distance
a particle may diffuse away during the pulse-off state. Figure 23
illustrates the various reorganization pathways that are possible
when this characteristic time is compared with the pulse-off time,
to f f .46 For short pulses (high-frequency), to f f is insufficient for
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Fig. 23 A schematic representation of the structural rearrangements
that occur under toggled fields. The particles diffuse as hard spheres
for the time the field is off, toff. Here, δ represents the interaction
range and D is the diffusivity. The pulse-off time governs the extent
of structural rearrangement. Reprinted with permission from ref. 140.
Copyright (2016) American Chemical Society.

structural relaxation to occur. For long pulses (low-frequency),
to f f allows the system to relax, whereby it retains no memory of
its previous structure. There exists, however, a to f f that allows
for just enough relaxation, such that more ordered structures are
formed. Additional variables, such as the duty cycle of the field,
have been recently used to provide more precise control over the
structure.142

5.2 Networks assembled by anisotropic interactions
Networks in static magnetic fields can also be accomplished by in-
troducing more than one type of interaction through heterogene-
ity, i.e. different particle types, multiple induced dipoles, parti-
cle size distribution, or surface functionalization. Such hetero-
geneity can cause chaining in more than one direction, thereby
creating an interconnected network. Byrom et al.15 created in-
terconnected structures by using particles with varying magnetic
susceptibilities. Fractal-like aggregates were generated by assem-
bling superparamagnetic and diamagnetic particles in a ferrofluid
with a static magnetic field. Both parallel and perpendicular at-
tractive interactions were achieved, as shown by Fig. 24a. The
relative strength of these interactions can be tuned by varying
ferrofluid susceptibility, and thus the fractal dimension is control-
lable.

Additionally, multiple interactions can be induced to a homo-
geneous particle suspension through the use of electric and mag-
netic fields. Static electric fields can induce dipoles within dielec-
tric particles. When such particles are also magnetic, multiple in-
duced dipoles can be used to generate network structures. Bharti
et al.26 demonstrated this phenomenon by applying orthogonal
electric and magnetic fields to a suspension of superparamagnetic

Fig. 24 a) Particle-particle interactions in a mixed suspension of super-
paramagnetic and diamagnetic colloids in a ferrofluid can be attractive
in both the parallel and perpendicular direction of the applied magnetic
field. Left: Interactions as a function of normalized ferrofluid suscepti-
bility. Right: The fractal dimension of the aggregate as a function of
normalized ferrofluid susceptibility. Reproduced from ref. 15 with per-
mission from the Royal Society of Chemistry. b) Microscopy images of
networks formed by superparamagnetic particles in perpendicular mag-
netic and electric fields (left), and a schematic of their induced dipoles
and subsequent formations (right). Reproduced from ref. 26 with permis-
sion from the Royal Society of Chemistry. c) Different types of junctions
and branching found through size polydispersity in paramagnetic colloids.
Reprinted with permission from ref. 143. Copyright (2015) American
Chemical Society.

particles. The perpendicular fields caused bidirectional chains to
form that evolved into networks, as shown in Fig. 24b. The struc-
tures formed were shown to be dependent on the ratio of the
applied fields, e.g. when the applied magnetic field was stronger
than the electric field, more dominant chaining occurred in the
direction of the magnetic field.

As mentioned previously, varying particle sizes can also be used
to create networks in static fields. Bannwarth et al.143 formed
network-like structures using size polydispersity with superpara-
magnetic colloids. Figure 24c showcases the different types of
junctions and networks they produced by controlling the ratio of
particle sizes. Large particles were shown to be capable of in-
teracting with multiple smaller particles, leading to multijunction
features. The aggregates were formed under flow and were ther-
mally sintered, resulting in complex network structures. Recent
work by Al Harraq et al.144 combined polydisperse particle sizes
with inhomogeneous surface functionalization to generate more
types of branching in concentrated systems.

5.3 Networks assembled in precessing time-varying fields
The previously described network structures were assembled un-
der unidirectional static and pulsed fields. Greater complexity in
networks can be achieved by utilizing a triaxial magnetic field.
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These precessing fields (Fig. 1) vary in direction over time. A sus-
pension of monodisperse superparamagnetic particles can form
large-scale networks under an applied high-frequency precessing
field rotating at the magic angle (βmagic ≈ 54.7◦).134 Networks
formed under these precessing fields are structurally different
from those assembled under unidirectional fields. These net-
works have a structure analogous to wet foams, characterized by
void spaces that are separated by colloidal lamella.145 These net-
work assemblies were first theoretically demonstrated by Martin
et al.146,147 with ferromagnetic colloids, and later, experimentally
by Osterman et al.16 with superparamagnetic colloids. The ori-
gin of these novel architectures is a combination of isotropic and
anisotropic magnetic interactions arising in the magic precessing
field. Therefore, it is important to revisit the dipolar interparticle
interactions to understand these froth-like networks.

A dimer in a precessing magnetic field experiences negligible
dipolar interactions at βmagic, as previously shown by the DM in
Eq. 26. However, this model neglects the mutual dipolar effect be-
tween particles, which becomes important for concentrated sus-
pensions. Therefore, the MDM can be used to determine the in-
teraction potential, which can then be time-averaged over a single
period of rotation to yield:148

〈Ui j(ri j,β )〉=
µoχ2V 2H2

0

4πr3
i j

(
1+ χV

4πr3
i j

)
1+

3(cos(2β )−1)

4
[

1−2 χV
4πr3

i j

]
 (27)

where V = 4πa3/3 is the particle volume. As shown by Fig. 25a,
the interaction between particles is repulsive at low β , with a
long-range potential energy that scales as 1/r3

i j. At intermedi-
ate precessing angles (β1 ≤ β < βmagic), the particles experience
short-range attraction and long-range repulsion (SALR) potential,
where β1 can vary between 44◦ and 52◦ depending on the prod-
uct of χV found in Eq. 27. At β ≥ βmagic, the interactions are only
attractive149 and decay as 1/r3

i j (long-range) when the precess-
ing angle is above βmagic. Interestingly, when β = βmagic, the DM
predicts the interactions will vanish, but under the MDM, resid-
ual attractive interactions are still exhibited, as shown by the ma-
genta curve in the inset of Fig. 25a. The spatial decay at this angle
approaches 1/r6

i j, where the scaling can be obtained by fitting a
radial power law to the plot of Ui j at β = βmagic as a function of
ri j (computed using Eq. 27).150 Alternatively, by assuming that
r3

i j >>V , Eq. 27 can be approximated to Ui j ∼−µoχ3V 3H2
0 /π2r6

i j

at the magic angle.151 This scaling corresponds to an isotropic
(orientation-independent) short-range attraction, similar to the
conventional van der Waals (vdW) attractions.146

However, these isotropic interactions are not sufficient to ex-
plain the formation of foam-like networks. To provide further
insight into these assemblies, many-body interactions in colloidal
trimers are considered. Trimers can form either linear structures
or close-packed equilateral triangles in precessing magnetic fields,
as shown in Fig. 25b for various precessing angles. The interac-
tion potential is compared for a linear chain versus a close-packed
isosceles triangle.24,150,151 The resultant three-body magnetic in-
teractions depend on the bond angle,146,149 with the bond angles

0◦ and 120◦ corresponding to the chain and triangle, respectively.
The three-body interactions are not merely the pairwise sum of
the two-body interactions for a three-body system.24,148 Instead,
the full solution is obtained by solving a linear system of MDM
equations for the magnetization of three particles (Eq. 5).46 The
complete MDM curve shows that at βmagic, the chain is more sta-
ble than the triangle, thus the linear structure is preferred. There-
fore, the many-body interactions are anisotropic. These interac-
tions are also short-range at βmagic, with the same scaling as the
pair potential (1/r6

i j),151 which prevents further aggregation.

Fig. 25 Assembly of superparamagnetic colloids into network structures.
a) The pair dipolar interactions calculated from MDM at various precess-
ing angles. The magenta line in the inset shows that at βmagic, there are
only short-range attractive interactions between particle pairs. Reprinted
figure with permission from ref. 148. Copyright (2017) by the Ameri-
can Physical Society. b) Comparison of the many-body interactions for
a trimer, calculated from a pairwise sum (2-body, black dashed line)
versus the MDM system of equations (3-body, red). The energy for a
chain and triangle is calculated, and the difference is plotted as the y-
axis. The grey and white sections separate the repulsive and attractive
interactions, respectively. Adapted with permission from ref. 24. Copy-
right (2014) American Chemical Society. c) Network coarsening under a
precessing field at βmagic, via Ostwald ripening of the voids. Reproduced
from ref. 152 with permission from the Royal Society of Chemistry. d)
Quasi-steady-state images of 1 µm superparamagnetic particles in pre-
cessing fields with varying angles. Reprinted with permission from ref. 24.
Copyright (2014) American Chemical Society.
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Based on the previous analysis, two-body isotropic and many-
body anisotropic interactions are important in precessing fields
when forming network structures. The isotropic nature of the
short-range vdW-like pair potential is necessary to initiate the as-
sembly of colloidal networks in a precessing field at the magic
angle. The magnetic potential in Eq. 27146,147 induces the forma-
tion of randomly oriented dimers throughout the sample, where
the lack of a prescribed direction confirms the isotropic features of
the potential.151 In concentrated suspensions, these dimers seed
chains due to many-body anisotropic interactions that grow by
head-to-tail aggregation and retain a random distribution.16,151

The networks are then formed as these chains begin to intersect
with each other, as shown in Fig. 25c. The network illustrates
coarsening dynamics reminiscent of Ostwald ripening, in which
voids shrink and grow, based on a critical size.16,152 Subcriti-
cal (small) voids shrink as the surrounding chains coalesce into
cluster patches with a close-packed arrangement. In contrast,
supercritical voids increase in size in order to preserve the to-
tal volume of the system. This volume preservation results in
network chains that support these larger void structures. Maier
& Fischer152 found that the critical void size remains constant
throughout the coarsening dynamics of the network. This critical
void size represents a characteristic length-scale for the network.
Over the time-scale of their study, the network coarsened contin-
uously over time without attaining a quasi-equilibrium state.

The role of β on the percolating structure was also evaluated
by Müller et al.24 Figure 25d shows the quasi-steady-state mor-
phologies as a function of the precessing angle (β). When the
precessing angle is well below βmagic, only repulsive interactions
exist, and no structure is observed at β = 41◦. As the precess-
ing angle approaches βmagic, the increase in attractive interactions
results in chains that are phase separated from individual parti-
cles. This SALR potential is illustrated by the networks shown at
β = 44◦, β = 46◦, and β = 48◦. At βmagic and beyond, all parti-
cles become part of an interconnected mesh-like network due to
attractive interactions, shown by β = 55◦ and β = 90◦.

These networks have potential applications for the develop-
ment of new materials that can enhance microscale transport
processes. For instance, these networks can act as self-healing
membranes, as observed by the immediate recovery of the origi-
nal structure after its deformation.16,134,153 This fast, self-healing
property is inherent of the various dipolar interactions that aim
to minimize the total magnetic energy throughout network as-
sembly and coarsening. The network can also be utilized as
an active system that propels nonmagnetic particles.17 Pump-
ing capabilities are conferred by creating an out-of-plane field
rotation, through the application of an additional out-of-plane,
time-varying magnetic field component. In this case, coopera-
tive rotation of the chains and patches that constitute the net-
work produces a conveyor belt effect that pumps the fluid above
the network.154 Interesting phenomena, such as ballistic motion
above the colloidal lamella and diffusive motion on the voids,
were observed.17 Therefore, a combination of active and passive
transport regions can be constructed with these foam-like archi-
tectures.

6 2-D Clusters of Superparamagnetic Colloids

Two-dimensional magnetic particle clusters are the next step in
hierarchical colloidal assembly. In comparison to networks, mag-
netic clusters do not have a preferred orientation. The microstruc-
ture of these clusters ranges from a well-ordered colloidal crys-
tal to a disordered colloidal droplet. Clusters have been used
as experimental thermodynamic models because of this ability to
mimic molecular phase transitions. They have also been applied
for microfluidic control and microscale delivery.

In this section, the interactions governing assembly in 2-D and
the different techniques employed to create and manipulate col-
loidal crystals with magnetic fields are first described. Briefly,
commonly used order parameters for microstructure identifica-
tion are also introduced. Next, the different phases and their
transitions are presented, focusing on the thermodynamics and
kinetics that govern them. Then, the bulk and interfacial rheolog-
ical properties of the clusters are discussed. Lastly, applications of
these magnetic clusters are highlighted.

6.1 Cluster assembly

As previously described in Sec. 3, unlinked particle chains rotate
synchronously at low frequencies and breakup at higher frequen-
cies in time-varying magnetic fields. Further increasing the fre-
quency results in cluster formation because the magnetic dipole is
effectively time-averaged over each particle. To understand this
phenomenon, consider a rotating dimer, whose interaction po-
tential is described by the mutual dipolar model (MDM) in polar
coordinates:42
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The phase lag angle, α, is a result of the balance between mag-
netic and viscous forces. Above a critical frequency, a dimer no
longer rotates and α-dependent terms in Eq. 28 can be time-
averaged to a constant value. Du et al.42 found this time-
averaged value to be ∼ 0.5, which collapses the interaction pair
potential to an angle-independent form:
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where C is a constant defined as:
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Thus, a high-frequency in-plane rotating magnetic field
(HFRMF) above a critical frequency produces an isotropic attrac-
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Fig. 26 Superparamagnetic particle assembly in a HFRMF. a) Microscopy image of a colloidal cluster formed with 1 µm particles. Scale bar = 10 µm.
b) Interaction pair potential for a dimer in a HFRMF is composed of a long-range attraction (dotted red) and short-range repulsion (dotted blue). The
well-depth (ε) can be tuned by the strength of the external magnetic field. Images a) and b) reprinted with permission from ref. 7. Copyright (2018)
by the American Physical Society. c)-e) Microscopy images with increasing field strength and particle concentration. Scale bar = 5 µm. f)-h) The
corresponding pair-distribution function for the microscopy images in c)-e), which further displays the increase in order with increasing field strength.
Adapted from ref. 42 with permission from the Royal Society of Chemistry.

tive interaction that is dependent on the interparticle distance, ri j.
Note that a 2-D HFRMF can also be achieved using a precessing
field at β = 90◦. This isotropic interaction in the plane of assembly
leads to 2-D clustering, as shown in Fig. 26a. Such nondirectional
interactions are often compared to intermolecular forces. As a re-
sult of these interactions, cluster assemblies have configurations
and dynamics that mirror those observed in molecular systems.

Additionally, the particles oftentimes have surface charges that
lead to electrostatic repulsion, which can be accounted for using
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.155 Com-
bining both attractive and repulsive interactions, the interaction
pair potential can be written as:

Ui j
(
ri j
)
=− Cm2

8πµ0r3
i j
+

(
64πkBTaρ∞γ2

κ2

)
exp−κ (r−2a) (31)

Here, the pair potential is plotted in Fig. 26b,7 where the attrac-
tive (red) and repulsive (blue) components are summed to form
the total interaction pair potential (black). In Eq. 31, ρ∞ is the
ion concentration in the bulk fluid, κ is the reciprocal of the De-
bye length, and γ is the reduced surface potential. The total pair
potential in Fig. 26b is analogous to a Lennard-Jones (LJ) po-
tential, with a long-range attraction and short-range repulsion.
The well-depth (ε) and interparticle spacing can be tuned with
either the magnetic field strength or the ion (salt) concentration.
For example, at high field strengths and high salt concentration,

the tightest particle packing within the cluster is achieved. The
microscopy images shown in Fig. 26c-e display the transition be-
tween gas, fluid, and solid-like phases as the field strength is in-
creased.

While cluster formation is achieved with long-range attrac-
tive interactions, long-range repulsive interactions have also been
used to create and manipulate colloidal crystals (solid-like clus-
ters), as compared in Fig. 27. In this case, an orthogonal ex-
ternal field is applied to a 2-D system of particles, resulting in a
long-range repulsive dipolar interaction (Fig. 6a) that is isotropic.
These repulsive interactions organize the particles into a colloidal
crystal, albeit with larger interparticle spacings compared to crys-
tals formed with attractive dipolar interactions. Researchers have
used such crystals to study 2-D phase behavior by tuning the
strength of the external magnetic field.9,156 Zahn et al.9 used this
method to induce hexagonal order for particles trapped at an air-
water interface and observed crystal melting through a hexatic
phase, as theoretically described by Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory for 2-D systems.157–159

6.1.1 Order parameters to characterize colloidal clusters

The structural organization within colloidal clusters is often char-
acterized by different order parameters, briefly presented here.
One of the most widely used order parameters for colloidal clus-
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Fig. 27 A schematic of superparamagnetic particle assembly into a col-
loidal crystal via different interactions. a) A HFRMF induces a dipole that
is averaged around each particle, resulting in an isotropic long-ranged at-
traction. b) An orthogonal magnetic field induces dipoles that are perpen-
dicular to the plane of assembly, resulting in long-range repulsion. Note
that long-range repulsion typically results in larger interparticle spacings.

ters is the radial pair-distribution function (g(r)):

g(r) =
A

2πrN ∑
i

∑
i6= j

δ
(
r− ri j

)
(32)

where A is the area, N is the number of particles, and δ is the delta
function. The radial pair-distribution function identifies order by
calculating the probability of finding a particle at a distance, r,
away from a reference particle, normalized by the probability of
a uniform distribution. Gas-like clusters result in a constant g(r),
as shown in Fig. 26f for the corresponding microscopy image in
Fig. 26c. Fluid-like clusters have regular peak spacing that decays
with distance, characteristic of a lack of long-range order, as ob-
served in Fig. 26g. Lastly, the g(r) for colloidal crystals has well
defined periodic peaks because of the ordered lattice spacing in
the crystal, as shown in Fig. 26h.

In addition to radial distance, the angular orientation affects
ordering within a cluster, which can be described by the local
bond-orientational order parameter (ψ6):
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〉
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Here, N is the total number of particles in the area of interest, Nn

is the number of nearest neighbors around particle i, determined
through Delaunay triangulation, and θik is the angle between the
distance vector, connecting particle i and k, and the positive x-
axis. Note that the 〈〉 brackets refer to a temporal average. Perfect
crystalline order is represented by ψ6 = 1, which is characterized
by hexagonal packing with six nearest neighbors. The degree of
cluster disorder is represented by a value of ψ6 < 1, where zero is
the lower limit.

Functions which depend on ψ6 are also quite prevalent within

Fig. 28 A schematic of the variables utilized in g(r) and ψ6. The red
colored particle represents a reference particle.

colloidal cluster literature. The bond-orientational correlation
function is one such function which contains a ψ6 dependence:

g6(r) = 〈ψ∗6 (0)ψ6(r)〉 (34)

In this equation, ψ6 is computed for a particle at some distance, r,
away from a reference particle. Here, the reference particle value
is denoted as ∗, and in this case, 〈〉 refers to a spatial average
over all particles at distance r. The bond-orientational correla-
tion function describes the decay of bond-orientational order as
a function of distance. Note that the local orientation of a par-
ticle within a cluster can also be calculated as a function of ψ6:
θ6 =

1
6 arg(ψ6).

Another useful order parameter to characterize colloidal clus-
ters is the structure factor, S(k), typically determined from a Fast
Fourier Transform (FFT) of a microscopy image of the cluster. For
2-D colloidal clusters, S(k) can be calculated by:148
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 (35)

where k is the wave vector, xi is the particle’s position, and N is
the number of particles in the image. The structure factor quan-
tifies the intensity in an image by transforming spatial coordi-
nates to the frequency domain. For a perfect hexagonal lattice,
the structure factor displays distinct peaks representing the six-
fold symmetry of the colloidal crystal. For less ordered clusters,
the peaks are less distinct as the symmetry fades. This precursory
description of order parameters serves as a basis to identify the
different phases within colloidal clusters.
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Fig. 29 Phase behavior of 2-D superparamagnetic clusters induced with a HFRMF. a) Phase diagram of the solid, liquid, and gas phase boundaries as a
function of the normalized pair interaction potential and particle density. Reproduced from ref. 6 with permission from the Royal Society of Chemistry.
b) Monte Carlo simulations of the phase diagram with varying Yukawa interactions. The inset showcases the phase boundaries normalized with the
hard-sphere limit. Reprinted from ref. 160, with the permission of AIP Publishing. c) Data points (black) represent superparamagnetic particles in a
high salt solution, which emulates the hard-sphere limit. The limited area fraction illustrates the practical limit that can be explored before colloidal
multilayers form. Reproduced from ref. 25 with permission from the Royal Society of Chemistry. d) An illustration of the various phases, including
liquid crystalline morphologies, and e) the resulting phase diagram as a function of effective temperature and particle area fraction. Reprinted figures
with permission from ref. 148. Copyright (2017) by the American Physical Society.

6.2 Cluster phase behavior

Colloidal systems have been widely used to gain new insights
into the dynamics of phase transitions.161,162 As previously de-
scribed, superparamagnetic clusters can transition from a disor-
dered phase to a highly ordered crystalline phase by tuning the
strength of the HFRMF. This behavior is reminiscent of phase
transitions observed with molecular systems. For this reason,
superparamagnetic clusters can be used as models for statistical
thermodynamics. One advantage of these magnetic systems is
that the interactions can be tuned in situ, allowing for nonequi-
librium phase behavior to be probed.

6.2.1 Equilibrium cluster phase behavior

One characteristic of superparamagnetic colloids in a HFRMF is
the ability of the colloids to undergo phase transitions by tuning
the external magnetic field, as previously shown in Fig. 26. Ex-
periments and simulations of these colloidal systems provide new
insights into 2-D phase behavior. Du et al.6 first investigated 2-D
phase transitions of superparamagnetic colloids and generated a

phase diagram, displayed in Fig. 29a. Using both experiments and
simulations, the solid-liquid melting transition was described on
this phase diagram as a function of a normalized minimum inter-
action potential and particle concentration. From Eq. 29, this pair
potential is proportional to the square of the magnetic field. The
phase diagram captures the liquid-gas binodal using a parabolic
function through the critical temperature, which is in accordance
with classical critical behavior.

Simulations of these systems use a canonical (NAT) ensemble,
i.e. at constant number of particles, area, and temperature. The
phase boundaries are obtained using thermodynamic integrations
to calculate the free energies, which are then compared with par-
ticle densities.163 Kryuchkov et al.160 used Monte Carlo simu-
lations to examine colloidal particles subjected to a long-range
magnetic and short-range Yukawa interaction. They determined
that the triple point and critical point can be tuned by adjusting
the softness of the Yukawa repulsion, as shown by the phase dia-
gram in Fig. 29b. Hilou et al.25 experimentally showed that the
hard-sphere limit of this phase diagram matched well for super-
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paramagnetic particles suspended in a high salt brine, illustrated
by Fig. 29c. The triple point is not experimentally realized due to
the strong magnetic interactions, which form colloidal multilay-
ers.

As previously discussed, Pham et al.148 utilized precessing
magnetic fields to assemble superparamagnetic colloids. At the
precessing angle of 90◦, liquid crystalline phases emerge, as dis-
played in Fig. 29d, in addition to the solid, liquid, and gas phases
previously reported. Using a structure factor, S(k), to characterize
the phases, a phase diagram was constructed. Here, the interac-
tion potential is presented as an effective dimensionless temper-
ature, T ∗ = (kBT )/(V µ0H2

0 ), that is inversely proportional to the
particle volume (V ) and the square of the magnetic field strength,
as shown in Fig. 29e. Recently, Li et al.164 generalized the phase
diagram to consider phase boundary alterations when the short
and long-range attractive dipolar interactions are tuned.

Hilou et al.7 examined the liquid-like properties of these clus-
ters by defining the cluster interface as a function of the mini-
mum pair potential, as shown in Fig. 30. The degree of order
in the clusters is characterized using ψ6.7 At the lowest interac-
tion potential, the cluster is completely disordered, analogous to
a liquid droplet. For intermediate energies, a disordered interface
surrounding a crystalline interior is observed. It is interesting to
note that the interface is not a sharp transition, but occurs as a
radial gradient of particle density. This gradient leads to a line
tension, which is further discussed in Sec. 6.3. At the highest pair
potential, the cluster becomes completely crystalline.

6.2.2 Nonequilibrium cluster phase behavior

The in situ, tunable interaction between colloids allows for explo-
ration of nonequilibrium thermodynamics. Nonequilibrium dy-
namics provide routes to generating complex phases, which can
be used to design new materials and functionalities. Pham et
al.148 showed how an initially homogeneous colloidal system un-
dergoes coarsening in a HFRMF with time. The coarsening dy-
namics are governed by a power law, th, which is consistent with
phase separation processes described by the Cahn-Hilliard equa-
tions.165

Hilou et al.25 examined the dynamics of nucleation, coarsen-
ing, and phase inversion of these colloidal assemblies in HFRMF.
Figure 31a illustrates the various states: clusters, voids, and a
spinodal phase. Minkowski functionals, such as perimeter (p),
characteristic length (Ls), and Euler characteristic (X), are used
to identify the observed state as the colloidal system changes with
time. The Euler characteristic is used to identify the more preva-
lent state. It is defined as the difference between the number
of clusters and the number of voids. A positive X represents a
phase dominated by clusters, and a zero X represents when the
two states are present in equal quantities, characterizing the spin-
odal phase. The Euler characteristic quantifies the connectivity of
the system and captures where phase inversion occurs. The char-
acteristic length represents the average length-scale of the var-
ious states. Four distinct pathways are identified as a function
of particle fraction, as shown in Fig. 31b. At high particle frac-
tions, the system nucleates voids that coarsen with time. At in-
termediate particle fractions, phase inversion from voids to clus-

Fig. 30 Colloidal clusters under different magnetic field strengths. a)–c)
Optical microscopy images of a colloidal cluster formed using a 20 Hz
HFRMF of a) 8.5 Gauss, b) 9 Gauss, and c) 11 Gauss, corresponding to
a pair potential with a minimum of 5.8, 6.6, and 9.8 kBT , respectively.
Scale bar = 10 µm d)–f) An overlaid colormap of ψ6 for the correspond-
ing microscopy images. Reprinted figures with permission from ref. 7.
Copyright (2018) by the American Physical Society.

ters can be observed, or a long-lasting metastable spinodal phase
can form. At the lowest particle fractions, clusters nucleate and
coarsen with time. From these pathways, the authors determined
that Ls scales with H2

0 , t0.4, and φ 0.4. This direct control of the 2-D
colloidal structure allows for the design of complex 2-D colloidal
morphologies.

6.3 Rheological properties of clusters
The rheological properties of magnetically assembled clusters are
of interest because of their unique dynamics. Since a change in
interaction strength results in a change in phase, it follows that
cluster rheological properties should also depend on the particles’
interaction strength. Zahn et al.10 found this dependence to be
true for the bulk and shear elastic moduli in their colloidal crystals
created at an air-water interface and organized with an orthogo-
nal magnetic field. Both moduli were found to increase linearly
with interaction strength, as shown in Fig. 32a. For clusters in
HFRMFs, the interface resists deformation with increasing inter-
action strength, as demonstrated by Hilou et al.7 This resistance is
captured by the interfacial stiffness, which is the sum of line ten-
sion (2-D analog of surface tension) and its second derivative with
respect to orientation, which accounts for interface curvature. In-
terfacial stiffness generally increases with increased interaction
strength, as shown in Fig. 32b. Due to interfacial anisotropy,
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Fig. 31 Nonequilibrium thermodynamics with 2-D superparamagnetic colloids in a HFRMF. a) Microscopy images of various phases: void-rich (left),
spinodal (center), and cluster-rich (right), that are observed for a given field strength and particle density. The dark regions represent particle-dense
areas. Black scale bar = 300 µm. Insets provide zoomed-in images of the particle assemblies. White scale bar = 25 µm. b) Optical microscopy images
of the time evolution of superparamagnetic particles undergoing phase separation at various particle fractions. Scale bar = 500 µm. c) The time
evolution of the characteristic length-scale of the colloidal features can be scaled with particle fraction, φ , and the external magnetic field strength,
H0 (where B = µH0 in the plot). Reproduced from ref. 25 with permission from the Royal Society of Chemistry.

larger variations in the interfacial stiffness values were measured
at higher interaction strengths.

The cluster interface in HFRMFs also plays a role in cluster ro-
tation. Although magnetic interactions are time-averaged in a
HFRMF, small clusters rotate with a reduced frequency compared
to that of the external magnetic field. In particular, Tierno et al.8

used this rotation to estimate an effective magnetic cluster viscos-
ity. They predicted a linear relationship between cluster rotation
and field frequency, which matched their data well for field fre-
quencies above ≈ 1kHz, as shown in Fig. 32c. The underlying
reason for cluster rotation was attributed to magnetic relaxations

within the cluster, generally. This counter-intuitive cluster rota-
tion however, has since been further explored and described as
a hydrodynamic effect from individual particles,167 which some
researchers have connected back to magnetic relaxations in the
particles at very high field frequencies.168

While single particle dynamics is not the focus of this review,
it is important to understand some basic properties of individ-
ual particles such that their collective effect on cluster rotation
can be understood. In a HFRMF, a magnetic particle will rotate
if it experiences a nonzero magnetic torque, often described by
Γm = µ0(m×H), where µ0 is the permeability of free space, m
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Fig. 32 Rheological properties of paramagnetic clusters. a) Linear trends of bulk (K) and shear (µ) elastic moduli of colloidal clusters increasing with
particle pair interaction strength. Reprinted figure with permission from ref. 10. Copyright (2003) by the American Physical Society. b) Interfacial
stiffness measurements of colloidal clusters, displaying an upward trend with increased interaction strength. The shaded blue area is the standard
deviation of the data points. Adapted figure with permission from ref. 7. Copyright (2018) by the American Physical Society. c) Cluster rotation
frequency, normalized with field strength squared, as a function of external field frequency. The insets of a hexagon and a doublet represent the type
of structures that are graphed. The solid black line is a prediction for cluster rotation frequency, based on a viscoelastic analysis. Reprinted figure
with permission from ref. 8. Copyright (2007) by the American Physical Society. d) [Left] Schematic of unbalanced interfacial shear induced rotation
of a cluster. [Right] The inverse of cluster rotation frequency as a function of cluster size. Reproduced from ref. 166 with permission from the Royal
Society of Chemistry.

is the dipole moment of the particle, and H is the total magnetic
field. Assuming the dipole is centered within a spherical particle,
the particle will only experience a nonzero torque if it’s dipole
moment is not aligned with the field. Note that any anisotropy
of the particle in the plane of field rotation will also result in a
nonzero torque, i.e. anisotropic shape and/or magnetic compo-
sition. Ferromagnetic particles have a permanent dipole. This
permanent dipole requires ferromagnetic particles to physically
rotate to align with the field direction, but due to viscous drag,
their dipole lags behind the field with some constant phase lag
angle, thereby creating magnetic torque that rotates the particle.
Superparamagnetic particles are typically composed of smaller,
magnetic grains randomly oriented within a matrix. As previ-
ously described in Sec. 2, in a HFRMF, superparamagnetic par-
ticles contain an induced dipole, and theoretically, the dipole is
instantaneous, thereby resulting in zero torque. However, in real-
ity superparamagnetic particles do experience a magnetic torque,
which has been attributed to the existence of a small permanent
dipole at low frequencies and a finite magnetic relaxation time

at high field frequencies168 or possibly a nonhomogeneous mag-
netic nanoparticle distribution within the larger matrix.169

The effect of magnetic particle rotation within a 2-D cluster was
simulated by Jäger et al.167 and showed the rotation and trans-
lation of individual particles was the cause of cluster rotation.
When a particle rotates in a fluid, a flow field is created around
the particle, and this flow can shear neighboring particles and
alter local flow fields, resulting in particle translation.170 This
rotation-translation coupled motion results in a shear on each
particle that was shown through experiments by Yan et al.166 to
be balanced within the cluster, but unbalanced at the interface,
resulting in rotation. A schematic of this shear-induced rotation
is found in Fig. 32d with the corresponding relationship Yan et al.
found between cluster rotation and cluster size.166 Collective par-
ticle rotation and resulting cluster rotation have both been used to
extend magnetic colloidal cluster applications, highlighted below.
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Fig. 33 Coupled magnetic and hydrodynamic fields lead to cluster trans-
lation. a) A schematic of the formation of colloidal carpets with a
HFRMF and their mechanism for propulsion, with corresponding opti-
cal microscopy images below. b) A schematic of the flow fields above
the carpet that help move the cargo. c) Microscopy images of the trans-
portation of a yeast cell atop a colloidal carpet. The black line is the
track of the yeast cell. Adapted figures with permission from ref. 171.
Copyright (2015) by the American Physical Society.

Fig. 34 Translation of colloidal microwheels. a) Schematic of tilted
field and corresponding titled microwheel (left). Microscopy image of
microwheel propulsion (right). Adapted from ref. 172 under terms of
the Creative Commons CC BY 4.0 license. Copyright (2016), Springer
Nature. b) Microscopy images, with time, that show the effect of mi-
crowheel propulsion on blood clot (grey) break up when functionalized
with a chemical activator. Helical motion (top), direct motion (middle),
and diffusion of the chemical activator alone (bottom). Scale bar = 40
µm. Adapted from ref. 173, Copyright (2017), with permission from
John Wiley & Sons.

6.4 Application-related dynamics of clusters

Beyond the fundamental importance of using magnetic colloidal
clusters as experimental models, physical applications for these
2-D assemblies have been explored, stemming from dynamics
unique to magnetic clusters. In particular, biomedical applica-
tions have been at the forefront of promising applications, in part,
because of the already established use of magnetic nanoparticles.
Magnetic nanoparticles have found applications in targeted drug
delivery and cancer therapies,174 largely because of their ability
to be directed with magnetic fields within the human body. There-
fore, the directed motion of colloidal clusters via magnetic fields
has been studied for the potential benefits they may hold in such
applications.

As mentioned previously, HFRMFs induce individual parti-
cle rotation, resulting in local hydrodynamic effects. Martinez-
Pedrero & Tierno171 probed the directed motion of colloidal clus-
ters near substrates. Colloidal carpets, as they were named, de-
rived their motion from hydrodynamic coupling of particle rota-
tion with a surface. Martinez-Pedrero and Tierno took advantage
of this effect by using a perpendicular HFRMF to induce parti-
cle rotation normal to the surface, which induced translation of
the entire cluster in 2-D, as seen in Fig. 33a. The cluster, origi-
nally formed with an in-plane HFRMF, was held together during
translation via an oscillating in-plane magnetic field component.
While in motion, the colloidal carpets were shown to pick up and
transport cargo due to the same flow fields created by the ro-
tating particles, but now above the carpet, as shown in Fig. 33b
and c. Additionally, due to the strong dipolar attractions between
particles within the crystal, the colloidal carpets were shown to
self-heal when obstacles were encountered, and in a later work,
this self-healing was shown to be tunable,175 furthering their ro-
bust ability to be used as transport vehicles in biomedicine and
microfluidic devices.

Tasci et al.172 explored a similar rotation-coupled propulsion
mechanism with smaller clusters. The authors lifted their clus-
ters to the plane of field rotation, as shown in Fig. 34a, resulting
in translation due to cluster rotation. The clusters were coined
as microwheels because parallels could be drawn between their
mechanism for motion and that of tires on a road. However, the
microwheel rolling occurred for cluster orientations close to par-
allel with the surface, due to hydrodynamic slipping. Because the
clusters could be oriented in any direction and that orientation
relative to the chamber surface dictated the direction they were
propelled, the authors created pre-programmed field orientations
to produce unique patterns of motion. Helical motion, in partic-
ular, was used in a later work to showcase the efficiency of the
magnetic microwheels to target and break up blood clots better
than direct motion or diffusion,173 as shown in Fig. 34b.

Lifting clusters up from the substrate has also been recently
explored numerically with cross-linked clusters. Brisbois et
al.176 proposed magnetic clusters with elastic linkers that dis-
play unique deformation dynamics when exposed to a precess-
ing field. Deformation dynamics similar to those of cross-linked
chains were reported, such as buckling. While experimentally
linking particles within a cluster has yet to be studied, such col-
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loidal membranes would further the breadth of cluster dynamics,
thereby influencing magnetic colloidal cluster applications.

7 Outlook
This review showcases the complexity in structure and dynam-
ics of spherical superparamagnetic particles in time-varying mag-
netic fields. This complexity arises from the large variation in
the induced dipolar interactions in both time and space. The
emphasis in this review has been to illustrate the range of dy-
namics, from how spherical particles are assembled into hierar-
chical assemblies, to the resulting response of these structures in
time-varying magnetic fields. Understanding how these spheri-
cal particle systems behave is important to analyze colloidal sys-
tems where additional complexities are introduced. New devel-
opments in the synthesis of anisotropic colloidal particles, the ca-
pability to couple magnetic fields with other fields, i.e. electric
or flow, and the ability to probe collective behavior of multiple
assemblies offer promise in creating hierarchically organized col-
loidal systems with novel properties and dynamics.

The use of anisotropic particles has increased the complex-
ity of particle-particle interactions, and consequently, the formed
assemblies. Anisotropic magnetic particles are characterized
by their magnetization’s directional dependence, which emerges
from anisotropic particle shape or composition. The complexity of
the assembled structures originates from a combination of the pe-
culiarly shaped building blocks and the resulting nontrivial mag-
netic interactions. Recent reviews have presented the structures
and applications of anisotropic magnetic colloids.11,135,177 Com-
mon anisotropically shaped magnetic colloids include rods,178

ellipsoids,179–181 dumbbells,12 and peanut-shaped particles.182

Anisotropic composition of a particle can be achieved with an in-
homogeneous distribution of magnetic material, either internally
or externally.58,183,184 For instance, Janus particles with a fer-
romagnetic coating on one hemisphere have been synthesized,
resulting in a shifted dipole.185,186 A number of experimental
and simulation-based research has shown interesting assemblies
when shifted dipoles are considered, with either in-plane or out-
of-plane magnetic fields.19,153,187–189 Janus particles will often-
times assemble into staggered chains to maintain the head-to-tail
dipolar alignment. These staggered structures can assemble into
large-scale networks and planar clusters by tuning the dipolar
shift.190–192 Patchy magnetic colloids have also been synthesized
to generate directional magnetic interactions.193,194 The dynam-
ics of these anisotropic colloids in time-varying magnetic fields
are only starting to be explored.

Composites containing superparamagnetic particles have also
been synthesized to generate magnetically actuated materials
that have applications in soft robotics and artificial muscles.
When embedded in a liquid crystal (LC), patchy paramagnetic
microcubes exhibited complex folding dynamics to accommo-
date the strain exerted by the long-range orientational order
of the LC.195 Additive manufacturing methods have also been
used to generate composite materials with anisotropic magneti-
zation.196,197 Superparamagnetic colloids embedded in polymer
gels or photocurable resins create anisotropic composites that
can be controlled with an external magnetic field.198–201 For in-

stance, linked polymeric squares containing aligned superpara-
magnetic chains act as microactuators that bend and fold in re-
sponse to a magnetic field.202 Ferromagnetic colloids embedded
into a thermoplastic elastomer can reversibly curl into flower-like
structures.203 Actuation of these composites has been with static
magnetic fields with on/off periods. Imparting time-varying mag-
netic fields on such composites may lead to new modes of actua-
tion.

Novel fields have also led to new structures and dynamics. For
example, simple paramagnetic colloidal swimmers were demon-
strated using asymmetric time-varying fields.204 An interesting
phenomena observed was how Brownian motion increased the
swimmer speed. The coupling of magnetic particles with other
fields has also increased structure complexity. In an analogous
manner to superparamagnetic colloidal assembly in magnetic
fields, dielectric colloids in electric fields experience colloidal
forces that are directly related to the dielectric permeability con-
trast between the colloids and their suspending liquid. Polymer-
based superparamagnetic particles can be dielectric, such that
when they are suspended in solvents, e.g. water or DMSO, the di-
electric permeability contrast is large enough for their assembly to
be manipulated with both magnetic and electric fields.26,205,206

The interplay between multipolar interactions has led to perco-
lating networks and condensed phase-like structures, whose spa-
tial organization spans multiple dimensions. Magneto-acoustic
assembly has also been utilized to apply a combined acoustic
pressure, with varying magnetic fields, to generate ordered crys-
tals.207 Additionally, the combination of magnetic and acoustic
fields allows clusters to transverse multiple dimensions.208 In
general, the structures covered in this review have focused on 2-D
assemblies near substrates, but the application of complementary
fields allows for the generation of 3-D assemblies or colloidal as-
semblies suspended in bulk solutions.

Incorporating hydrodynamic flow fields is another mode to in-
duce hierarchical assembly. As previously described in Sec. 6,
the translation of colloidal assemblies, generated by the in-
dividual motion of field-driven particles, can result in local
flow fields.97,171 These flow fields oftentimes lead to coupled
motion, such as translating colloidal critters209 or colloidal
swarms.210,211 Other emergent dynamics, such as magnetic col-
loidal vortices, have contributed to the field of active mat-
ter.212–215 These flocks of particles exhibit organized patterns
and synchronized motion. Combining experiments and simula-
tions has led to a better understanding of the coupling of fluid
flow and magnetic actuation of superparamagnetic colloidal as-
semblies. This coupling is of particular interest when consid-
ering complex geometries where confinement influences fluid
flow,216 or in large systems of chains and networks that interact
cooperatively.217 Moreover, superparamagnetic assemblies em-
bedded in non-Newtonian fluids illustrate interesting dynamics.
For example, magnetic structures in complex fluids have been
used as microrheological probes218,219 and have displayed swim-
ming via reciprocal motion.220,221 Lastly, fluid-fluid interfaces
have also been used to direct new assemblies and study dynam-
ics of magnetic colloids.222 For instance, a superparamagnetic
chain trapped at the air-water interface of an active fluid, com-
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prised of motile E. coli, illustrates a competition between mag-
netic and fluid forces.223 The dynamics of these assemblies in
non-Newtonian and active fluids is an open area of interest.

With the advancement in the synthesis of more complex su-
perparamagnetic colloidal building blocks, and the application of
novel force fields, new dynamics and applications continue to be
discovered. The advantage of superparamagnetic colloids is that
their interactions can be directly tuned by the magnetic field. The
majority of dipolar colloids have been assembled with forces well
above kBT , but as seen in Sec. 6, when dipolar interactions com-
pete with Brownian motion, new phase transitions and structural
dynamics are observed. These thermal effects raise questions
about the role Brownian forces play in collective motion and/or
the connectivity of networks. For example, how do thermal fluc-
tuations alter the mechanical properties, such as elastic moduli
and porosity, of the 2-D networks? In general, stochasticity gov-
erns the structure and resulting properties of cellular networks
and polymer gels. Considering the hierarchical structures found
in molecular and biological systems, superparamagnetic colloids
span the time and length-scales needed to design and emulate the
dynamics of these complex systems. The competition between
dipolar interactions and other force fields will lead to new hier-
archical structures that expand the dynamics and applications of
these colloidal systems.
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A Appendix

List of Variables
α Phase Lag Angle

αc Critical Phase Lag Angle

αmagic Magic Phase Lag Angle

β Precessing Angle

β (t) Time-Dependent Precessing Angle

βmagic Precessing Magic Angle

χ Effective Magnetic Susceptibility

χm Magnetic Susceptibility of a Material

ε Pair-Interaction Potential Well-depth

η Solvent Viscosity

γ Reduced Surface Potential

Γm Magnetic Torque

Γv Viscous Torque

ê Unit Vector

êx x-component of Unit Vector

êy y-component of Unit Vector

êz z-component of Unit Vector

κ Reciprocal of Debye Length

κ Reciprocal of the Debye Length

λ Magnetic Coupling Parameter

M Grand Potential Tensor

dθL/dt Angular Velocity of a Chain

µ Magnetic Permeability of Medium

µ0 Magnetic Permeability of Free Space
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Ω Angular Frequency of Chain/Cluster

ω Angular Frequency of External Magnetic Field

ωc Critical Angular Frequency of External Magnetic Field

φ Surface Particle Packing Fraction

φz External Magnetic Field Phase

φ3D Volume Particle Packing Fraction

ψ6 Local Bond-orientational Order Parameter

ρ∞ Ion Concentration in Bulk Fluid

σM Maxwell Stress Tensor

B External Magnetic Induction Field

Fα
i Tangential Magnetic Force on Particle i in a Chain

Fθ
i Tangential Magnetic Force on Particle i due to Another

Fr
i,total Total Radial Magnetic Force on Particle i

Fr
i Radial Magnetic Force on Particle i due to Another

Fi Total Magnetic Force on Particle i

H Total Magnetic Field

H0 External Magnetic Field

H0(t) Time-Dependent External Magnetic Field

Hdip Magnetic Field Produced by a Dipole

I Identity Tensor

k Wave Vector

M Magnetization of Medium

mi Dipole Moment of Particle i

n Normal Vector

ri j Distance Vector between Dipoles i and j

Ma Mason Number

Mac Critical Mason Number

Mn Magnetoelastic Number

Re Reynolds Number

θ Angle between H0 and ri j

θ6 Local Orientation of Particle in Cluster

θik Angle between Vector connecting Particles i and k, and
the Positive x-axis

θL Angle between a Chain and the Positive x-axis

θmagic Magic Angle between H0 and ri j

ϑ Angle between ri j and the Precessing Axis

ζ Magnetic Potential Field

A Area

a Particle radius

D Diffusion Coefficient

E Young’s Modulus

EI Bending Rigidity

f Frequency

g(r) Radial Pair Distribution Function

GN(t) Number of Chains with N Particles at Time t

g6(r) Bond-orientational Correlation Function

H0 External Magnetic Field Strength

H0(t) Time-Dependent External Magnetic Field Strength

Hmax Maximum External Magnetic Field Strength

Hmin Minimum External Magnetic Field Strength

Hxy External Magnetic Field Strength in-plane

Hz External Magnetic Field Strength out-of-plane

I Moment of Inertia

kB Boltzmann Constant

L Contour Length

lp Persistance Length

Ls Minkowski Functional: Characteristic Length

mi Magnitude of Dipole Moment of Particle i

N Number of Particles

n Number of Chain Fragments

N∗ Chain Length

Nn Number of Nearest Neighbors

nb Number of Bending Modes in a Linked Chain

p Minkowski Functional: Perimeter

r Distance from Center of Particle

R0 Initial Average Interparticle Spacing

R1 Maximum Capture Radius

Rc Capture Radius

ri j Center-to-center Interparticle Distance between Particles
i and j
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rl Lateral Separation Distance between Chains

S(k) Structure Factor

S(t) Size-weighted Average Chain Length

T Temperature

t Time

T ∗ Effective Dimensionless Temperature

tB Diffusion-limited Aggregation’s Characteristic Time-scale

tdet Deterministic Aggregation’s Characteristic Time-scale

to f f Pulse-off Time of Oscillating External Magnetic Field

U Potential Energy

Ul Lateral Interaction Potential Between Chains

Ui j Potential Energy Between Interacting Particles i and j

Umag Total Magnetic Interaction Potential for a Particle in a
Chain

Umin Minimum Potential Energy

V Particle Volume

X Minkowski Functional: Euler Characteristic

y Position Along a Chain

z Dynamic Scaling Exponent
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TOC:

Time-varying magnetic fields can be used to assemble superparamagnetic colloids into 
hierarchically organized assemblies, ranging from 1-D chains, 2-D networks, and 2-D clusters 
that exhibit novel dynamics.
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