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Kinetics of self-assembly of inclusions due to lipid membrane thick-
ness interactions

Xinyu Liao,a Prashant K. Purohit,ab∗

Self-assembly of proteins on lipid membranes underlies many important processes in cell biology,
such as, exo- and endo-cytosis, assembly of viruses, etc. An attractive force that can cause self-
assembly is mediated by membrane thickness interactions between proteins. The free energy profile
associated with this attractive force is a result of the overlap of thickness deformation fields around
the proteins which can be calculated from the solution of a boundary value problem. Yet, the
time scales over which two inclusions coalesce has not been explored, even though the evolution of
particle concentrations on membranes has been modeled using phase-field approaches. In this paper
we compute this time scale as a function of the initial distance between two inclusions by viewing their
coalescence as a first passage time problem. The mean first passage time is computed using Langevin
dynamics and a partial differential equation, and both methods are found to be in excellent agreement.
Inclusions of three different shapes are studied and it is found that for two inclusions separated by
about hundred nanometers the time to coalescence is hundreds of milliseconds irrespective of shape.
An efficient computation of the interaction energy of inclusions is central to our work. We compute
it using a finite difference technique and show that our results are in excellent agreement with those
from a previously proposed semi-analytical method based on Fourier-Bessel series. The computational
strategies described in this paper could potentially lead to efficient methods to explore the kinetics
of self-assembly of proteins on lipid membranes.

1 Introduction
Self-assembly of proteins on lipid membranes has been a topic
of interest for at least the last three decades1–3. Proteins on
membranes self-assemble because they interact with each other
through forces that have their origins in membrane bending de-
formations4,5, membrane thickness deformations4,6–11, electro-
statics12 and entropic interactions4,13. There is a large literature
on this topic that we do not attempt to review here3–6,13–20. Our
interest is in self-assembly caused by membrane thickness medi-
ated interactions of proteins.

It is well known that lipid bilayers consist of two leaflets with
the hydrophobic tails of the lipid molecules spanning the mem-
brane thickness. Proteins that are embedded in the membrane
have hydrophobic peptides placed in such a way as they interact
mostly with the hydrophobic tails of the lipid molecules. If the
thickness of the hydrophobic region of a protein is different from
that of the lipid membrane then the leaflets deform so that the
membrane thickness in the vicinity of the protein changes (see
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Fig 1). The energy cost of the thickness deformation has been
estimated analytically by taking account of the lipid hydrocarbon
chain entropy9,21. The result is an energy functional written in
terms of the deformation field u(x,y) of the half-membrane thick-
ness and its gradients4,9. The membrane bending modulus Kb,
the membrane thickness modulus Kt and the isotropic membrane
tension F enter as parameters into this functional. The Euler-
Lagrange equation obtained by the minimization of this energy
functional is a fourth order linear partial differential equation
(PDE). A series of papers by Phillips, Klug, Haselwandter and
colleagues6–8 start from this energy functional and utilize the
linearity of the PDE to computationally analyze allosteric inter-
actions of clusters of proteins of various shapes. The key idea is
that the thickness deformation fields caused by distant proteins
can overlap (superimpose) and give rise to interaction forces just
as defects in elastic solids interact due to the overlap of deforma-
tion fields22. This idea has been in place since at least the mid-
1990s9, but it was computationally extended to complex protein
shapes and large clusters by the above authors.

An important result that emerged from the research on clus-
ters discussed above6 is that the free energy has a maximum
when plotted as a function of distance between individual pro-
teins which form a lattice (the proteins on the lattice are all iden-
tical). To the left of the maximum there are strong attractive in-
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teractions between the proteins, while to the right there are weak
repulsive forces which decay away as the proteins move far apart.
The strong attractive forces should cause self-assembly if two (or
more) proteins happen to come close together as they diffuse on
the membrane. We are interested in the time scale of the self-
assembly process. There are few experiments which focus on this
time scale, but one by Shnyrova et al.23 found that viral proteins
(that did not interact electrostatically) on a micron-sized vesicle
self-assemble in seconds.

Temporal evolution of the self-assembly of viral proteins on a
lipid membrane has been analyzed in a few recent papers using
simulations. Often these simulations can be computationally pro-
hibitive, but they do give insight about time scales and interme-
diate states of the cluster of proteins assembling into a virus par-
ticle or nano-container1–3,24. A drawback of these simulations is
that they may not be able to tackle time scales of seconds over
which self-assembly was seen to occur in experiments23. There is
a large literature on phase-field approaches that can capture the
evolution of particle concentrations on membranes (see for exam-
ple25,26), but these methods are not appropriate for computing
the time to coalescence of a few particles diffusing on a mem-
brane. We will take a different approach in this paper by analyz-
ing self-assembly of differently shaped inclusions using Langevin
dynamics and the corresponding Fokker-Planck equations. In re-
cent work we viewed self-assembly of two inclusions as a first-
passage time problem which can be quantitatively analyzed using
the theory of stochastic processes27. We implemented this ap-
proach in the context of interactions based on membrane bend-
ing. The analytical calculations (using PDEs) in27 were confined
to absorbing boundary conditions on both boundaries. A novelty
of this work is that we extend the PDE approach to include ab-
sorbing and reflecting boundary conditions.

This paper is arranged as follows. First, we quantify the in-
teraction energy profile of hexagonal, rod- and star-shaped in-
clusions∗. We show that our finite difference numerical method
for computing energies agrees very well with analytical formulae
(using Fourier-Bessel series) in most cases. After computing the
interaction energies, we solve first-passage time problems to find
the time scales over which two inclusions coalesce due to attrac-
tive interactions. We use both Langevin dynamics and the Fokker-
Planck equation to obtain mean first passage times and study
both isotropic and anisotropic problems with reflecting/absorbing
boundary conditions. Finally, we summarize our results in the dis-
cussion and conclusion sections and point to various enrichments
that can be implemented following our earlier work27.

∗We are limited in the shapes we can explore by the equilateral triangle grid used in
our computations.

2 Energy landscape

2.1 Analytical solution based on Fourier-Bessel basis
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Fig. 1 (a) Schematic of bilayer deformations due to a thickness mis-
match between hydrophobic region of a bilayer leaflet and an embedded
protein. (b). The two types of boundary conditions that are used in this
work. Dirichlet boundary condition Ui(θi) gives the thickness deforma-
tion along the boundary of inclusion i, while the slope boundary condition
∇u · n̂ =U ′i (θi) determines the derivative along normal directions at each
point along the boundary of inclusion i. The top view of the surrounding
lipid molecules (green circles) is only shown along the horizontal line,
but the lipids are everywhere on the plane. (c) A 3d plot of the thick-
ness deformation field caused by one hexagonal inclusion. The thickness
deformation is significant in the immediate vicinty of the inclusion and
decays rapidly as one moves further away.
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Table 1 List of parameters

Symbol Description Units Typical values
` side length of triangular grid nm 2.5
Kb bending modulus pN·nm 82.8 6

T temperature K 300
kB Boltzmann constant N· m· K−1 1.38×10−23

Kt thickness deformation modulus pN· nm−1 248.4 6

r separations between two inclusions nm 9−125
F applied tension pN· nm−1 0.1−10
a unperturbed bilayer half-thickness nm 1.75 11

R1(θ1) shape function for the centered inclusion nm
R2(θ2) shape function for the moving inclusion nm
θ the angle between two inclusions and horizontal line (see Fig 2(b)) radian/degree
u thickness deformation nm
ui thickness deformation at node i nm
Vi the area of the Voronoi cell at node i nm2

Ai jk the area of the triangle with vertices i, j,k nm2

R1 radius of the inner boundary for diffusing inclusion nm
R2 radius of the outer boundary for diffusing inclusion nm
ub the vector of all nodes determined by Eq (15)-(16)
ua the vector of all nodes that are not in ub
u u = [ua

T,ub
T]T

φ Energy of the system pN·nm
n ratio of side of triangle in the coarse grid to that in the fine grid
ν(νi j) translational drag coefficient (tensor for anisotropic inclusion) s·pN·nm−1 2.32×10−5 27

D(Di j) diffusion coefficient (tensor for anisotropic inclusion) nm2· s−1 1.76×105 27

Tn Chebyshev polynomials of the first kind
Un Chebyshev polynomials of the second kind
Kn modified Bessel functions of the second kind

(a)

(b)

(c)

Fig. 2 (a) The initial configuration of a system of two inclusions. The
fixed inclusion located at the center (blue) has local coordinate system
(r1,θ1) and the moving inclusion (purple) has local coordinate system
(r2,θ2). (b) The inclusion on the right moves to the green spot and forms
an angle θ with the horizontal line. (c) The energy of the configuration
here is the same as the one in (b). Note that the hexagons in (c) are
rotated when compared to hexagons in (a).

We consider a circular lipid membrane with radius R2 and two
inclusions embedded in it. Our first goal is to compute the energy
landscape seen by an inclusion interacting with another inclusion
on a flat membrane. The interactions between the inclusions are
a result of the overlap of membrane thickness deformation fields
in their vicinity (see Fig 1(c) for the thickness deformation profile
around one inclusion). The interaction energy will be computed
by considering two inclusions, one fixed and the other moving
as shown in Fig 2(a). The coordinate frame at the fixed inclu-
sion (blue) denoted as inclusion 1 (r1,θ1) is set to be the default
one. We assume that the moving inclusion (purple) denoted as
inclusion 2 initially stays in the same orientation as inclusion 1
(see Fig 2(a)). To keep the analysis simple, when an inclusion
moves we do not consider its rotational diffusion (see27 where
rotational diffusion was considered). As inclusion 2 moves from
its initial position to the green spot and forms an angle θ with
the horizontal line (see Fig 2(b)), the energy of the system can
be computed by rotating both inclusions anticlockwise by angle θ

from the initial configuration (see Fig 2(c)). This interaction en-
ergy will enter our analysis of the kinetics of the moving inclusion
due to Brownian motion.

The elastic energy due to thickness deformation is given
by6–8,10,

φ =
1
2

∫ {
Kb(∇

2u)2 +Kt

(u
a

)2
+F

[
2u
a

+(∇u)2
]}

dxdy, (1)

where Kb is the membrane bending modulus, Kt is the thickness
deformation modulus, F is the applied tension and a is the unper-
turbed bilayer half-thickness. The integration is carried out over
the area of the membrane. The Euler-Lagrange equation associ-
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ated with Eq (1) is given by7,

Kb∇
4u−F∇

2u+
Kt

a2 u+
F
a
= 0. (2)

Eq (2) can be reduced to the following form using the transfor-
mation ū = u+ Fa

Kt
,

(∇2−ν+)(∇
2−ν−)ū = 0,ν± =

1
2Kb

[
F±

(
F2− 4KbKt

a2

) 1
2
]
. (3)

First, we consider the case of an infinitely large circular mem-
brane with R2 → ∞ without applied tension (F = 0). We as-
sume natural boundary condition which means that u = ū→ 0 as
R2→ ∞. Let inclusion 2 be on the right side of inclusion 1. Then,
a Fourier-Bessel series solution for the thickness deformation field
around each inclusion i(i = 1,2) can be obtained,

ū±i (ri,θi) = A±i,0K0(
√

ν±ri)+
∞

∑
n=1

A±i,nKn(
√

ν±ri)cosnθi

+B±i,nKn(
√

ν±ri)sinnθi

≈ A±i,0K0(
√

ν±ri)+
N

∑
n=1

A±i,nKn(
√

ν±ri)cosnθi

+B±i,nKn(
√

ν±ri)sinnθi, (4)

where Kn are modified Bessel functions of the second kind and
we take the first N terms in the series to approximate the sum.
In8 the authors used N = 12 to compute energy caused by thick-
ness deformations and they showed that the series is almost con-
verged. For small applied tension F and large membrane size R2,
we follow8 and use Eq (4) as an approximation for the solution
of ū±i

†. Since the Euler-Lagrange equation (Eq (2)) is linear, the
solution for Eq (3) is given by8,

ū = ū+1 (r1,θ1)+ ū−1 (r1,θ1)+ ū+2 (r2,θ2)+ ū−2 (r2,θ2), (5)

in which we used the coordinate transformations,

r2 =
√

r2 + r2
1−2rr1 cosθ1 , F1(r1,cosθ1,r),

cosθ2 = (−r+ r1 cosθ1)/r2, sinθ2 = r1 sinθ1/r2;

r1 =
√

r2 + r2
2 +2rr2 cosθ2 , F2(r2,cosθ2,r),

cosθ1 = (r+ r2 cosθ2)/r1, sinθ1 = r2 sinθ2/r1. (6)

In order to efficiently apply the boundary conditions, we rewrite

†The solution should include terms of the modified Bessel functions of the first kind
when F 6= 0 and R2 is finite. However, we show later that this approximation agrees
quite well with the numerical solution of Eq (2).

ū2 as a function of r1,θ1,r and ū1 as a function of r2,θ2,r,

û±1 (r2,θ2,r) = A±1,0K0(
√

ν±F2(r2,cosθ2,r))

+
N

∑
n=1

A±1,nKn(
√

ν±F2(r2,cosθ2,r))Tn

(
r
r1

+
r2

r1
cosθ2

)

+
N

∑
n=1

B±1,nKn(
√

ν±F2(r2,cosθ2,r))Un−1

(
r
r1

+
r2

r1
cosθ2

)
r2

r1
sinθ2, (7)

û±2 (r1,θ1,r) = A±2,0K0(
√

ν±F1(r1,cosθ1,r))

+
N

∑
n=1

A±2,nKn(
√

ν±F1(r1,cosθ1,r))Tn

(
− r

r2
+

r1

r2
cosθ1

)

+
N

∑
n=1

B±2,nKn(
√

ν±F1(r1,cosθ1,r))Un−1

(
− r

r2
+

r1

r2
cosθ1

)
r1

r2
sinθ1, (8)

where Tn, Un are Chebyshev polynomials of the first kind and
second kind, respectively. Let h1 = ū+1 + ū−1 ,h2 = ū+2 + ū−2 , ĥ1 =

û+1 + û−1 , ĥ2 = û+2 + û−2 . We consider the following type of bound-
ary conditions (see Fig 1(b)),

(h1 + ĥ2)(R1(θ1),θ1,r) =U1(θ1)

n̂ ·

(
∂ (h1 + ĥ2)

∂ r1
,

1
r1

∂ (h1 + ĥ2)

∂θ1

)
(R1(θ1),θ1,r) =U ′1(θ1) (9)

(ĥ1 +h2)(R2(θ2),θ2,r) =U2(θ2)

n̂ ·

(
∂ (ĥ1 +h2)

∂ r2
,

1
r2

∂ (ĥ1 +h2)

∂θ2

)
(R2(θ2),θ2,r) =U ′2(θ2). (10)

We can solve for the 4(2N + 1) coefficients
A±1,0,A

±
2,0,A

±
1,n,A

±
2,n,B

±
1,n,B

±
2,n,n = 1,2, · · · ,N because Eq (9)-(10)

result in a linear system. This determines the full deformation
field due to the overlap of the deformations caused by both
inclusions. In the above expressions R1 is the shape function for
inclusion 1 which is defined as the boundary of inclusion 1 in the
polar coordinates (r1,θ1), and similarly for R2 which is the shape
function of inclusion 2. For a hexagon shaped inclusion R1 is
given by

R1 =

√
3`
2

csc
(

θ1−
π

3

(
−1+floor

(
3θ1

π

)))
, 0 < θ1 ≤ 2π,

(11)
where ` is the side length. The shape functions for rod shaped
inclusion and star shaped inclusion are long and are given in the
Appendix in the section named Shape functions for star and rod
inclusion. The next step is to compute the energy φ(r) due to
this deformation field. Note that the angular dependence of φ(r)
appears through the shape functions of two inclusions, R1,R2.

Using the divergence theorem, the total energy expression in

4 | 1–20Journal Name, [year], [vol.],

Page 4 of 20Soft Matter



Eq (1) can be converted to the sum of line integrals over the
boundary, i.e. φ = φ1 +φ2 with φi given by,

φi =
1
2

G0 +
1
2

∫
∇ ·
[
Kb(∇ū)∇2ū−Kbū∇

3ū+Fū∇ū
]

dxdy

=
1
2

G1−
1
2

∫ 2π

0
n̂ ·
[
Kb(∇ū)∇2ū−Kbū∇

3ū+Fū∇ū
]

√
R2

i (θi)+R′2i (θi)dθi

=
1
2

G1−
1
2

∫ 2π

0

[
U ′i (θ)(Kb(ν+ū++ν−ū−)+Fū)

−Kbūn̂ ·∇(ν+ū++ν−ū−)]
√

R2
i (θi)+R′2i (θi)dθi. (12)

From the first line to the second line we assume the line integral
along the outer boundary is a constant w.r.t r (which works out to
0 as R2→ ∞ and F → 0) and put it into the G1 term (both G0 and
G1 are constants). To compute Eq (12) we need to solve for the
4(2N + 1) coefficients A±1,0,A

±
2,0,A

±
1,n,A

±
2,n,B

±
1,n,B

±
2,n,n = 1,2, · · · ,N

from Eq (9)-(10) and use them to compute ū+, ū−. Then we can
evaluate Eq (12) numerically. The energy φ(r) can be computed
relatively efficiently using this technique. This is important since
φ(r) must be computed repeatedly as inclusion 2 moves and r
changes due to Brownian motion when we solve the first passage
time problem. We will also need the forces acting on inclusion 2
in our analysis later. Eq (12) gives an expression to compute the
force analytically, which in the special case of an isotropic φ(r)
(i.e., no angular dependence) works out to

φ
′
i (r) =−

Ri

2

∫ 2π

0

[
U ′i (θ)

(
Kb(ν+ū′++ν−ū′−)+Fū′

)
(13)

−Kbū′n̂ ·∇(ν+ū++ν−ū−)−Kbūn̂ ·∇(ν+ū′++ν−ū′−)
]
dθi.

When there is only one circular inclusion in the membrane, the
thickness deformation field in Eq (5) has a closed form solution7

which can be compared to the simulation result of Klingelhoefer
et al.28 who studied radial bilayer thickness profiles for the Gα

nanopore (among many others). We used the same parameters
and boundary conditions as they did: a = 34.19Å, U1 = 0.81Å,
U ′1 = 0.7, R1 = 10Å for all θ1 and fit their curves by choosing
Kt = 120pN· nm−1, Kb = 2pN· nm and F = 0. The black curve
in Fig 3(a) (which comes from Eq (4) with N = 8) captures the
overall trend and the magnitude of the bilayer thickness changes
in the simulation done by Kingelhoefer et.al.28. This is reason-
able given that (a) the black curve is the result of a continuum
approximation Eq (1) where as the lipids are discrete particles in
the simulations of Kingelhoefer et. al.28, and (b) the black curve
assumes that the membrane is infinitely large where as it is finite
in the simulations.
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Fig. 3 (a) Red squares are data from the simulation done by Klingel-
hoefer et al.28 and the black curve is fitted using the analytical method
based on Fourier-Bessel function Eq (4). A reasonable agreement of the
two profiles suggests that the energy functional Eq (1) and the associated
Euler-Lagrange equation are a good starting point for estimating interac-
tion energies of inclusions. (b) The thickness deformation of one hexagon
inclusion with shape function Eq (11), Kb = 20kBT , Kt = 60kBT·nm−2,
boundary conditions U1 = −0.5 nm, U ′1 = 0 and under applied tension
F = 1pN·nm−1 converges to the result computed by analytical method
Eq (4) with N = 8 as n increases. Recall that the side of the triangles in
the fine grid is 1/n the side in the coarse grid.

2.2 Finite difference method based on refined grid

The above analysis gives us a semi-analytical technique to com-
pute φ(r). This technique can be used when there are one or
two inclusions whose shapes are simple. For a larger number of
inclusions or those with complex shapes (see Fig 4(a)) we need
a numerical method to compute the the thickness deformation
field. Fortunately, Eq (1) can be minimized using a finite differ-
ence method. We discretize the membrane using equilateral tri-
angle elements as shown in Fig 4(a) and Fig 4(b) following29,30.
We use a fine grid in the center of the domain and a coarse grid
farther away for reasons explained below. Recall that one inclu-
sion is fixed at the center of the domain and the other inclusion
is allowed to move. The motion of the second inclusion is influ-
enced by the change in interaction energy between the inclusions.
This interaction energy depends on the gradients of u(x,y) which
changes rapidly when the two inclusions are nearby (which hap-
pens when the second inclusion is near the center of the domain).
Hence, to accurately compute the energy when the two inclusions
are nearby (see Fig 4(b)) we use a fine grid in the center of the
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domain. When the inclusions are far away from each other there
is hardly any interaction between them, so we use a coarse grid
far away from the center of the domain to reduce computational
cost. The side of the triangles in the fine grid is 1/n of the side
of the triangles in the coarse gird. The grid does not change as
inclusion separation changes. The thickness deformation at node
i is denoted by ui.

(a)

(b)

(c)

Fig. 4 (a) Triangular discretization of the membrane in our finite differ-
ence method. The side of the triangles is `. Three types of inclusions are
studied in this paper: hexagon(red), star(purple), rod(green). (b) A fine
grid is implemented in a region near the center of the domain because
the thickness deformation profile changes rapidly in that vicinity when
two inclusions are present. The side of the triangles in the fine grid is
1/n that of the coarse grid. In this figure n = 2. (c) The blue regions are
the Voronoi cells of purple node (in the coarse grid), yellow node (at the
interface between fine and coarse grids) and white node (at the boundary
of an inclusion), respectively.

Using methods similar to those in29,30 the energy is first writ-
ten in a discrete form and then the thickness deformation field
that minimizes this energy is computed. Finally, the minimizer is
plugged back into the energy expression. Thus, the problem to be
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solved is

φ = min
ui

KbVi ∑
i

(
6

∑
c=1

uc
i −6ui

)2
2

9`4 +∑
i

Vi

2
Kt

(ui

a

)2

+∑
i

FuiVi

a
+ ∑

i, j,k

FAi jk

3`2

[
(ui−u j)

2 +(u j−uk)
2 +(uk−ui)

2
]

= min
u

uTMu+λuT1u. (14)

For nodes i in the coarse or fine grid that are far away from the
interface or the boundary of an inclusion (for example, see the
purple node in Fig 4(c)) uc

i ,c = 1,2, · · · ,6 are the thickness defor-
mations at the nodes surrounding node i. In the above Vi is the
area of the Voronoi cell around node i and l is the side of the trian-
gle. When node i is located at the boundary of an inclusion then
the appropriate Vi is shown around the white node in Fig 4(c) and
the sum over c in the first term is computed by assuming that the
inclusion is flat. When node i is at the interface between the fine
and coarse grid (see the yellow node in Fig 4(c)) then the appro-
priate Vi is shown around the yellow node in Fig 4(c) and we have
to use different weights depending on where uc

i is in the coarse
grid or the fine grid‡. In the final discrete version of the energy
expression, 1u is a column vector of size len(u) with all entries 1
and λ = FVi

a . M is the stiffness matrix where Mi j multiplies uiu j.
It has been shown8 that the boundary condition can be written in
the discrete form,

u(ri,θi) =U(θi), ∀i on the boundary (15)

uk− 1
2
(
ui +u j

)
√

3`/2
=U ′(θi′), ∀ i′, i, j,k pairs along the boundary

(i′ is the midpoint of i and j, see Fig 4(a)).
(16)

Note that ui,u j are given in Eq (15) and thus uk can be solved
from Eq (16) immediately. We also assume that the inclusions are
flat. Hence, Eq (14) can be rewritten as,

φ = min
ua

[
ua
ub

]T[
Maa Mab
MT

ab Mbb

][
ua
ub

]
+λ

[
ua
ub

]T[
1a
1b

]

= uT
a Maaua +2uT

a Mabub +uT
b Mbbub +λuT

a 1a +λuT
b 1b. (17)

In the above ub is the vector of all nodes determined by Eq (15)-
(16) and ua is the vector of all nodes that are not in ub. Taking
∂(uTMu+λuT1u)

∂ua
= 0, we get ūa = −Maa

−1(Mabub +
λ

2 1a) at which
Eq (17) is minimized where 1a is a column vector of size len(ua)
with all entries 1. Then, we can write the minimized total energy

‡Slightly different weights for computing the energy contributions of the interface
nodes do not change the final result for the profiles of u or the minimized energy.

as,

φ =

(
λ

2
1T

a +uT
b MT

ab

)
M−1

aa

(
Mabub +

λ

2
1a

)
−2
(

λ

2
1T

a +uT
b MT

ab

)

M−1
aa Mabub +uT

b Mbbub−λ
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In Fig 3(b) we compare the numerical solution of Eq (2) for the
thickness deformation profile around one hexagon shaped inclu-
sion using the above finite difference technique with the analyt-
ical solution Eq (4) with N = 8, Kb = 20kBT , Kt = 60kBT·nm−2,
F = 1pN·nm−1, boundary conditions U1 =−0.5 nm, U ′1 = 0 where
kB is the Boltzmann constant and T = 300K is the absolute tem-
perature and find excellent agreement as n increases. Unless indi-
cated otherwise, we use these parameter values in all calculations
in this work. This shows that the analytical and numerical meth-
ods to compute the thickness deformation profiles are consistent
with each other and with the results of molecular simulations
documented in the literature. We use n = 20 in all the energy
computations henceforth for each of the three different types of
inclusions studied.

2.3 Applications to hexagon, rod and star shaped inclusions

We now focus on the interaction of two hexagon shaped inclu-
sions on a lipid membrane which has a rotational periodicity of
π/3. We use Eq (18) derived from our numerical method and
Eq (12) derived from the analytical method, to compute the in-
teraction energy of two inclusions separated by distance r and
then make comparisons. As shown in Fig 5(a), the energy com-
puted using the analytical method for two inclusions separated
by distance r in two different orientations (shown in the inset dif-
fering by a rotation of π/6) are almost the same. Hence, we can
simplify our model and consider the energy landscape generated
by two hexagon inclusions as being almost isotropic (insensitive
to rotation). In Fig 5(b), we fix the shape of the two hexagons
(see inset of the figure), and show that as n increases, the match
between the energy computed from the numerical method and
analytical method gets better, justifying our numerical approach
of using a fine grid when the inclusions are nearby. From Fig 5(c)
we learn that as applied tension increases, the attraction at small
separations (around r = R1 = 7 nm) becomes weaker, but the re-
pulsive force at around 9− 10nm also becomes weaker. In Fig 5
we study short range interactions as small as center-to-center dis-
tance 7 nm for two hexagon inclusions. The side of the hexagon is
2.5 nm, so a 7 nm center-to-center distance corresponds to about
2 nm distance between their boundaries, which corresponds to
two lipid molecules. At such small separations we do not expect
that minimization of the continuum expression Eq (1) will cap-
ture molecular level deformations, although it has been shown
previously that it captures many aspects of protein-induced bi-
layer perturbations6,31,32. For this reason, in later computations
of the first passage time we take R1 = 9 nm for both hexagon and
star inclusions. Fig 6(a) and Fig 6(b) show that the computed
energy hardly changes as we increase N from N = 8 to N = 9,10
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in Eq (12). For this reason we use N = 8 for all the computations
in this work. In Fig 6(c), we compute the energy due to thickness
deformations of a cluster of seven inclusions as shown in the inset
using our finite difference method. We find a maximum in the en-
ergy around r = 9 nm similar to the findings in27,29 which studied
interactions of inclusions due to membrane bending deformations
in the presence of fluctuations and those in6 which studied thick-
ness deformations of MscL lattice. We do not assume pairwise
additivity of the energy in any of our computations (including
those with 7 inclusions) because the thickness deformation field
is solved by minimizing Eq (1) with boundary conditions applied
at each inclusion.
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Fig. 5 (a) The energy computed by the analytical method using Eq (12)
for two configurations of hexagon inclusions differing by a rotation of
π/6 under F = 1pN·nm−1. (b) The energy of the configuration with
F = 1pN·nm−1 computed numerically using Eq (18) converged to the
energy computed by Eq (12) as n increases. Recall that the side of the
triangles in the fine grid is 1/n that of the coarse grid. (c) A comparison
of the energy profiles at three different applied tensions: 0.1pN·nm−1,
1pN·nm−1, 10pN·nm−1.
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Fig. 6 The energy computed using different number of terms in the
series (N = 8,9,10) in Eq (4) under applied tension (a) 1pNnm−1, (b)
10pNnm−1. The energy computed with different N are almost identical.
For this reason we use N = 8 in Eq (4) for all energy computations. The
energy in these two plots is not scaled by subtracting the value at r = R2.
(c) The energy of a cluster of seven hexagons (one fixed at the center) as
a function of separations r under applied tension F = 1pN·nm−1. There
is a maximum around r = 9 nm which is similar to the findings in29 that
focuses on bending deformations and those in6 that analyzes thickness
deformations.
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Fig. 7 (a) The energy of two rod shaped inclusions computed by numer-
ical method Eq (18) with different θ under applied tension 1pN·nm−1.
(b) The energy computed by analytical method using Eq (12) fits the
one computed by numerical method using Eq (18) both with θ = 0◦ and
θ = 90◦ under applied tension 1pN·nm−1.

Fig 7(a) shows that the energy landscape of two rod shaped
inclusions is anisotropic - at small separations the force is re-
pulsive at θ = 0◦ and becomes attractive at some angle around
40◦ < θ < 50◦. The attraction increases as θ goes up to 90◦. This
behavior of the energy of two rod shaped inclusions is reminis-
cent of the energy from out-of-plane deflection for two rods27

on a lipid membrane. Fig 7(b) shows that the energy computed
by the numerical method and analytical method again agree very
well which gives us confidence in the numerical method.
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Fig. 8 (a) The energy of two rod shaped inclusions computed by numer-
ical method Eq (18) with different θ under applied tension 0.1pN·nm−1.
(b) The energy of two rod shaped inclusions computed by numerical
method Eq (18) with different θ under applied tension 10pN·nm−1.

Next we compute the interaction energy of rod shaped inclu-
sions for tensions F = 0.1pN·nm−1 and F = 10pN·nm−1. The com-
parison between Fig 8 and Fig 7(a) shows that as applied tension
increases, the interaction force becomes weaker at short separa-
tions, which implies that elastic interactions could be weakened
by strong applied tension. Physically, this is reasonable, since
high tension will tend to make the membrane flatter so that the
thickness is more uniform everywhere.
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Fig. 9 (a) Solid lines are the energy of two star inclusions with dif-
ferent rotational angles computed by numerical method using Eq (18)
and dashed lines are the energy computed by analytical method using
Eq (12). The applied tension is 1pN·nm−1. (b) The energy of two star
inclusions computed by numerical method under three applied tensions:
0.1pN·nm−1, 1pN·nm−1, 10pN·nm−1. (c) The energy of one hexagon
inclusion and one star inclusion under applied tension 1pN·nm−1.

Next, we apply both methods to compute the interaction en-
ergy of two star shaped inclusions in Fig 9. Just as in the case
of hexagons, we consider various orientations of the star shaped
inclusions as shown in the inset of Fig 9(a). The match between
the analytical method and numerical method is not as good in
this case because the star shaped inclusion has 12 vertices at
which the derivative along normal directions are discontinuous.
Since in the analytical method we used Fourier-Bessel series to
approximate the contour (R1,R2) and the derivative along nor-
mal directions to the boundaries, it requires a large number of
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terms N to obtain a good approximation. This is computationally
not feasible for symbolic operations in MATLAB. Thus, we have
greater confidence in our finite difference numerical method to
compute interaction energies in complex geometries. In Fig 9(b)
we use our numerical method to compute the interaction ener-
gies for star shaped inclusions for various values of F . The trends
are similar to those seen for hexagon shaped inclusions. Finally,
in Fig 9(c) we compute the energy of one hexagon and one star
inclusion separated by distance r and find again that there is a
maximum in the curve around r = 12nm.

This completes our analysis of the interaction energy of inclu-
sions due to bilayer thickness interactions. In most cases we have
shown that there is a maximum in the interaction energy of two
inclusions around a separation r = 10 nm. For separations smaller
than this value there is a strong attractive force between the in-
clusions which will cause them to coalesce. In the next section we
will compute the time to coalescence as a function of the initial
separation between the inclusions.

3 First passage time for isotropic inclusions under
mixed boundary condition

Our main goal in this paper is to study the kinetics of an inclusion
diffusing in an energy landscape resulting from elastic interac-
tions with another inclusion. Efficient methods to compute the
energy landscape developed above are a pre-requisite to this ex-
ercise. We will now use these methods to solve first passage time
problems.

We consider a circular membrane of size R2 = 125 nm with a cir-
cular inclusion of size 2.5 nm fixed at the center. Another circular
inclusion of the same size is diffusing around driven by stochastic
forces. Recall from the energy landscape that there are attractive
interactions between inclusions when the separations are small.
Hence, if the moving inclusion comes close enough to the static
one at the center then it will be strongly attracted. Therefore,
we assume that at R1 = 7 nm there is an absorbing wall at which
the moving inclusion will disappear by being attracted towards
the center. We assume that at R2 = 125 nm (far away) there is a
reflecting wall where the moving inclusion will be bounced back.
Note that problems in which both boundaries are absorbing were
solved elsewhere27. The exercise we will perform now is as fol-
lows. We place the second inclusion randomly on a circle of radius
r = y at time t = 0 and let it diffuse around. At some time t = Tin

when the inclusion hits the inner boundary for the first time we
stop it from diffusing and record Tin. We repeat this experiment
a large number of times and record Tin for each repetition. The
mean value of Tin is the mean first passage time T1. Our goal is
to find T1(y) as a function of the initial condition r = y. This can
be done analytically or through a Langevin dynamics simulation.
We will use both methods in the following.

To estimate T1(y) analytically we first need to compute sur-
vival probabilities. Let p be the probability density (for finding
the inclusion) at position r and angle θ given initial condition
r = y,θ =α and P(r, t|y)=

∫ 2π

0 p(r, t,θ |y,α)dθ . The probability den-
sity p is independent of θ since neither the energy landscape nor
the diffusion (or drag) coefficient of the inclusion depends on it.

As a result, the Fokker-Planck equation for the evolution of this
probability is in the following isotropic form27,

∂P
∂ t

=
∂

∂ r

[
1
ν

∂φ

∂ r
P+D

∂P
∂ r

]
+

1
r

[
1
ν

∂φ

∂ r
P+D

∂P
∂ r

]
, (19)

with Dirichlet boundary condition at the inner boundary and
Robin boundary condition at the outer boundary33,

P(R1, t) = 0,
(

kBT
∂P
∂ r

+
∂φ

∂ r
P
)∣∣∣∣

(R2,t)
= 0, ∀t ≥ 0. (20)

The first equation in Eq (20) is an absorbing boundary condition
at R1 which means that if the moving particle hits this wall it is
absorbed and exits the kinetics. So, the probability to find such
a particle at the absorbing wall is zero. The second equation in
Eq (20) is the reflecting boundary condition at R2. It means that
when the moving particle hits the reflecting wall it will bounce
back, hence the probability current at this point will be zero33.
In the above D is a diffusion coefficient of the inclusion in the
lipid membrane and ν is a drag coefficient which are related by
the Nernst-Einstein relation νD= kBT27. Let S(y, t) be the survival
probability,

S(y, t) =
∫ R2

R1

P(r, t|y)rdr. (21)

Then, we can get the first passage time density,

f (y, t) =−∂S(y, t)
∂ t

=−
∫ R2

R1

∂P(r, t|y)
∂ t

rdr. (22)

The existence of the first moment of P(r, t|y) with respect to time
t can be shown from the fundamental solution constructed by Itô
in34. Then, tP(r, t|y)→ 0 as t → ∞. Accordingly, the first passage
time T1(y) can be derived from Eq (22),

T1(y) =
∫

∞

0
f (y, t)tdt =−

∫
∞

0

∫ R2

R1

∂P(r, t|y)
∂ t

rdrtdt

=
∫ R2

R1

∫
∞

0
P(r, t|y)dtrdr =

∫ R2

R1

g1(r,y)rdr, (23)

where g1 is defined by,

g1(r,y) =
∫

∞

0
P(r, t|y)dt. (24)

Theorem 1: The ODE for T1(y) with a reflecting wall at the outer
boundary and an absorbing wall at the inner boundary is

∂ 2T1(y)
∂y2 +

(
− 1

kBT
∂φ

∂y
+

1
y

)
∂T1(y)

∂y
+

1
D

= 0, (25)

with boundary conditions,

T1(R1) = 0, T ′1(R2) = 0. (26)

Proof: See Proof of Theorem 1.

Next, we describe how to estimate T1(y) using Langevin dynam-
ics simulations. The overdamped version of the Langevin equa-
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tion in an isotropic setting is given by27,

dri =−
1
ν

∂φ

∂ ri
dt +

√
2kBTdt

ν
ξi, (27)

where i represents two perpendicular directions of the motion. ν

is the translational drag coefficient of a circular inclusion which
is calculated using the Saffman-Delbrck model,

ν =
4πηm

log(2ε−1)− γ
, (28)

where ηm = 15.3×10−9 Pa · s ·m is the membrane viscosity (2D),
ηw = 8.5× 10−4 Pa · s is the bulk viscosity of water (3D), ` = 2.5
nm is the radius of the circular cross section of the inclusion,
ε = 2ηw`/ηm and γ ≈ 0.577 is Euler’s constant35. Then we use
the Einstein relation D = kBT/ν to compute the diffusion coeffi-
cient D. For more details we refer the readers to27. The drag
and diffusion coefficient are both given in Table 1. We have ne-
glected rotational diffusion here because it is shown in27 that it
does not play a major role in determining the first passage time.
ξi ∼N (0,1), a normally distributed random variable with mean
0 and variance 1, represents the stochastic force along direction
i. We initially put the moving particle somewhere at r = y, and
choose a time step dt that ensures convergence of the Lagenvin
dynamics simulation. Then, for each time step dt, we perform
the calculation in Eq (27), updating the position of the moving
inclusion. We record the time at which the moving particle hits
the absorbing wall at R1. We run 8000 simulations and then take
an average to estimate the first passage time. For more details
the readers are referred to27. Fig 5(a) and Fig 9(a) show that the
φ(r) for hexagon and star inclusions can be regarded as nearly
isotropic. For these we use Eq (25) to numerically solve for the
first passage time and compare it with the results obtained from
the Langevin simulations. Since inclusions have non-zero size and
our computations of the interaction energy φ(r) are not mean-
ingful if the distance between their boundaries (not centers) is
comparable to the size of a lipid headgroup (which is 1nm), so
we choose R1 = 9 nm for isotropic inclusions (hexagon, star) and
R1 = 11 nm for anistropic inclusion (rod) in our first passage time
calculations.
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Fig. 10 The first passage time for two hexagon inclusions is computed
using (a) Langevin dynamics simulations in Eq (27), (b) ODE in Eq (25)
under three applied tensions 0.1pN·nm−1, 1pN·nm−1, 10pN·nm−1.

Fig 10 shows that the first passage time for hexagonal inclusion
derived from the two methods are in good agreement. As the ap-
plied tension increases, the first passage time is reduced at most
r that are not close to R1. At first glance this might seem counter-
intuitive because from Fig 5(c) we know that at small separations
(close to R1) the attraction force becomes weaker as applied ten-
sion increases. However, there is a stronger repulsive force at
around r = 9−10nm under large applied tension which slows the
motion of the moving particle from a large starting separation.
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Fig. 11 The first passage time for two star inclusions is computed by (a)
Langevin dynamics simulations in Eq (27), (b) ODE in Eq (25) under
three applied tensions 0.1pN·nm−1, 1pN·nm−1, 10pN·nm−1.

The first passage time computed by the two methods is also in
good agreement when the inclusions are star shaped. The order
of the first passage time is the same as the hexagonal inclusions
and similar arguments for the shape of the curves can be made
here.
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Fig. 12 The first passage time for hexagon inclusions with electrostatic
potential φ = 50

r estimated by Langevin equation Eq (27) with time step
dt = 10−6 (orange), with time step dt = 10−7 (green), by ODE Eq (25)
(blue) under applied tension 1pN·nm−1. The purple curve is solved from
Eq (25) by setting φ = 0 as a comparison.

The first passage times in all the above computations are dom-
inated by the Brownian motion because the membrane thickness
mediated interactions play a significant role only for small sepa-
rations y. To validate our methods for stronger and longer range

interactions between inclusions we choose φ = 50
r to mimic elec-

trostatic interactions between point charges and use Eq (27) and
Eq (25) to compute the first passage times. The time step used
in all previous Langevin simulations is dt = 10−6 s. However, we
did a small number of Langevin simulations with dt = 10−7 to
validate our results. From Fig 12 we see that as dt decreases
to 10−7 in Eq (27) the first passage time computed by Langevin
simulations (green curves) converges to the one solved from the
ODE in Eq (25). The purple curve in Fig 12 is derived by setting
φ = 0 in Eq (27) and Eq (25) for the purpose of comparison. It is
clear that the repulsive electrostatic force slows down the kinet-
ics of coalescence of the moving particle. These results show that
our methods are also applicable in scenarios where deterministic
forces play an important role in the interactions of the inclusions.

4 First passage time for anisotropic inclusions under
mixed boundary condition

For two non-circular inclusions, the corresponding Fokker-Planck
equation for the probability density p is a partial differential equa-
tion of parabolic type27,

∂ p
∂ t

=
∂

∂xi

[
ν
−1
i j

∂φ

∂x j
p
]
+

∂ 2

∂xi∂x j

[
Di j p

]

=
1
νa

(
∂ 2φ

∂x2
1

p+
∂φ

∂x1

∂ p
∂x1

)
+

1
νb

(
∂ 2φ

∂x2
2

p+
∂φ

∂x2

∂ p
∂x2

)

+Da
∂ 2 p
∂x2

1
+Db

∂ 2 p
∂x2

2
. (29)

Accordingly, we need to redefine the first passage time in Eq (23)
which is now given by,

T1(y,α) =
∫

∞

0
f (y,α, t)tdt =−

∫
∞

0

∫ R2

R1

∫ 2π

0

∂ p(r,θ , t|y,α)

∂ t
rdrdθ tdt

=
∫ R2

R1

∫ 2π

0

∫
∞

0
p(r,θ , t|y,α)dtdθrdr

=
∫ R2

R1

∫ 2π

0
q1(r,θ |y,α)dθrdr, (30)

where t p(r,θ , t|y,α)→ 0 as t→∞ is implemented in the first equa-
tion of the second line and q1 is defined by,

q1(r,θ |y,α) =
∫

∞

0
p(r,θ , t|y,α)dt. (31)

Theorem 2: The PDE for T1(y,α) with a reflecting wall at the
outer boundary and an absorbing wall at the inner boundary is
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given below,(
Da cos2

α +Db sin2
α

)
∂ 2T1

∂y2 +
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cos2 α

y2

)
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sin2α

y2 +
1
νa

 sin2α
∂φ

∂y

2y
−

sin2
α

∂φ

∂α

y2



− 1
νb

 sin2α
∂φ

∂y

2y
+

cos2 α
∂φ

∂α

y2

 ∂T1

∂α
+1 = 0, (32)

with boundary conditions

T1(R1,α) = 0,
∂T1

∂y
(R2,α) = 0,T1(y,0) = T1(y,2π). (33)

Proof: See Proof of Theorem 2.

The overdamped Langevin equation in an anisotropic setting is
given by27,

dri =−ν
−1
i j

∂φ

∂ r j
dt +

√
2kBTdt

νii
ξi (no sum in the second term), (34)

where i represents two perpendicular directions of the motion
and νi j and ξi are the drag coefficient tensor and random force
tensor. Note that for a rod shaped inclusion the drag coefficient
along the longitudinal direction is smaller than that perpendicular
to it. The details for how to compute these drag coefficients can
be found in27. Fig 7(a) shows that the interaction energy φ(r)
for rod shaped inclusions depends on θ (it is anisotropic). In the
Langevin dynamics calculations, for each initial position y we use
Eq (34) to run 8000 simulations with a reflecting wall at R2 and
an absorbing wall at R1 for four θ = 0◦,30◦,60◦,90◦ and then take
an average (for each θ separately) to estimate the first passage
time. We also use Eq (32) to numerically solve the first passage
time and compare the results derived from the two methods for
F = 0.1,1,10 pN/nm in Fig 13, Fig 14 and Fig 15, respectively.
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Fig. 13 The first passage time for two rod inclusions computed from (a)
Langevin dynamics using Eq (34), (b) PDE using Eq (32) under applied
tension 0.1pN·nm−1.

The good agreement between the first passage time solved from
the PDE in Eq (32) and estimated by Langevin equation once
again shows that our methods work well. As shown in Fig 13,
as the initial angle increases from 0◦ to 90◦, the first passage
time decreases at small separations, but increases at large sepa-
rations. This can be explained by the fact that stronger attractive
force near R1 pulls the moving particle to be absorbed faster from
smaller initial separations while stronger repulsive force around
12− 16 nm leads to a larger first passage time when the particle
is initially located at a large distance.
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Fig. 14 The first passage time for two rod inclusions computed from (a)
Langevin dynamics using Eq (34), (b) PDE using Eq (32) under applied
tension 1pN·nm−1.

The result of the first passage time under 1pN/nm applied ten-
sion in Fig 14 is similar to the one under 0.1pN/nm applied ten-
sion.
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Fig. 15 The first passage time for two rod inclusions computed from (a)
Langevin dynamics using Eq (34), (b) PDE using Eq (32) under applied
tension 10pN·nm−1.

Compared to the results under 0.1,1pN·nm−1 applied tension,
the first passage time is reduced under 10pN·nm−1 applied ten-
sion. The order of magnitude of the first passage time under all
three tensions is similar.

5 Discussion
This paper has two major parts. In the first part we use a finite
difference method to compute the interaction energy of two in-
clusions due to membrane thickness deformations. In the second
part we use the computed energy landscape to solve first pas-
sage time problems. Our method to compute energies is different
from the analytical method in7,8 which uses perturbation theory
to study thickness mediated interactions between two anisotropic
inclusions; we implement an approach to compute the energy us-
ing the divergence theorem which is more general and can deal
with strongly anisotropic inclusions. The advantage of analytical
methods in both7,8 and this work is that they can compute the
energy accurately at small applied tension F if enough terms in
the Fourier-Bessel series are used. However, it is time consum-
ing to compute the coefficients in the Fourier-Bessel series and
this becomes computationally infeasible when the inclusions are
strongly anisotropic. On the other hand, our numerical method is
able to handle arbitrary values of F and can efficiently compute
the interaction energy of two inclusions for different separations
r given a fixed set of parameters (Kb,Kt ,a etc.) which are stored
in a pre-calculated stiffness matrix.
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In the second part of the paper we compute the time to coa-
lescence of two inclusions of various shapes as a function of the
distance separating them. We use both Langevin dynamics and a
PDE to arrive at our estimates. For two inclusions separated by
about 125 nm we predict that the time to coalescence is hundreds
of milliseconds irrespective of the shape of the inclusion. The time
to coalescence with only membrane bending interactions was of
similar magnitude as shown in27. The order of magnitude of the
time to coalescence is the same even though the attractive force
due to membrane thickness interactions is stronger than that due
to membrane bending interactions in27 at small separations. The
reason is that even with membrane thickness interactions the at-
tractive force decays to zero quickly and Brownian motion dom-
inates the kinetics of the moving particle in most regions, just
as in27. Therefore, at small separations the first passage time
with thickness mediated interactions is smaller than that with out-
of-plane bending interactions, but is not very different at large
separations. The time to coalescence at large separations can be
changed from that dictated by Brownian motion alone if longer
range interactions (for instance, due to electrostatics) are taken
into account as shown in Fig 12.

6 Conclusion
In this paper we have analyzed the temporal self-assembly of
inclusions due to interactions mediated by membrane thickness
variations. It is shown that the results from Langevin dynamics
simulations agree well with those obtained from a PDE for the
first passage time. The approach based on the PDE is much faster
than the Langevin dynamics simulation and could open new ways
to study the process of self-assembly. This is a step beyond earlier
studies which focused on the energy landscape of clusters of pro-
teins, but did not look into kinetics. Some papers based on molec-
ular simulation did consider the temporal process, but to the best
of our knowledge most did not reach the time scales calculated in
this paper. Phase-field methods can compute the evolution of par-
ticle concentrations on a membrane, but it is beyond their scope
to track the motion of discrete particles as we have done here. We
close this paper by mentioning some effects that we did not con-
sider. First, hydrodynamic interactions between inclusions (based
on the Oseen tensor) were shown to speed up self-assembly in27

and they are expected to have a similar effect here. Second, the
temporal behavior of a cluster of inclusions are not studied in this
paper due to limitations of computational power, but we expect
the overall behavior to be similar to the clusters studied in our
earlier work27. Third, only a limited set of inclusion shapes are
considered in this paper, but it is found that the time to coales-
cence does not depend strongly on shape. We leave it to future
work to add these refinements and extend this type of analysis to
important functional proteins such as ion-channels8.
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A Shape functions for star and rod inclusion

The shape function for star shaped inclusion of side ` is given by:

R1 =



√
3`
2

1
sin(θ1 +

π

6 )
, 0◦ < θ1 ≤ 30◦,

√
3`
2

1
cos(θ1)

, 30◦ < θ1 ≤ 60◦,

√
3`
2

1
sin(θ1− π

6 )
, 60◦ < θ1 ≤ 90◦,

√
3`
2

1
cos(θ1− π

3 )
, 90◦ < θ1 ≤ 120◦,

√
3`
2

1
sin(θ1− π

2 )
, 120◦ < θ1 ≤ 150◦,

√
3`
2

1
cos(θ1− 2π

3 )
, 150◦ < θ1 ≤ 180◦,

√
3`
2

1
sin(θ1− 5π

6 )
, 180◦ < θ1 ≤ 210◦,

√
3`
2

1
cos(θ1−π)

, 210◦ < θ1 ≤ 240◦,

√
3`
2

1
sin(θ1− 7π

6 )
, 240◦ < θ1 ≤ 270◦,

√
3`
2

1
cos(θ1− 4π

3 )
, 270◦ < θ1 ≤ 300◦,

√
3`
2

1
sin(θ1− 3π

2 )
, 300◦ < θ1 ≤ 330◦,

√
3`
2

1
cos(θ1− 5π

3 )
, 330◦ < θ1 ≤ 360◦,

(35)

The shape function for rod inclusion with major axis length 2`
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and minor axis length
√

3`
2 is given by:

R1 =



√
3`

1
sin(θ1 +

π

3 )
, 0◦ < θ1 ≤ 30◦,

√
3`
2

1
sin(θ1)

, 30◦ < θ1 ≤ 150◦,

√
3`

1
sin(θ1− π

3 )
, 150◦ < θ1 ≤ 180◦,

√
3`

1
sin(θ1− 2π

3 )
, 180◦ < θ1 ≤ 210◦,

√
3`
2

1
sin(θ1−π)

, 210◦ < θ1 ≤ 330◦,

√
3`

1
sin(θ1− 4π

3 )
, 330◦ < θ1 ≤ 360◦,

(36)

B Proof of Theorem 1

Following techniques in27,33,36, we integrate Eq (19) for P over
all t ≥ 0,∫

∞

0

∂P
∂ t

dt =
∂

∂ r

[
1
ν

∂φ

∂ r
g1 +D

∂g1

∂ r

]
+

1
r

[
1
ν

∂φ

∂ r
g1 +D

∂g1

∂ r

]
(37)

−1
r

δ (r− y) = Lrg1(r,y), (38)

where 1
r δ (r−y) is the initial condition and the second order linear

differential operator Lr : D(Lr) ⊂ C2([R1,R2]) → C2([R1,R2]) is
defined as,

Lr =
∂

∂ r

[
1
ν

∂φ

∂ r
+D

∂

∂ r

]
+

1
r

[
1
ν

∂φ

∂ r
+D

∂

∂ r

]
, (39)

with domain

D(Lr) =
{

v1 ∈C2([R1,R2]) |v1(R1) = 0,

kBTv′1(R2)+φ ′(R2)v1(R2) = 0
}
. (40)

Using the method in27, we can get the adjoint operator L ∗
r which

satisfies 〈v2,Lrv1〉= 〈L ∗
r v2,v1〉 , ∀v1 ∈D(Lr),v2 ∈D(L ∗

r ),

L ∗
r =− 1

ν

∂φ

∂ r
∂

∂ r
+D

∂ 2

∂ r2 +
1
ν

∂φ

∂ r
1
r
−D

∂
1
r

∂ r
. (41)

with domain

D(L ∗
r ) =

{
v2 ∈C2([R1,R2])

∣∣∣∣v2(R1) = 0,
v2(R2)

R2
− v′2(R2) = 0

}
, (42)

and the inner product is defined as,

〈v1,v2〉=
∫ R2

R1

v1v2dr, ∀v1 ∈D(Lr),v2 ∈D(L ∗
r ). (43)

Proofs for the existence of the solutions of second order inho-
mogeneous linear ordinary differential equation are well known.
Hence, we can find a u0 ∈ C2([R1,R2]) s.t. L ∗

r u0(r) = r. Then, it

follows from Eq (23) that,

T1(y) =
∫ R2

R1

(L ∗
r u0(r))g1(r,y)dr =

∫ R2

R1

u0(r)(Lrg1(r,y))dr

= −
∫ R2

R1

u0(r)
1
r

δ (r− y)dr =−u0(y)
1
y
, (44)

=⇒Ly
∗yT1(y) =−y. (45)

Using Eq (41), we can derive Eq (25), a second order ODE for
T1(y). The boundary condition of T1(y) at the absorbing wall is
straightforward33,36: T1(R1) = 0. For the boundary condition at
the reflecting wall, we appeal to the Langevin equation in Eq (27).
If the particle sits at position R2, decomposing the overdamped
Langevin equation27 into radial direction and angular direction,
we have,

dy = − 1
ν

∂φ

∂y
dt +

√
2kBTdt

ν
ξy, (46)

dθ = − 1
ν

1
y

∂φ

∂θ
dt +

1
y

√
2kBTdt

ν
ξθ . (47)

After time dt, the particle can only move to R2 +dy(dy < 0) along
the radial direction because of the reflecting wall at R2. The mo-
tion along the angular direction can be neglected because T1(y)
does not have dependence on angular direction. Note that dy
is a random variable depending on ξy and dt with constraint
R1 ≤ R2 +dy≤ R2. Then, we can write

T1(R2) = dt +C1(dt)
∫ 0

C2(dt)
T1(R2 +dy)G(ξy)dξy

= dt +C1(dt)
∫ 0

C2(dt)

(
T1(R2)+T ′1(R2 +ηdy)dy

)
G(ξy)dξy

= dt +T1(R2)

+C1(dt)
∫ 0

C2(dt)
(T ′1(R2)+ηdy T ′′1 (R2 +βdy))dyG(ξy)dξy

= dt +T1(R2)−
1
ν

∂φ

∂y
T ′1(R2)dt (48)

+C1(dt)
∫ 0

C2(dt)
T ′1(R2)

√
2kBTdt

ν
ξyG(ξy)dξy +C1(dt)

∫ 0

C2(dt)

ηdy

dy
T ′′1 (R2 +βdy)

(
2kBTdt

ν
ξ

2
y +o(dt)

)
G(ξy)dξy

where we used mean value theorem twice to reach to Eq (49)
with R2+dy < R2+ηdy < R2+βdy < R2. Note that βdy depends on
ηdy and thus depends on dy. C2(dt) is the value to satisfy R2+dy=
R1 for given dt and ξy. C1(dt) is the scaling factor such that the
integral of probability density equals 1: C1(dt)

∫ 0
C2(dt) G(ξy)dξy = 1

where G(ξy) =
e−ξ 2

y /2
√

2π
. After some re-arrangements and dividing by
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dt on both sides,

−1 =− 1
ν

∂φ

∂y
T ′1(R2)+T ′1(R2)

√
2kBT
νdt

C1(dt)
∫ 0

C2(dt)
ξyG(ξy)dξy

+C1(dt)
∫ 0

C2(dt)

ηdy

dy
T ′′1 (R2 +βdy)

(
2kBT

ν
ξ

2
y +o(1)

)
G(ξy)dξy.

(49)

As dt → 0, C1 → 2, C2 → −∞. Note that
ηdy
dy < 1 and we have

|T ′′1 (R2 +βdy)| < M for some M because T1 is C2. Then if we take
t→ ∞ the third term in RHS of Eq (49) can be bounded as,

lim
t→∞

∣∣∣∣C1(dt)
∫ 0

C2(dt)

ηdy

dy
T ′′1 (R2 +βdy)

(
2kBT

ν
ξ

2
y +o(1)

)
G(ξy)dξy

∣∣∣∣
≤ lim

t→∞
C1(dt)

∫ 0

−∞

∣∣∣∣ηdy

dy
T ′′1 (R2 +βdy)

(
2kBT

ν
ξ

2
y +o(1)

)
G(ξy)

∣∣∣∣dξy

≤ 2M lim
t→∞

C1(dt)
∫ 0

−∞

∣∣∣∣(2kBT
ν

ξ
2
y

)
G(ξy)

∣∣∣∣dξy

≤ 4M
∫ 0

−∞

∣∣∣∣(2kBT
ν

ξ
2
y

)
G(ξy)

∣∣∣∣dξy

< ∞. (50)

The first term in the RHS of Eq (49) is independent of dt and
thus is finite as t → ∞. For the second term in RHS of Eq (49),

limt→∞

∣∣∣C1(dt)
∫ 0
C2(dt) ξyG(ξy)dξy

∣∣∣ < ∞, but
√

2kBT
νdt → ∞ as dt → 0.

Since the LHS of Eq (49) is finite, we must have T ′1(R2) = 0.

C Proof of Theorem 2
We transform Eq (29) into polar coordinates,

∂ p
∂ t

= Fr,θ p = ∇ ·S, (51)

where the elliptic differential operator Fr,θ : D(Fr,θ ) ⊂
C2([R1,R2]× [0,2π])→C2([R1,R2]× [0,2π]) is in divergence form,
with domain

D(Fr,θ ) =
{

v1 ∈C2([R1,R2]× [0,2π])|v1(R1,θ) = 0,

∂S(R2,θ)

∂ r
= 0, v1(r,0) = v1(r,2π)

}
, (52)

and the inner product is defined as,

〈v1,v2〉=
∫ R2

R1

∫ 2π

0
v1v2drdθ , ∀v1,v2 ∈D(Fr,θ ). (53)

The expression of Fr,θ can be found in27 and we ignore the
expression of S for brevity. Then, it’s useful to derive F ∗r,θ
(see27), the adjoint operator of Fr,θ that satisfies

〈
v1,Fr,θ v2

〉
=〈

F ∗r,θ v1,v2

〉
, ∀v1 ∈D(Fr,θ ), v2 ∈D(F ∗r,θ ).

Next, we integrate Eq (51) for p over t ≥ 0 and get,

−1
r

δ (r− y)δ (θ −α) = Fr,θ q1. (54)

F ∗r,θ is uniformly elliptic with certain boundary conditions the

solution of which has been discussed in37. Then, we can find
a u0 ∈ C2([R1,R2]× [0,2π]) s.t. F ∗r,θ u0(r,θ) = r. It follows from
Eq (30) that,

T1(y,α) =
∫ R2

R1

∫ 2π

0
q1

(
F ∗r,θ u0(r,θ)

)
dθdr

=
∫ R2

R1

∫ 2π

0
u0(r,θ)Fr,θ q1dθdr

= −
∫ R2

R1

∫ 2π

0
u0(r,θ)

1
r

δ (r− y)δ (θ −α)dθdr

= −1
y

u0(y,α), (55)

=⇒F ∗y,α yT1(y,α) =−y. (56)

Then, we can derive a second order PDE for T1(y) (Eq (32)). For
boundary conditions, we just need to worry about the reflecting
wall. For anisotropic case, dy < 0. dθ could be either positive or
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negative. Similarly we can write,

T (R2,θ) = dt +C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

T (R2 +dy,θ +dθ)G(ξθ )dξθ G(ξy)dξy

= dt +C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[T (R2 +dy,θ)+

Tθ (R2 +dy,θ +η
∗
dy,dθ

)dθ

]
G(ξθ )dξθ G(ξy)dξy

= dt +C1(dt)
∫ 0

C2(dt)

[
T (R2,θ)+Ty(R2 +ηdy ,θ)dy

]
G(ξy)dξy+

C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[
Tθ (R2 +dy,θ +η

∗
dy,dθ

)dθ

]
G(ξθ )dξθ G(ξy)dξy

= dt +C1(dt)
∫ 0

C2(dt)
(Ty(R2,θ)+ηdy Tyy(R2 +βdy ,θ))dyG(ξy)dξy

+C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[Tθ (R2 +dy,θ)dθ ]G(ξθ )dξθ G(ξy)dξy

+C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[
Tθθ (R2 +dy,θ +β

∗
dy,dθ

)(dθ)2
η∗dy,dθ

dθ

]

G(ξθ )dξθ G(ξy)dξy +T (R2,θ)

= dt +T (R2,θ)+C1(dt)
∫ 0

C2(dt)

ηdy

dy
Tyy(R2 +βdy ,θ)(dy)2G(ξy)dξy

− 1
ν

∂φ

∂y
Ty(R2,θ)dt +C1(dt)

∫ 0

C2(dt)
Ty(R2,θ)

√
2kBTdt

ν
ξyG(ξy)dξy

−C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[
Tθ (R2 +dy,θ)

1
ν

1
R2

∂φ

∂θ
dt
]

G(ξθ )dξθ

G(ξy)dξy +C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[
Tθθ (R2 +dy,θ +β

∗
dy,dθ

)

(
2kBTdt

R2
2ν

ξ
2
θ +o(dt)

)
η∗dy,dθ

dθ

]
G(ξθ )dξθ G(ξy)dξy

+C1(dt)
∫ 0

C2(dt)
Tθ (R2 +dy,θ)

1
R2

√
2kBTdt

ν∫
∞

−∞

ξθ G(ξθ )dξθ G(ξy)dξy, (57)

where in the process to Eq (57) we used mean value theorem
three times with θ < θ + β ∗dy,dθ

< θ + η∗dy,dθ
< θ + dθ if dθ > 0

and θ + dθ < θ + η∗dy,dθ
< θ + β ∗dy,dθ

< θ if dθ < 0. After some

re-arrangements and dividing by dt on both sides, we get

−1 =C1(dt)
∫ 0

C2(dt)

ηdy

dy
Tyy(R2 +βdy ,θ)

(
2kBT

ν
ξ

2
y +o(1)

)
G(ξy)dξy

+C1(dt)
∫ 0

C2(dt)
Ty(R2,θ)

√
2kBT
νdt

ξyG(ξy)dξy−
1
ν

∂φ

∂y
Ty(R2,θ)

−C1(dt)
∫ 0

C2(dt)

[
Tθ (R2 +dy,θ)

1
ν

1
R2

∂φ

∂θ

]
G(ξy)dξy

+C1(dt)
∫ 0

C2(dt)

∫
∞

−∞

[
Tθθ (R2 +dy,θ +β

∗
dy,dθ

)

(
2kBT
νR2

2
ξ

2
θ +o(1)

)

η∗dy,dθ

dθ

]
G(ξθ )dξθ G(ξy)dξy +C1(dt)

∫ 0

C2(dt)
Tθ (R2 +dy,θ)

1
R2

√
2kBT
νdt

∫
∞

−∞

ξθ G(ξθ )dξθ G(ξy)dξy. (58)

Using the continuity of Tθ , Tyy and Tθθ and the fact that
ηdy
dy ,

η∗dy ,dθ

dθ
< 1, it is clear that the 1st, 3rd, 4th,5th terms on RHS

of Eq (58) are finite as dt → 0. The 6th term is vanishing due
to
∫

∞

−∞
ξθ G(ξθ )dξθ = 0. Since the LHS of Eq (58) is finite also,

the 2nd term on RHS of Eq (58) must also be finite as dt → 0.

Accordingly, Ty(R2,θ) = 0 follows from limdt→∞

√
2kBT
νdt → ∞.
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