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Twist dynamics and buckling instability of ring DNA: the
effect of groove asymmetry and anisotropic bending†

Yair Augusto Gutiérrez Fosado,‡a Fabio Landuzzi,‡a and Takahiro Sakaue∗ab

By combining analytical theory and Molecular Dynamics simulations we study the relaxation dynamics
of DNA circular plasmids that initially undergo a local twist perturbation. In this process, the twist-
bend coupling arising from the groove asymmetry in the DNA double helix clearly manifests. In
the two scenarios explored, with/without this coupling, the initial perturbation relaxes diffusively.
However, there are some marked differences on the value of the diffusion coefficient and the dynamics
in both cases. These differences can be explained by assuming the existence of three distinctive time
scales; (I) a rapid relaxation of local bending, (II) the slow twist spreading, and (III) the buckling
transition taking place in a much longer time scale. In particular, the separation of time scales allows
to deduce an effective diffusion equation in stage (II), with a diffusion coefficient influenced by the
twist-bend coupling. We also discuss the mapping of the realistic DNA model to the simpler isotropic
twistable worm-like chain using the renormalized bending and twist moduli; although useful in many
cases, it fails to make a quantitative prediction on the instability mode of buckling transition.

1 Introduction
It has become increasingly evident that not only the genetic infor-
mation encoded in the DNA is relevant in several biological pro-
cesses, but also that the elastic properties of DNA and its topology
play a key role in its functioning1–3. In the transcription process,
for example, the RNA polymerase locally reshapes DNA as it reads
the sequence along it. This local deformation generates stress of
the helix that dynamically drives overtwisting ahead and under-
twisting behind the polymerase4. It has been hypothesized that
this stress could influence the dynamics of nucleosomes, the bind-
ing of proteins along the DNA, the gene expression, among other
regulatory processes5–7. Thus changing the role we perceive DNA
from a passive entity that storage information to an active partic-
ipant of the regulation of gene activity.

To address the elastic response of DNA to mechanical manip-
ulations, the isotropic twistable worm-like-chain (TWLC) model
is usually employed. This model describes double-stranded (ds)
DNA as an inextensible and isotropic elastic rod characterized by
only two elastic constants: the bending stiffness (A) and the tor-
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sional stiffness (C). However, the actual DNA is equipped with
hard and soft directions for bending (anisotropy), and further-
more, the geometrical asymmetry imposed by the presence of the
minor and major grooves of the dsDNA helix gives rise to a cou-
pling between twist and bend8. Recent studies have revealed that
these elements, not included in the isotropic TWLC, are relevant
to the DNA physics in several contexts, including the bending and
twisting of DNA in the nucleosome scale9–11.

Despite its importance, the study in this direction has so far
been restricted to the equilibrium dynamics, which thus does not
resolve important time-dependent processes, such as how effi-
ciently torsional stress is transported to distal DNA sites. Here
we try to shed some light onto this subject by combining an an-
alytical theory and Molecular Dynamic (MD) simulations. The
protocol we employ in this study is depicted in Figure 1: initially,
a segment of the DNA (l out of total N base pairs) is constrained
to have a twist density deficit Ω3 = ∆χp (blue line in the plot).
After the constraint is released at t = 0, the system relaxes (yellow
line) to a state of uniform twist deficit Ω3 = ∆χpl/N (purple line
in the plot) that is reached after a time t∗. For t ≫ t∗ the buckling
of the molecule is observed as the twist density tends (cyan line)
to its relaxed state Ω3 = 0. This protocol allows us to investigate
the rate at which the stress can be relieved through the propaga-
tion of an over/under twisted region of a short DNA ring to the
adjacent base-pairs.
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Fig. 1 Schematic representation of the protocol we employed to measure
the diffusion of twist. Different colors represent the local-twist at different
times.

2 Reminder on the model
Let us describe the center line of the DNA as a curve, r(s), pa-
rameterized by arc length (s) and with a fixed total length L.
Its conformation is completely characterized by the set of or-
thonormal vectors {ê1(s), ê2(s), ê3(s)} that define a local refer-
ence frame (the Darboux frame) at each point s on the curve.
The tangent vector to the center line is ê3 = d

ds r(s) and by con-
vention, ê1 lies in the symmetry axis of the grooves in the di-
rection of the major groove and ê2 = ê3 × ê1 (see Fig 2). As-
sociated with the conformation, there is a local strain Ω(s) =
Ω1(s)ê1(s) + Ω2(s)ê2(s) + Ω3(s)ê3(s), that connects two refer-
ence frames located at s and s + ds. This satisfies

dêi

ds
= [Ω + χ0ê3(s)] × êi(s), (1)

with i = 1,2,3 and χ0(≃ 1.75 nm−1) the intrinsic twist density of
the DNA helix. The three components of the deformation vector
are Ωi(s) = Ω(s) · êi(s), where Ω3 is the local excess (or deficit)
of twist density with respect to χ0, and, Ω1 and Ω2 represent the
bending densities related to the tilt and roll degrees of freedom
of the dsDNA.

The elastic free energy functional in terms of the local defor-
mations truncated at quadratic order is E =

∫ L

0 ε0(Ω)ds8, with

ε0(Ω) = 1
2(A1Ω2

1 + A2Ω2
2 + CΩ2

3 + 2GΩ2Ω3)

= A1
2 Ω2

1 + A2
2

(
Ω2 + G

A2
Ω3

)2
+ C̃

2 Ω2
3, (2)

where the bending rigidities about the axes ê1 and ê2 are A1 and
A2, respectively. C expresses the torsional stiffness and G repre-
sents the twist-bend coupling between the local deformations Ω2
and Ω3. These parameters, in general, depend on the sequence of
the molecule12 and therefore on s, but for simplicity here we only
consider a homopolymer (made of only GC pairs) for which they
are constant12. Important features of the model become transpar-
ent if the energy density is transformed into a complete square

as in the second equality of Eq. (2), where C̃ = C
(

1 − G2

A2C

)
is the renormalized twist modulus. The consequence of this

Fig. 2 Schematic representation of a DNA ring. The vector x̂ points
in the perpendicular direction to the plane spanned by the ring. The
position of the phosphates is depicted in black and gray for the two DNA
strands. At each base-pair an orthonormal frame is defined: ê3 is the
tangent to the helix axis, while ê1 and ê2 lie on the plane of the Watson-
Crick bases. To ease the visualization we only show reference frames at
eight different positions (approximately every 3.75 helical turns). A cross
section of the helix is shown in the top panel. For configurations close
to the planar circle, the plane formed by ê1 and ê2 contains the vector
x̂. The angle between ê2 and x̂ is χ.

renormalization is evident after integrating out the bending de-
grees of freedom from the weight P ({Ωi}) ∝ e−βε0({Ωi}) (see
ESI †), implying the softening of twisting response. Similarly,
the bending about ê2 is affected with a renormalized modulus

Ã2 = A2

(
1 − G2

A2C

)
.

The bending (lb) and torsional (lτ ) persistence lengths that are
usually defined by the correlation of the reference frames along
s, can be expressed in terms of these renormalized elastic con-
stants13: lb = βÃ and lτ = 2βC̃ where Ã = 2

A−1
1 +Ã−1

2
is the har-

monic mean of A1 and Ã2.

2.1 Closed configurations

The elastic free energy functional in terms of the local deforma-
tions has been thoroughly studied in the past for linear8,12 and
ring9,10 molecules. Following reference10, here we employ the
energy density ε for a torsionally constraint DNA ring

ε(Ω) = ε0(Ω) − µ[Ω1 sin(χs) + Ω2 cos(χs)] − λΩ3, (3)

where the last two terms with Lagrange multipliers µ and λ rep-
resent the ring closure constraint, which allows to analytically
describe the minimum energy configuration of a ring10. The first
term enforces the bending (Ωb = Ω1 + Ω2) to take place along
the unitary vector x̂ = sin(χs)ê1 + cos(χs)ê2 pointing in the di-
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Fig. 3 Twist diffusion. (A) Sketch of the system. A ring DNA molecule is confined in between two parallel planes (results for simulations without
the planes are also discussed in the main text). The region with the ∆Lk = −1 deficit (l =156 out of N =312 base-pairs) is highlighted in red. (B)
Local twist deformation Ω3 as function of the contour length for oxDNA1 (top) and oxDNA2 (bottom). Color lines (blue, green, yellow and red)
represent results at different times (t = 0,5,2500 and 15000τLJ). Black lines (solid, dashed and dotted) are solutions to the diffusion equation at the
corresponding times for t > 0 (see ESI† for details). The insets show sections in the relaxed part of the ring before the release of under-twist.

rection perpendicular to the plane spanned by the molecule (see
Fig. 2), while the second term accounts for the presence of twist
excess ∆χ = χ − χ0.

Notably, the renormalized elastic constants enter in the equa-
tions that identify the ground state of ring DNA molecules. This
is found by the minimization of the energy density with respect
to Ωi. Thus, the elastic strains at ground state for a torsionally
stressed planar ring are

Ω0
1(s) = µ

A1
sin(χs),

Ω0
2(s) = µ

Ã2
cos(χs) − λG

C̃A2
, (4)

Ω0
3(s) = − µG

CÃ2
cos(χs) + λ

C̃
.

where µ = kBT lb/R0 is identified with the external bending
torque enforcing a radius R0 on a ring with a bending persistence
length lb

9, while λ = C̃∆χ is the external twisting torque as in-
spected from the relation

∫ L

0 ds Ω0
3(s) (= ∆χL) = λL/C̃. The os-

cillation of Ω0
1 and Ω0

2 is a natural consequence of the DNA helical
structure. Marked features here are: (i) the anisotropy (A1 ̸= Ã2)
implies unequal bending amplitudes, leading to the non-constant
curvature κ(s) =

√
(Ω0

1(s))2 + (Ω0
2(s))2; (ii) the twist-bend cou-

pling (G > 0) induces a “twist wave", i.e., a periodic modulation
in Ω0

3(s) which is in anti-phase with Ω0
2(s); and (iii) it produces

a constant shift in Ω0
2(s) and Ω0

3(s). It is also worth mentioning
that the ground state energy∮

ds ε(Ω0
1(s),Ω0

2(s),Ω0
3(s)) =

(
1
2

Ã

R2
0

+ 1
2 C̃(δχ)2

)
, (5)

is formally identical to that of the isotropic TWLC ring (with con-
stant radius of curvature R0) with bending and twist moduli Ã

and C̃, respectively. Although at first sight it is not obvious how

the nontrivial structural properties discussed here affect the twist
dynamics in real DNA, in the following we attempt to get some
insight into this.

3 Results and discussion
3.1 Coarse-grained simulations of DNA

Here we study the dynamics of twist in the oxDNA14,15, a coarse-
grained model that is based on force fields tuned to account for
several geometrical and thermodynamic features of single and
double stranded DNA (in its B form). One important feature of
the oxDNA model for the current study is that two parameteriza-
tions are available, namely, oxDNA1 and oxDNA2. While the for-
mer describes dsDNA as a molecule with symmetric grooves, the
latter introduces the appropriate groove asymmetry found in real
DNA. Therefore, as it has already been shown, there is a direct
mapping between these models and the theory described in the
previous section9,10,12. The oxDNA1 resembles the anisotropic
TWLC model (G = 0,C > 0 and A1 ̸= A2) and the oxDNA2 the
more general case in which all the stiffness parameters play a
role in the description.

We first investigate the diffusion of twist by performing coarse-
grained molecular dynamics simulations of dsDNA rings with a
total length of N = 312 bp. The protocol we follow is described
in ESI † and it is similar to that on16. Briefly, the molecule is
initialized with the mean distance between successive base-pairs
a = 0.34 nm. The local twist in half of the ring is set to its natu-
ral value: aχ0 = 34.5° and 34.1° for oxDNA1 and oxDNA2, hence
Ω3(s, t = 0) = 0 for s ∈ [1, l], with l = N/2. In the other half,
a deficit (or excess) of one helical turn is introduced such that
∆χp ≡ Ω3(s, t = 0) = −2π/la for s ∈ (l,N ]. Importantly these
conditions (size of the ring and level of supercoiling) are enough,
so as to avoid partial melting of the molecule in our simulations
and consequently the local reference frame used in the continu-
ous theoretical model is always well defined. During equilibra-
tion, the undertwisted segment of the ring is constraint so the lo-
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cal twist is fixed and the simulation is run for 105 τLJ (simulation
time). After this stage, the constraint is released at t = 0 and we
study the twist relaxation by monitoring its local value along the
molecule. During the whole simulation, the system is confined in
between two parallel planes to prevent writhe formation and in
this way being able to study pure twist dynamics. We will show
later that essentially the same result is obtained even without the
confining walls. The exact same protocol was applied for both,
the oxDNA1 and oxDNA2 models (see ESI † for details).

We run simulations at T = 15 K, which allows us to study the
twist dynamics in the absence of thermal fluctuations, making the
protocol more efficient. As will be seen later, we recover the same
behaviour from simulations at 300 K at the expenses of computa-
tion time. Such a low temperature will also, in general suppress
the formation of DNA-melted-bubbles where the local twist is not
defined. Furthermore, as discussed in reference10; in short, con-
strained and highly bent DNA, thermal fluctuations are not the
main factor influencing the shape of the molecule. In addition,
we prove (see Fig. S1 and Table S1) that the elastic constants are
not greatly affected by this choice and therefore that the outcome
from the simulations at 15 K can be compared with the theory
described here. In the following, results are only discussed for
simulations at 15 K unless otherwise specified.

We found that the twist evolution, Ω3(n,t), for the initially un-
dertwisted ring, can be fitted by the solution of the diffusion equa-
tion with the appropriate initial and boundary conditions (see
Fig. 3 and ESI† for details). From which we extract the diffusion
coefficients D−

I = 0.222 ± 0.009 and D−
II = 0.183 ± 0.007 bp2/τLJ

for the oxDNA1 and oxDNA2 models, respectively.
To complement this, in Fig. 4 we show results of the three lo-

cal deformations for the overtwisted case. Essentially the same
values of the twist diffusion coefficient were obtained, D+

I =
0.231 ± 0.005 and D+

II = 0.183 ± 0.004 bp2/τLJ. We corrobo-
rated that simulations at T=300 K show the same tendency:
D+

I = 0.22 ± 0.03 and D+
II = 0.17 ± 0.02 bp2/τLJ (see Fig. S2).

Getting back to Fig. 4, we also stress here that our results are
comparable to those on10. The simulations with the oxDNA2
model show that the twist-bend coupling generates the twist
waves and the antiphase relation between Ω2 and Ω3 predicted in
Eq. (4). In addition λ can be computed by noticing that at a fixed
time (taking for example results shown by red curve in Fig. 4D),
the average value over contour length of Ω3 is shifted with re-
spect to zero by 1/N

∑N
n=1 Ω3(n) = 1.12°/bp = 0.057 rad/nm.

This value corresponds to the factor λ/C̃ (see Eq. (4)), from
which we extract λ = 3.8 kBT , in good agreement with the es-
timate of λ = ∆χC̃ = 2π C̃/(312 × 0.34) = 3.4 kBT from the
theory. Remarkably, Ω2(n,t) also exhibits a diffusive behavior
with basically the same diffusion coefficient as the twist diffu-
sion: D+

II(Ω2) = 0.19±0.03 bp2/τLJ. The analogous result for the
undertwisted case is D−

II(Ω2) = 0.20 ± 0.04 bp2/τLJ.
All the results described above are summarized in Table 1. As

we will see below, the 20% difference in the diffusion coefficient
of the local twist between the two oxDNA models, along with
the diffusive behavior of Ω2, can be explained within the theory
presented in this manuscript by assuming that the dynamics of
the system can be divided in three different timescales.

Temperature ∆Lk Local deformation Diffusion coefficient [bp2/τLJ]

oxDNAI oxDNAII

15 K

−1
+1
−1
+1

Ω3
Ω3
Ω2
Ω2

0.222 ± 0.009
0.231 ± 0.005

———–
———–

0.183 ± 0.007
0.183 ± 0.004
0.20 ± 0.04
0.19 ± 0.03

300 K
+1
+1

Ω3
Ω2

0.22 ± 0.03
———–

0.17 ± 0.02
0.19 ± 0.03

Table 1 Diffusion coefficients from simulations of ring molecules (with
N = 312, |∆Lk| = 1 and l = N/2). Initially undertwisted (∆χp = −2π/la

for bp n ∈ [l,N ]) and overtwisted (∆χp = 2π/la for bp n ∈ [l,N ]) rings
are simulated at different temperatures (15 K and 300 K). The local
deformations Ω3 satisfies a diffusion equation for the two oxDNA models
(see Figs. 3 and 4). Due to G > 0, Ω2 evolves diffussively only in the
oxDNA2 model.

3.2 Dynamical equation

To discuss the dynamics, we assume that the local reference
frame, êi(s, t) and the strain Ωi(s, t) are functions of both po-
sition s and time t. The dynamical equation can be derived from
the compatibility relation between the strain and the angular ve-
locity together with the force and torque balance equations17. By
focusing on the twist component, the compatibility relation leads
to

∂Ω3(s, t)
∂t

= ∂ω3(s, t)
∂s

+
(

ê3 × ∂ê3
∂s

)
· ∂ê3

∂t
, (6)

where ω3(s, t) is the rotational rate of the curve at point s at time
t. The torque balance along ê3 is

γrω3 =Ω1M2 − Ω2M1 + ∂M3
∂s

, (7)

with the rotational friction coefficient γr and the three compo-
nents Mi = δε

δΩi
of the internal torque M =

∑3
i=1 Miêi, which

are written in terms of the deviations δΩi = Ωi − Ω0
i (see ESI †):

M1 = A1δΩ1,

M2 = A2δΩ2 + GδΩ3,

M3 = CδΩ3 + GδΩ2.

(8)

For an isotropic open TWLC (A1 = A2, G = 0, Ω0
i = 0), nonlin-

ear terms in Eq. (7) cancel out, reducing to a linear constitutive
relation γrω3 = C∂s(δΩ3). Hence, assuming in-plane motion and
deformation, Eq. (6) indicates the diffusive transport of the excess
twist density Ω3(s, t) with the diffusion coefficient C/γr.

In our more general model, however, the story looks more com-
plicated. In order to simplify the original nonlinear twist evo-
lution equation (6), we have to make use of an additional ar-
gument; that there is a conserved quantity due to the topolog-
ical constraint Lk = Tw + Wr. For a planar ring, the writhing
number Wr is zero and the invariance of the linking number
Lk implies that the total twist Tw =

∮
ds [χ0 + Ω3(s, t)] is con-

served. Therefore, there is a slow variable δΩ3(s, t) associated to
the twist relaxation process. In fact, Eq. (6) represents the con-
servation law of Ω3, where the rotation rate ω3 is regarded as
a twist current and the last term acts as a source of twist that
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Fig. 4 Time evolution of the local deformations from simulation (with confining planes) of the N = 312 bp overtwisted ring (with ∆Lk = 1), captured
at different timesteps: starting configuration (blue), 50 τLJ (green), 2500 τLJ (orange) and 15000 τLJ (red). Left and right panels show results for
the oxDNA I and II models respectively. Color dots represent data computed from simulations and color lines are a guide for the eye. To ease the
visualization, error bars are only reported for left panels. However, the size of the errorbars for right panels is similar. (A) and (D) show the average
local twist deformations for the two models. As consequence of the coupling (G > 0) the right panel displays twist waves. Solid, dashed and dotted
black lines represent the fit of the data to the diffusion equation at the corresponding timesteps. This shows that twist follows a diffusive pattern.
(B)-(C) are the two bending deformations Ω1, Ω2 for oxDNA1. The presence of waves with a periodicity equal to the DNA pitch is a consequence of
the helical structure of DNA. Notably there are no significant changes in these variables during the twist diffusion stage, in agreement with the theory
for G = 0. (E)-(F) Bending deformations for oxDNA2. The helical structure of DNA also generates waves but this time, due to the coupling between
Ω2 and Ω3, the overtwisted region of Ω2 shows a clear shift consistent with Eq. (4). Furthermore, Ω2 is also described by a diffusion equation with
a very similar diffusion coefficient as Ω3. Solid, dashed and dotted black lines represent results from the fit performed to the data with the diffusion
equation at the corresponding timesteps in panel (D). It should be also noted that the amplitude of the oscillations in Ω1 and Ω2 is modulated in the
first half of the molecule (n ∈ [1,156]). This modulation reflects the fact that during the initial equilibration the unconstrained region displays in-plane
bending deformations. For oxDNA2, due to the coupling this modulation appears also for Ω3.

comes from the out of plane deformations17–19. Thus, at each
moment, the local bending strains δΩ1(s, t), δΩ2(s, t) are quickly
equilibrated to the state given by M1 = M2 = 0, with which the
twist strain δΩ3(s, t) evolves over a longer time scale. Note that
the above conditions on M1, M2 are equivalent to finding the
averages ⟨δΩ1⟩, ⟨δΩ2 + GδΩ3/A2⟩ through the integration of the
bending degrees of freedom ESI †, which indicates that the renor-
malized modulus C̃ plays a role in twist dynamics. We confirm
this by plugging Eq. (8) into Eq. (7) with M1 = M2 = 0 and find-
ing γrω3 = C̃∂s(δΩ3). This result, combined with Eq. (6) leads
to a diffusion equation of twist

∂δΩ3
∂t

= D̃
∂2δΩ3

∂s2 , (9)

with the diffusion coefficient D̃ = C̃/γr. It is important to no-

tice that in order to obtain this result, we have neglected the last
term in Eq. (6) since the out of plane deformations are suppressed
in the confined geometry. We expect however, that this approx-
imation is still valid for a ring without confining planes. This is
because the writhing entails a global 3D rearrangement of the
molecule, while the spreading of twist excess/deficit occurs lo-
cally, and therefore the former should take place in a much longer
time than the latter. For this reason, the contributions of the out
of plane deformations should be negligible. This argument will
be confirmed later by simulations.

We predict, according to Eq. (9), that for two similar DNA
molecules, one with symmetric grooves and the other with the
usual asymmetry, the latter (with lower C̃) will exhibit a slower
twist diffusion. From the elastic parameters obtained in refer-
ence12 and reported in ESI†, we compute the rescaled twist mod-
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ulus βC̃I = 77 nm and βC̃II ≃ 61 nm for oxDNA1 and oxDNA2,
respectively. Remarkably, the ratio between these two quan-
tities (C̃II/C̃I = 0.79) is in excellent agreement with the ra-
tio of the twist diffusion coefficients found in our simulations
(DII/DI = 0.81 ± 0.02), obtained by averaging the results from
over and undertwisted rings.

Moreover, our argument (M2 = 0) suggests that the twist dif-
fusion in DNA is accompanied by a bend diffusion that is induced
by the twist-bend coupling. Figure 4(E) demonstrates that this
is indeed the case for oxDNA2, where Ω2 relaxes diffusively fol-
lowing the behavior of Ω3 with basically the same diffusion coeffi-
cient. Such a phenomenon is not observed in the oxDNA1 without
groove asymmetry.

We also note that since the diffusion coefficient in Eq. (9) only
depends on the elastic parameters and does not depend explicitly
on the temperature of the system, we expect a similar behavior at
room temperature (see Fig. S2), the temperature though, affects
the persistence lengths lτ and lb.

It is relevant to recall here that although the role of DNA
sequence on the twist diffusion is beyond the scope of this
manuscript, we expect some reasonable behavior within the lim-
itations of our model. Currently, the molecule in our simulations
is made of only GC pairs; changing the sequence of the system
(so the molecule is no longer a homopolymer), will introduce a
s-dependence on the elastic parameters that is not considered in
our theory. However, for DNA repeated sequences an effective
value of the elastic parameters can be computed in the oxDNA
models (see Fig. S4 and Table S2 of reference12). As expected,
these values show that decreasing the GC content will in gen-
eral soften the elastic response of the DNA. Provided that the
system does not show strong structural changes (like local melt-
ing) this would imply that the diffusion coefficient would also
decrease. In table S2 we compute the renormalized twist mod-
ulus using the values of the elastic constants on reference12 for
different sequences. We found that the ratio C̃II/C̃I does not
seem to change with the sequence in the oxDNA models. An ad-
ditional interesting observation is that for any of the two models,
the value of C̃ and therefore of D̃, can change for a factor up to
12.5% for the sequences analyzed (compare for example, polyCG
and polyAT results). This striking difference indicates the rele-
vance of sequence in the DNA dynamics, and confirms the need
of theoretical models that account for the sequence-dependent
DNA elasticity. This could be a key aspect in the understanding
of, for example, nucleosome dynamics20.

It is important to state that the theory introduced in this
manuscript is appropriate to describe systems without strong de-
formations, such as, melted bubbles or highly bend sections of
DNA. These considerations become relevant in the study of DNA
mini-circles (L < lb) and thus, it requires the introduction of a
more general theory21,22.

3.3 Buckling instability

We investigate the dynamics of the same system without confining
planes. Figure 5 shows the time evolution of the total twist (Tw),
where we observe that at short times (smaller than 105 τLJ) the

Fig. 5 Time evolution of Tw for undertwisted oxDNA1 (main) and
oxDNA2 (inset). Red dashed lines represent an exponential fit to the
data Tw(t) = c1 − c2 ∗ exp(−t/τ). The value of τ obtained from the fit
to the oxDNA1 and oxDNA2 models are 2.09 × 106τLJ, 4.33 × 106τLJ.
Purple squares show the timestep at which the buckling of the system
(shown in the snapshots) takes place. The diffusion time, t∗, is depicted
with a black dot.

change in Tw is insignificant and in consequence that the out of
plane deformations of the ring are negligible. Furthermore, the
time required for the deficit of twist to diffuse across the entire
ring, a distance of N − l (= N/2) bp, is given by t∗ ≈ (N − l)2/2D̃.
Since the value of t∗ is t∗

I = 5.53 × 104 and t∗
II = 6.76 × 104 τLJ

for the oxDNA1 and oxDNA2 models (both smaller than 105 τLJ),
respectively, our assumption of neglecting the last term in Eq. (6)
during the diffusion stage seems to be appropriate even after get-
ting rid of the confining planes.

At t ∼ t∗, i.e. at the end of stage II, we verified that the s-
dependence of the Ωi’s, displays the features (i-iii) predicted in
Eq. (4) (see ESI† and Movies S1-S2). As the simulation contin-
ues (t > t∗), the magnitude of the shift in Ω3 (and also in Ω2 for
oxDNA2 due to nonzero G, see Eq. (4)) decreases approaching to
zero and the interchange between twist and writhe takes place.
This is indicated by the rapid increase of Tw shown in Fig. 5. The
buckling of the molecule is reflected in the large scale (≫ 2π/χ0)
bending deformations (see supplementary movies). The number
of local minima (maxima) found in the envelope of the bending
deformations, referred as the bending mode number m, quanti-
fies the number of times that the ring bends back and forth across
its contour length. In Fig. S6 we show the value of m computed
from simulations as a function of time. It should be noted here
that since the local twist relaxation exhibits a diffusive behaviour,
we observed in our simulations (for example when comparing
N = 624 bp, l = 312 bp with different ∆Lk, either -1 or -2) that
the diffusion coefficient is not affected by the level of supercoil-
ing. As expected also, the time of diffusion t∗ is the same in both
cases. However, due to mechanical stress, the initial writhing
takes less time for the case with higher level of supercoiling.

From the discussion so far, one may expect that the behavior
of the DNA model can be mapped to that of an isotropic TWLC
using the renormalized moduli Ã and C̃. We now show that when
describing the buckling of DNA, this naive expectation only holds
in a qualitative level, but fails to explain the quantitative aspects.
The linear stability analysis for the isotropic TWLC ring predicts
that the most unstable mode (m∗) depends on the ratio of the
twist and bend elastic moduli C/A and the excess linking number
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Fig. 6 Bending mode (m∗) selected by the system as function of the
total length of the ring.

∆Lk such that the smaller the ratio C/A, the smaller the selected
mode number m∗ at a fixed ∆Lk (see Fig. S5)23. This mode
will grow faster than the others, and therefore will be the first
observed at the onset of the buckling.

We show in Fig. 6 the most unstable mode m∗ obtained from
simulations as function of the DNA size. For an N = 312 bp ring
with ∆Lk = −1, we find m∗ ≃ 4 for oxDNA1 and m∗ ≃ 3 for
oxDNA2 (see snapshots in Fig. 5). Although these results are in
good agreement with the mapping mentioned above (see ESI†),
this should not be regarded as a complete success. Remarkably,
we numerically find that m∗ depends on the ring length, a feature
absent in the linear theory of isotropic TWLC. On the other hand,
our results also suggest a satisfactory agreement in a more qual-
itative level; the ratio C̃/Ã of oxDNA2 (1.6) is smaller than the
one for oxDNA1 (2.1), and as expected, so is the observed m∗.

The main reason for the discrepancy may lie in the helical na-
ture of DNA (intrinsic twist χ0) and anisotropic bending. For a
ring made from isotropic and untwisted filament, A1 = A2 and
χ0 = 0, the configuration that minimizes the bending energy is
the one of a planar circle with constant curvature. However, non-
zero χ0 leads to the periodic variation of bending strain Ω1(s)
and Ω2(s) along the contour. In DNA, coupled with this is the
bend anisotropy, which results in preferential bending along the
soft axis. As a result, a slightly off-planar configurations with
varying curvature are explored in order to minimize the bending
energy11. These inhomogeneity may likely provide a “hot spot"
for the buckling instability. The possibility of incommensurate pe-
riodicity between the unstable mode and the underlying bending
oscillation may further complicate the situation. The amplitude
of the bending oscillation tends to decrease with ring size (Eq. 4),
but at the same time, the effect of thermal fluctuation becomes
more relevant, which tends to smooth the transition.

4 Conclusions
Through a careful numerical and theoretical analysis, we have
identified three distinctive time scales in the relaxation dynamics
after a local twist perturbation introduced in a torsionally con-
strained DNA ring. (I) In the fastest scale, the local bending re-

laxation takes place given the twist strain at that moment. (II)
The twist diffusive relaxation proceeds more slowly governed by
the conservation law with a topological origin. (III) After the
completion of twist diffusion, the remanent twist stress, if suf-
ficiently strong, makes the whole ring undergo a buckling tran-
sition in a much longer time scale. It is this time scale separa-
tion that allows us to reduce the original nonlinear time evolution
equation to the simple diffusion equation in the twist relaxation
process (II). It also provides rich physical insights on how the
molecular features of DNA, and in particular the groove asymme-
try, plays a role in the twist dynamics. Here, we have shown that
the twist diffusion coefficient is entirely determined by the renor-
malized twist modulus C̃, which is smaller than the bare modulus
C, due to the twist-bend coupling induced by the groove asymme-
try. One remarkable consequence of G > 0 is that one component
of bend (Ω2) exhibits the concomitant diffusive relaxation, which
is tightly coupled with the twist diffusion.

Although recent works on statics13 suggest that the more realis-
tic model reflecting molecular details of the DNA double-helix can
be mapped to a simple isotropic TWLC by using the renormalized
bending and twisting moduli Ã, C̃, and our present results sug-
gest its applicability also to dynamics, we have shown that such
a mapping is not almighty. A concrete counter-example is the
twist-buckling, for which the instability mode can be predicted
only qualitatively, but not quantitatively.

Hydrodynamic effects are neglected in the oxDNA model and
hence, one needs to be cautious in interpreting the units obtained
from simulations. Keeping this point in mind, it is still useful to
provide a rough time scale estimation in real experiments. With
τLJ = 1.7 ps (see ESI†), the diffusion of twist across the entire
contour length of a 1 µm∼ 3000 bp long DNA-molecule would
take a time t∗ ∼ 0.1 ms. If this molecule is over/under twisted
by 10 helical turns in such a way that the level of supercoiling
is σ = ∆Lk/Lk0 ∼ 0.033, a rough estimate of the writhing time
could be given by observing that the plateau in Fig.5 is reached
after a time (∼ 200 t∗) that is two orders of magnitude larger
than t∗. In our example of the 1µm molecule this represents 20
ms. Continuing with this approximation, we would expect that
a plectoneme is formed in a similar time (that scales with the
length of the molecule) in a torque-response experiment at low
force (f < 1 pN) and high salt concentration (to avoid melted-
bubble formation), such as the one reported in24. Therefore, the
time evolution of the end-to-end distance, after quickly adding
enough helical turns to obtain σ = 0.03, would reach a plateau in
about the same time-scale.

Finally, there is recent evidence9 that the local twist of the
DNA-nucleosome complex in equilibrium, that was extracted
from X-ray crystallography experiments, resembles the local twist
obtained for DNA minicircles with twist-bend coupling. Closely
related to this result, is that local bending-modulations are ob-
served in DNA minicircles with over/under twisting10. These
modulations lead to a change of the local curvature (reflected
in the change of shape from the minicircle to a polygon) that may
influence the way that twist defects propagate along the nucleo-
some and therefore would be important in the nucleosome-slide
mechanism. Complementing this picture, here we consider one
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more aspect that might be relevant in the dynamics of the system.
A local twist perturbation, produced for example by the transcrip-
tion of DNA in a distant site to the DNA-nucleosome complex,
could quickly diffuse, reach the complex and disrupting it; an
interesting feature to be considered for subsequent work. There-
fore, the twist-bend coupling should be recognized as a key aspect
in order to capture a clearer picture of the dynamics of this sys-
tem.
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