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Theory for the Casimir Effect and the Partitioning
of Active Matter

Camilla M. Kjeldbjerg and John F. Brady∗

Active Brownian Particles (ABPs) distribute non-homogeneously near surfaces, and understanding
how this depends on system properties—size, shape, activity level, etc.—is essential for predicting
and exploiting the behavior of active matter systems. Active particles accumulate at no-flux surfaces
owing to their persistent swimming, which depends on their intrinsic swim speed and reorientation
time, and are subject to confinement effects when their run or persistence length is comparable to
the characteristic size of the confining geometry. It has been observed in simulations that two parallel
plates experience a “Casimir effect” and attract each other when placed in a dilute bath of ABPs. In
this work, we provide a theoretical model based on the Smoluchowski equation and a macroscopic
mechanical momentum balance to analytically predict this attractive force. We extend this method
to describe the concentration partitioning of active particles between a confining channel and a
reservoir, showing that the ratio of the concentration in the channel to that in the bulk increases
as either run length increases or channel height decreases. The theoretical results agree well with
Brownian dynamics simulations and finite element calculations.

1 Introduction
Many natural systems can be described as active matter: the flock-
ing of birds, humans walking in crowded areas, the movement
of bacteria, Janus particles in suspension, etc 1–3. Active matter
systems consist of “particles” that convert chemical energy into
mechanical energy leading to self-propulsion 4. These movements
generate internal stresses and can drive systems far from thermo-
dynamic equilibrium5. Active matter systems exhibit interesting
phenomena such as particle accumulation near surfaces and self-
assembly due to their persistent motion. For instance, Janus par-
ticles can accumulate at the corners of a micro-gear causing it to
rotate and generate mechanical work 6–8.

Active Brownian Particles (ABPs) are a model active matter sys-
tem: ABPs move with a swim speed U0 in a direction q for a char-
acteristic reorientation time τR; the average length they move
between reorientations is called the run, or persistence, length
` = U0τR

9. This model is illustrated in Fig. 1. Some of the
interesting properties of active particles are due to the fact that
they often have an effective size—their run length—which can
be much larger than their geometric size such that they experi-
ence confinement in geometries whose size is on the order of the
run length10–14. Galajda et al. 15 showed that placing E. coli in a
square container divided by Chevron-shaped barriers (shown in
Fig. 1(b)) would concentrate the bacteria on one side of the con-
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Fig. 1 (a) Example of an ABP’s random movement with swim speed
U0 in a direction q, reorientation time τR and run length ` = U0τR. (b)
Chevron-shaped barriers (from15).

tainer. This behavior is profoundly different from purely passive
Brownian particles, which would homogeneously fill a volume in-
dependent of the geometric shape. The partitioning of E. coli is a
direct result of the bacteria having a persistent motion with a run
length much larger than both their size and the size of the funnel-
shaped openings. Di Giacomo et al. 16 have utilized this persistent
motion to sequester motile bacteria by deploying 3-dimensional
micro-traps.

Our aim in this work is to describe how active particles parti-
tion in simple geometries such as a channel of sizeH when placed
in contact with an infinite reservoir of ABPs as depicted in Fig. 5.
What is the ratio of the average concentration in the channel to
that in the infinite reservoir? Active systems are inherently far
from equilibrium, and we cannot appeal to equilibrium thermo-
dynamic properties such as the chemical potential to predict the
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Fig. 2 Illustration of two parallel plates in an active bath. The plates
are separated by a distance H. C.V. denotes the control volume for the
mechanical balance.

partitioning. Fortunately, active particles are still subject to the
laws of mechanics, and we show that a simple macroscopic bal-
ance allows one to predict behavior without detailed calculations.

To illustrate our approach, we first consider the attraction
between two parallel plates (also called the Casimir effect 17)
and show that the average concentration between the plates
equals that in the bulk reservoir independent of the degree
of confinement. This leads to a simple analytical expression
for the attractive force. We then study the partitioning in the
previously mentioned channel geometry of Fig. 5 and show
that the behavior is fundamentally different, with the average
concentration growing linearly with the ratio of the run length to
the channel spacing. The analysis is then extended to a periodic
array of plates in contact with an infinite reservoir where we
show how the parallel plates results transition to those of the
channel when the thickness of the plates exceeds 6 times the run
length.

2 Attraction between parallel plates: The
Casimir effect

One of the simplest examples of confinement is two parallel plates
separated by a gap distanceH immersed in an infinite bath of par-
ticles as shown in Fig. 2. For passive systems the parallel plates
will experience an attractive force towards each other when the
gap spacing is on the order of the particle diameter, H ∼ 2a.
This attraction is often referred to result from the disjoining pres-
sure18,19 or the Casimir effect in quantum mechanics 20,21, and in
colloid science it is known as depletion flocculation 22. For active
systems, Yan & Brady 13 and Ray et al. 17 showed, in independent
studies, that for infinitely long walls the pressure on the interior
walls depends on the gap spacing, and as the gap spacing de-
creases the pressure decreases as well. Additionally, Ray et al.’s
simulation study showed that there is an attraction between par-
allel plates immersed in a bath of active particles.

The attraction arises from the difference in the forces exerted
by the active particles on the interior and exterior plate surfaces.
We quantify this force difference with, ∆Π/ΠW

out, where ∆Π =

ΠW
out − ΠW

in, and ΠW is the force/unit area, or pressure, exerted
by the ABPs on the plate surfaces.

An inherent property of active matter is that the particles accu-
mulate at walls (and more generally at no-flux surfaces) due to
their persistent motion. Yan & Brady 13 showed that the pressure
on a single isolated wall is given by

ΠW
out = n∞(kBT + ksTs), (1)

where n∞ is the number density far from the wall, kBT is the
thermal energy, and ksTs = ζU0`/2 is the active energy, which
is a measure of the activity level of the ABPs. Here, ζ is the
Stokes drag coefficient of an ABP, and we are considering two-
dimensional reorientation processes giving rise to the factor 2 in
(1).

As shown by Yan & Brady13 the expression for the pressure on
the inner wall for two infinitely long plates is the same as (1), but
with the centerline concentration n0 replacing n∞. Thus, the net
attractive force is given by the simple relation

∆Π

ΠW
out

= 1− n0

n∞ . (2)

The above expression holds when the accumulation boundary lay-
ers at each wall do not overlap, which is true for moderate to high
activity (ksTs/kBT > 50) and when the run length is compara-
ble to the gap spacing. To complete the description, however, we
need a relation between n0 and n∞; that is, we need to know
how the APBs partition between the parallel plates and the sur-
rounding reservoir.

For a thermodynamic system, such as charged plates in an
ionic solution, the partitioning is determined by equating the
chemical potentials inside and outside, µin = µout. The elec-
trostatic system shares similarities with the active system: ions
accumulate (or deplete) near the charged plates and display a
non-homogeneous distribution between the plates 23. However,
since the ionic system is at equilibrium the flux of each ion
is zero at each and every point between the plates and in the
reservoir. Thus, the centerline concentration of each ion is re-
lated to the reservoir concentration via its chemical potential:
n0
i = n∞

i exp
(
−zieφ0/kBT

)
, where n∞

i is the reservoir concen-
tration of ion i, zi is its valency, e is the elementary charge, and
φ0 is the potential at the centerline (relative to a zero level in the
reservoir), which depends on the surface charge density on the
plates. The attraction between the plates is then determined by
a force balance and can be shown to be given by the ion osmotic
pressure difference between the inside and the outside.

Active particles systems are inherently out of equilibrium and
we cannot appeal to the chemical potential nor to a point-wise
vanishing flux. For a dilute suspension of APBs, the particle dis-
tribution is governed by the Smoluchowski equation for the prob-
ability density P (x, q, t) for finding a particle at position x with
orientation q at time t:

∂P (x, q, t)

∂t
+∇ · jT +∇R · jR = 0, (3)

where the translational and rotational fluxes are jT = U0qP −
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DT∇P and jR = −DR∇RP , respectively. Here, DT and DR

are the translational and rotational diffusivities; the reorientation
time τR = 1/DR. The orientational gradient operator is ∇R =

q ×∇q .

To make progress and capture the essential features of the dis-
tribution of ABPs, we expand the Smoluchowski equation in the
first few orientational moments: the zeroeth moment is the con-
centration n(x, t) =

∫
P (x, q, t)dq, the first moment is the polar

order m(x, t) =
∫
qP (x, q, t)dq, etc. For 2D, the orientational

moments satisfy a hierarchy of equations 24:

∂n

∂t
+∇ · jn = 0, (4)

∂m

∂t
+∇ · jm +DRm = 0, (5)

where the fluxes are

jn = U0m−DT∇n, (6)

jm = U0Q+
1

2
U0nI −DT∇m. (7)

Here, n is the number density, m is the polar order and Q is
the nematic order, Q(x, t) =

∫
(qq − 1

2
I)P (x, q, t)dq, with I

the isotropic tensor. The boundary conditions we impose are a
constant number density in the reservoir far from the plates n∞,
and no polar or nematic order,m∞ = 0,Q∞ = 0, etc. The plates
are hard no-flux walls, such that n·jT = 0 on the plates, where n
is the surface normal, and the angular reorientation is unaffected
by the plates.

While the system’s behavior is fully determined from the
Smoluchowski equation (3), its solution, or that of the moment
equations (4)-(5), for any but the simplest geometries is a daunt-
ing task. Dimensional analysis shows that the distribution of par-
ticles between the plates depends on four lengths: the length of
the plates L, the plates’ separation H, the run length ` = U0τR,
and the microscopic diffusive step length δ =

√
DT τR. The

ratio of the run length ` to the microscopic length δ is also a
measure of the active energy compared to the thermal energy
ksTs/kBT = (`/δ)2/2.

We are interested in large plates where L� H and L� `, and
high activity `/δ � 1. In this limit the force or pressure on the
plates scales as the active pressure n∞(kBT +ksTs) and depends
only on the confinement `/H. Furthermore, to determine the at-
tractive force between the plates we only need an estimate of the
centerline concentration—the partitioning between the reservoir
and the plates. To accomplish this, we can appeal to a mechanical
momentum balance.

At the microscopic level the particles evolve according to the
over-damped Langevin equation 24:

0 = −ζUα + ζU0qα + FBα , (8)

where ζ is the Stokes drag coefficient, Uα is the velocity of
particle α, and qα is its orientation. Each particle is also sub-
ject to random thermal forces FBα that give rise to translational
Brownian motion, and which are characterized by FB = 0 and

FB(0)FB(t) = 2kBTζδ(t)I, where the overline denotes averag-
ing over the thermal fluctuations of magnitude kBT and δ(t) is
the Dirac delta function. The orientation vector qα undergoes a
random reorientation process giving rise to rotary Brownian mo-
tion as detailed in appendix A. (The Smoluchowski equation (3)
is the Fokker-Planck equation corresponding to the microscopic
dynamics (8).)

From the microscopic dynamics (8) we can write a correspond-
ing linear momentum or force balance 24:

0 = −ζjn + ζU0m+∇ · σosmo , (9)

where the flux is given by jn ≡ n 1
N

∑N
α=1Uα, the polar order is

m ≡ n 1
N

∑N
α=1 qα, and σosmo = −nkBTI is the osmotic pres-

sure. In the force balance (9) −ζjn is the average drag force
from the suspending medium (which is assumed to be station-
ary), ζU0m is the average propulsive or swim force, and since
the average of the Brownian force is zero, its effect appears as the
divergence of a stress ∇ · σosmo.

The similarity between the momentum balance (9) and the
number density flux (6) is no coincidence—the flux is the mo-
bility, 1/ζ, times the driving force, and the driving forces are the
average swim force, ζU0m, and the stress gradient from Brown-
ian motion, ∇ · σosmo. (The Stokes-Einstein-Sutherland relation
connects the translational diffusivity to the drag, DT = kBT/ζ.)

We now apply this momentum balance to the control volume
(C.V.) illustrated in Fig. 2. Integrating the x-component over the
C.V. gives

〈n〉kBT − n∞kBT =
1

H

∫
C.V.

(ζU0mx − ζjnx ) dxdy , (10)

where 〈n〉 = 1
H

∫
ndy is the average concentration between the

plates as illustrated in Fig. 2. Equation (10) is just a statement
that the net body force in the C.V. is balanced by the osmotic
pressure difference.

From (5) at steady state the polar is m = −τR∇ · jm and thus
with (7) for the flux (10) becomes

(〈n〉 − n∞)(kBT + ksTs) = −2ksTs〈Qxx〉

+
2

H

∫
T

(
ksTsQxy −DT

∂mx

∂y

)
dx

− 1

H

∫
C.V.

ζjnx dxdy , (11)

where the activity ksTs = ζU2
0 τR/2 and the integral in the second

line is over the ‘top’ T in Fig. 2. Along the plate n · jm = 0 and
the integral over B is the same as over T ; hence, the factor of 2.
In obtaining (11) we have used the fact that far from the exit of
the plates, both between the plates and into the reservoir, there
is no variation with respect to x. We note that the balance is now
with the active pressure—the sum of the osmotic pressure and the
swim pressure 24,25.

The first term on the RHS of (11) is the average nematic order
at the left boundary of the C.V. far from the ends of the plates.
Because Q is traceless, 〈Qxx〉 = −〈Qzz〉, and we can estimate
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〈Qxx〉 from the infinite parallel plate solution of Yan & Brady 13,
which shows that this term is negligible (|〈Qxx〉| < 0.005〈n〉 for
`/δ = 45 and `/H ∈ [0, 3]).

The integrals on the RHS of (11) are only nonzero at the edges
of the plates. In the reservoir jnx is zero, as it is between the plates
far from the edge. Fig. 10 shows that the magnitude of ∂mx/∂y

is small and localized in a very small region right at the exit of
the plates. Thus, the mechanical balance predicts that 〈n〉 ≈ n∞.
This balance has a very simple physical interpretation: the force
per unit area of the left boundary of the C.V., which is the active
pressure between the plates times the height 〈n〉(kBT + ksTs)H,
is equal to the force per unit area on the right boundary of the
C.V., which the active pressure in the reservoir times the height
n∞(kBT + ksTs)H.

The value of 〈n〉/n∞ measured from Brownian Dynamics sim-
ulation is shown in the inset of Fig. 3 as a function of confinement
`/H with a plate length of L/` = 10; as expected the connection
is exact for passive particles `/H → 0 and saturates to a constant
as `/H increases. For large `/H the average concentration be-
tween the plates is roughly 20% higher than the concentration in
the bulk, which we believe to be caused by the finite thickness of
the plates (in simulation) that adds an additional surface where
particles accumulate and generate polar order which effects the
macroscopic mechanical momentum balance. This is confirmed
in § 4 on periodic plates, where partitioning is determined as a
function plate thickness, d, and reaches equal partitioning when
d/`→ 0.

Finally, we need to relate the centerline concentration n0 to
〈n〉. For this we use the exact solution for the distribution be-
tween two parallel walls (assumes isotropic nematic order, which
is a good approximation for simple systems) of Yan & Brady 13:

n(y)

n0
= 1 +

1

2

(
`

δ

)2
sinh (λy) + sinh (λ(H − y)

sinh (λH)
, (12)

where λ is the inverse thickness of the accumulation boundary
layer, or the inverse screening length, λ =

√
1 + (`/δ)2/2/δ. A

straightforward integration over y relates n0 to 〈n〉. In the limit
of high activity λH � 1, which is the most interesting case, we
have

n0

〈n〉 = 1− 1

1 + (H/`)/
√

2
. (13)

Fig. 3 shows a comparison between the predicted centerline
concentration, using the mechanical balance’s estimate of 〈n〉 ≈
n∞, and results from Brownian dynamics (BD) simulations. (See
appendix A for a description of the BD simulations.) The sim-
ulations are for a highly active system with strong confinement
such that the smallest length H, is on the order of the run length,
and the degree of confinement `/H, is varied by changing the
distance between the plates. Edge effects are minimized, since
the parallel plates are made much longer than the particles’ run
length and the channel height. (The data in Figs. 3 and 4 are for
L/` = 10 and ksTs/kBT = 1012.5.) There is good qualitative
agreement between the predicted center concentration from (13)
and the one observed in the BD simulations.
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derived from a simple mechanical balance. The inset shows the average
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0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

A
tt

ra
ct

io
n

,
∆

Π
W
/Π

W ou
t

Degree of Confinement, `/H

1
1+(H` )/

√
2

BD: Full length

BD: Center

1− n0/n
∞

Fig. 4 Attraction between parallel plates, ∆ΠW /ΠWout, as a function of
the degree of confinement, `/H. The relation 1/(1 + (H/`)/

√
2) is the

predicted attraction from a simple mechanical balance, and 1−n0/n∞ is
based on measuring concentration at the centerline via BD simulations.

From (2) the predicted attractive force is

∆Π

ΠW
out

=
1

1 + (H/`)/
√

2
, (14)

which is compared to BD simulations in Fig. 4. In the BD sim-
ulations when a particle colloids with a wall it exerts a force on
the wall and the pressure is then the sum of individual particle
contributions. In the simulations we used a potential-free algo-
rithm26–28 to model a hard-particle force (see appendix A). The
prediction gives a good estimate for the attraction, both for that
measured for the full length and the one measured only on the
central portion (1/3L) of the plates. As expected, the edge ef-
fects decrease the attractive force.

It should be appreciated that (14) is an a priori prediction with
no adjustable parameters. All we needed to know was the be-
havior for two infinite parallel walls and then the macroscopic
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Fig. 5 Illustration of two reservoirs connected by a channel of height H.
The concentration of ABPs in the reservoir far from the channel is n∞.

momentum balance for the partitioning into the parallel plates.
In the next section, we provide an example of a similar geome-

try that nevertheless exhibits a completely different behavior, but
one that can also be predicted through an analogous macroscopic
momentum balance.

3 Channel Confinement
We now investigate the effect of confinement on ABPs in a chan-
nel of height H connected to a reservoir as shown in Fig. 5. This
geometry is interesting because for passive Brownian particles the
partitioning between parallel plates and a channel is the same.
This is also true for an ionic solution—the ion concentration in
the channel or parallel plates is the same given by the equality
of chemical potentials. As we shall see, for active particles the
situation is profoundly different.

In Fig. 6 we show the average concentration in the channel
far from the ends, 〈nch〉/n∞, as a function of confinement `/H,
along with the data for the parallel plates. The parallel plate
results are for BD simulations with `/δ = 45 and L/` = 10. For
the channel geometry we solved the full Smoluchowski equation
(3) numerically using a standard Galerkin P2-FEM method with
adaptive mesh refinement. The finite element method was carried
out in Freefem++ 29. We also solved numerically the moment
equations (4)-(7) (with theQ = 0 closure) with Freefem++. The
dashed line in the figure is from BD simulations which have been
fit to the linear relation: 〈nch〉/n∞ = 1 + 0.89(`/H). Rather
than saturate to a value of approximately unity as for the parallel
plates, in the channel geometry the average concentration grows
linearly with the degree of confinement! How can we explain this
startling difference?

An explanation is provided by considering the behavior of the
APBs at the channel opening and combining this with the me-
chanical momentum balance over a properly chosen control vol-
ume. In Fig. 7(a) ABPs slide along the solid wall resulting in
a uniform concentration along the wall of magnitude nW =
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Fig. 6 Numerical solution for the relative number density in a channel,
〈nch〉/n∞, as a function of degree of confinement, `/H. The Brownian
dynamics solution to the parallel plates geometry discussed earlier is also
shown for comparison.

Fig. 7 Illustration of (a) a wall with particles colliding and then sliding
along the it and (b) a wall with an opening where they also slide along
it but then move into the channel.

n∞(1 + (`/δ)2/2) = n∞(1 + ksTs/kBT ), where n∞ is the con-
centration far from the wall 13. In Fig. 7(b) as particles slide
along the wall from above and below the opening, they escape
into the channel rather than continuing along the wall. This re-
sults in a deficit of particles just below and above the wall fac-
ing into the reservoir. This deficit is quantified in Fig. 8, and
we see that it extends over a length ∆ ≈ 3` independent of
both the degree of confinement, `/H, and the level of activity,
ksTs/kBT = (`/δ)2/2.

As before, we integrate the x-momentum balance (9) over a
C.V. that is the dashed lines in Fig. 1 making use of (7) as before:

(〈nch〉 − n∞)(kBT + ksTs) = −2ksTs〈Qxx〉

− 1

H

∫
C.V.

ζjnx dxdy

− 2

H

∫ ∆

0

(ΠW −Π∞)dy , (15)

where 〈nch〉 = 1
H

∫
n(y)dy, ΠW is the particle pressure on the

wall facing the reservoir, and Π∞ = n∞(kBT+ksTs) is the active
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Fig. 8 Number density at the wall normalized by the number density
at the wall far from the opening as a function of distance from channel
opening per run length measured from BD simulations. All the curves
collapse onto one another independently of both degree of confinement
and activity.

pressure in the reservoir. The integral is over the concentration
deficit at the wall. As for the parallel plates, the contributions
from 〈Qxx〉 and the integral of the flux are small. The result
then has again a very simple physical interpretation: the total
pressure on the left boundary of the C.V., 〈nch〉(kBT + ksTs)H +

2
∫∆

0
ΠW dy, is equal to that on the right boundary, n∞(kBT +

ksTs)(H + 2∆). Thus, the final expression for the partitioning is

〈nch〉
n∞ = 1 +

(
2

H

) ∫∆

0
[Π∞ −ΠW (y)]dy

Π∞ , (16)

where ΠW (y) = nW (y)kBT is the pressure on the wall at a dis-
tance y from the opening. Since the deficit is independent of
confinement, `/H, and activity, ksTs/kBT , as shown in Fig. 8,
we can compute the integral in (16) for one condition and use it
to predict the partitioning for all conditions. We used the ΠW de-
termined from BD simulations for `/H = 2 and ksTs/kBT = 103.
Fig. 9 shows excellent agreement between the predicted channel
concentration from the macroscopic momentum balance and that
from BD simulations and the solution of the full Smoluchowski
equation.

Selection of the proper control volume is important in obtain-
ing an accurate estimate of the partitioning. For example, for
the channel geometry one could use a C.V. that is the same as
for the parallel plates. If this C.V. were used, then instead of
the integral over the pressure deficit along the wall facing the
reservoir, one would have instead the integral along the ‘top’ as
in (11): + 2

H

∫
T

(
ksTsQxy −DT ∂mx

∂y

)
dx. (There is no integral

on the top boundary in (15) because far from the channel exit
we have the behavior of a single isolated wall in contact with the
reservoir.) Fig. 10 shows that the ∂mx/∂y is much larger and
longer ranged for the channel geometry than the parallel plates,
and thus, while this term’s contribution is small for the parallel
plates, it is not for the channel. The important point is that

Fig. 9 Relative number density in channel, 〈nch〉/n∞, as a function of
the degree of confinement, `/H. The inset shows the control area for
the force balance. ∆ is the length of the region at the wall experiencing
a decreased pressure due to ABPs escaping into the channel.

the C.V used in each geometry led to the very simple physical
balance between the pressures on the two surfaces and thus to a
reasonable estimate for the partitioning.

4 Periodic plates
As a last example we consider the periodic plate geometry illus-
trated in the inset of Fig. 11. This geometry is intermediate be-
tween the parallel plates in an active bath and the channel con-
nected to a reservoir. As the thickness of the plates, d, becomes
very thin one expects the partitioning to behave like the parallel
plates shown earlier, but without the Casimir attraction since the
plates are now placed periodically. In the other limit when the
plate thickness becomes very large we expect the behavior to re-
semble the single channel geometry. Fig. 11 shows the relative
number density between the periodic plates compared to that in
the reservoir for BD simulations with ksTs/kBT = 1012.5 and
L/` = 10. We recover the two limiting behaviors: as d/` → 0,
〈n〉/n∞ → 1, and for large d/` the partitioning grows with `/H.

The similarity of the curves in Fig. 11 suggest that they can be
collapsed onto a single curve. We define a scaled concentration
profile by first subtracting off the parallel plates result and then
normalizing by the channel result for d/`� 1:

∆〈n〉
n∞ =

〈n〉/n∞ − 1

lim
d/`→∞

(
〈n〉
n∞ − 1

) . (17)

This collapse is shown in Fig. 12. Furthermore, the macroscopic
momentum balance that led to (16) can be applied here by simply
replacing ∆ with d/2. Thus, from the momentum balance we
predict the scaled partitioning

∆〈n〉
n∞ =

∫ d/2
0

[
1− ΠW (y)

Π∞

]
dy∫∆

0

[
1− ΠW (y)

Π∞

]
dy

. (18)
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Fig. 10 The change in polar order distribution in the y-direction,
(dmx/dy)/n∞ , around the opening for (a) the parallel plates and (b)
the channel geometry for `/H = 3 and ksTs/kBT ∼ 3 · 102. The gray
regions illustrate the area for which the change in polar order is shown.

And by assuming that the decrease in concentration (and thus
pressure) near the corners has exactly the same functional form
independent of the plate thickness, we can use the data for
wall pressure obtained for the single channel. We applied the
ΠW determined from BD simulations with ksTs/kBT = 128,
L/H = 7.5, and `/H = 2 in (4), and Fig. 12 shows excellent
agreement between the prediction and the periodic plates
simulations. This shows that the wall pressure follows the same
functional form at the corners independent of plate thickness.
Further, we see that the number density plateaus at a plate
thickness of d/` ≈ 6, which corresponds to twice the deficit
distance. This is the smallest thickness needed to obtain the
full concentration deficit near the plate corners and thereby
obtain the maximum concentration between the plates. Adding
additional thickness to the plates will have no effect on the
partitioning between the channels and the reservoir.

5 Conclusions
The attraction (Casimir effect) between parallel plates in a bath
of active particles increases with increasing degree of particle
confinement (run length per plate spacing). Through a simple
macroscopic mechanical momentum balance we presented
a method to predict the attraction that agrees well with BD
simulations and solution of the full Smoluchowski equation.
The prediction has no adjustable parameters. This method was
extended to the partitioning of ABPs between a channel and an
infinite reservoir. In contrast to the parallel plates where the
average concentration between the plates is the same as in the
reservoir for all degrees of confinement, for the channel the
average concentration in the channel grows linearly with the
degree of confinement. It was shown that this results from a
deficit of ABPs on walls of the reservoir near the channel opening.
It is important to appreciate that the different behaviors in the
two geometries results from the inherent nonequilibrium nature
of the active particle dynamics; an equilibrium system would
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Fig. 11 Normalized number density in the channels as a function of
plate thickness for ksTs/kBT = 1012.5 and L/` = 10. The inset shows
the illustration of periodic plates, where d is the plate thickness and H
is the separation between the plates.
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Fig. 12 Partitioning increase as a function of the plate thickness (see
equation (17)) both for Brownian Dynamics simulation and that predicted
from the momentum balance.

show no difference in the two geometries.
We hope that this simple approach of macroscopic momentum

balances can be extended to other confinement problems and
allow one to understand and predict behavior without having
to perform computationally costly finite element calculations or
Brownian Dynamics simulations. Additionally, utilizing the in-
sights in partitioning behavior for these fundamental geometries
will be valuable in designing optimal structures for enhancing or
isolating active particles.
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A Brownian Dynamics simulations
The equations of motion implemented are the overdamped
Langevin equations 24:

0 = −ζuα + F Swimα + FBα + FWα , (19)

0 = −ζRΩα + LRα , (20)

where Uα is the translational velocity, Ωα is the rotational veloc-
ity, ζR is the rotational Stokes drag coefficient, and F Swimα is the
swim force defined as FSwimα ≡ ζU0qα. FBα is the random Brow-
nian force with the properties FBα = 0 and the FBα (0)FBα (t) =

2kBTζδ(t)I, where I is the identity tensor and δ(t) is the delta-
function. LR is the random reorientation torque, where LR = 0
and LR(0)LR(t) = 2ζ2

Rδ(t)I/τR. The simulations length scale is
non-dimensionalized by the microscopic length δ =

√
DT /DR

and the time steps are non-dimensionalized by the reorientation
time τR, where τR = 1/DR and DT = kBT/ζ. Note that it is not
necessary to assume that the translational and rotational diffusiv-
ities are both thermal, i.e. DR need not be proportional to kBT .
Changes in orientation follow from dq/dt = Ω× q, with Ω from
the particle angular momentum balance (20).

The particles are ideal and therefore only interact with the
walls (no-flux boundaries) through the potential-free algorithm
that models a hard-particle force. 26–28 This algorithm is imple-
mented by placing a particle that overlaps with a wall back to the
point of contact following along the boundaries normal vector
until the system is free of overlaps.

We can determine the wall pressure from measuring the force
on the wall per area, FW /A. The force exerted by an ABP on the
wall is determined by measuring displacements at the wall. The
force one ABP α exerts is

FWα = ζUoverlapα n = ζ
∆xoverlap

∆t
n, (21)

where ∆xoverlap is the overlap measured normal to the wall be-
fore the collision is resolved and ∆t is the size of the time step.
From the force exerted by the individual particles the pressure at
position z is given by

ΠW (z) =

N∑
i

ζUoverlapi

∆z
. (22)
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A theoretical model based on macroscopic momentum balances analytically predicts the 
Casimir effect and the partitioning of active matter. 
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