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Dimensional Ellipsoidal Particle Assemblies 
Veronica Grebe, Mingzhu Liu and Marcus Weck *

Current developments in colloidal science include the assembly of anisotropic colloids with broad geometric diversity. As 
the complexity of particle assemblies increases, the need for ubiquitous algorithms that quantitatively analyze images of the 
assemblies to deliver key information such as quantification of crystal structures becomes more urgent. This contribution 
describes algorithms capable of image analysis for classifying colloidal structures based on abstracted interparticle 
relationship information and quantitatively analyzing the abundance of each structure in mixed pattern assemblies. The 
algorithm parameters can be adjusted, allowing for the algorithms to be adapted for different image analyses. Three 
different ellipsoidal particle assembly images are presented to demonstrate the effectiveness of the algorithms: a one-
dimensional (1D) particle chain assembly and two two-dimensional (2D) polymorphic crystals each consisting of assemblies 
of two distinct plane symmetry groups. Angle relationships between neighbouring particles are calculated and neighbour 
counts of each particle are determined. Combining these two parameters as rules for classification criteria allows for the 
labeling and quantification of each particle into a defined symmetry class within an assembly. The algorithms provide a 
labelled image comprising classification results and particle counts of each defined class. For multiple images or individual 
frames from a video, the script can be looped to achieve automatic processing. The yielded classification data allows for 
more in-depth image analysis of mixed pattern particle assemblies. We envision that these algorithms will have utility in 
quantitative analysis of images comprised of elliposoidal colloidal materials, nanoparticles, or biological matter.

Introduction
Advances in colloidal shapes and assembly strategies have 
resulted in the formation of crystal domains beyond that of the 
thermodynamically preferred lattices formed by isotropic 
colloidal spheres.1-5 Anisotropic particle shapes, such as cubes6, 

7 and ellipsoids,8-10 as well as the introduction of directional 
bonding11-13 can facilitate the formation of complex particle 
assemblies.14-19 Characterization of particle lattice structures 
necessitates quantifying the translational (particle positions) 
and bond-orientational order (neighbour orientation 
relationships) of the particles.10, 20-24

Many tools and methods exist to locate and characterize 
particles.25-45 In the colloidal field, spherical particles are 
typically located,46, 47 then analysed using various methods to 
determine structure.48 For example, applying a distance 
threshold to calculated interparticle distances allows for the 
summation of neighbours about particle centres.49 The 
construction of Voronoi diagrams using particle centres as seed 
points allows for the determination of n-fold coordination.21, 50-

52 The Voronoi cell properties, such as cell area and side length, 
can be used as structure determining metrics.53-56 Local bond 

orientational order parameters57 quantify local crystallinity in 
particle assemblies by analysing particle neighbours arranged 
around the origin particle with particular orientation.10, 14, 23, 58-

64 Fast Fourier transform (FFT) reveals symmetry and periodicity 
in images.40, 65-67 These methods, however, do not fully address 
the need for classification and quantification of anisotropic 
particle assemblies consisting of mixed symmetries and 
boundaries, where transition between symmetries occur.55, 68, 69 
Recent work has quantitatively investigated mixed pattern 
spherical particle assemblies by using a combination of 
methods.53, 55, 70 There is additional complexity introduced, 
however, when quantifying order in particle assemblies 
comprised of anisotropic particles, because individual particle 
orientation must be considered.5, 41, 45, 67, 71-76 
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We have recently reported the synthesis of ellipsoids and 
their assembly via depletion interactions, where changing the 
particle aspect ratio resulted in particle assembly into various, 
mixed symmetry elements.5 In this contribution, we describe 
image analysis algorithms generalized to quantify order for 
anisotropic particles within crystals and assemblies that solve 
for both the positional order and the orientation angle 
relationships of the particle major axes. Elliptical particles are 
used as a model to classify 1D particle chains and 2D particle 
lattices, that contain a mixture of two unique plane symmetry 
groups pgg and cmm, as well as p4m and cmm, which differ in 
rotational order and/or packing density, resulting in intricate 
mixed pattern assemblies. The particles are classified into 
different symmetry classes, and the percent of particles in each 
structure are determined to elucidate both the lattice 
crystallization process and the regioselective interactions of 
biphasic particles.5 

Our algorithms circumvent complications detecting 
symmetry in mixed patterns where periodicity is low by creating 
classification rules based on abstracted particle properties and 
the properties of the nearest neighbours of each particle. Our 
strategy is robust, permitting quantitation of thousands of 
particles simultaneously in minutes. The input parameters 
require simple arithmetic that can be tuned for different 
assembly geometries. Using a MATLAB LiveScript‡, user 
interface controls are used to display intermediate results and 
modify inputs easily. The classification rules can be reformed to 
only label specific regions of particles depending on the desired 
analysis, such as seed particles where the number of neighbours 
of the same class is small, or large crystalline regions where the 
number of neighbours of the same class is larger. Given both 
the sizable number of particles captured in a single microscope 
image and the structural complexity of the unique polymorphs, 
we address the need to develop algorithms able to recognize, 
characterize, and quantify the anisotropic particles constituting 
these complex structures.

The analysis diagram presented is a customizable and 
versatile method of studying structures comprised of high 
aspect ratio anisotropic particles such as ellipsoids, rods, and 
other shapes with long major axes. Our algorithms are simple to 
execute and geometry-based, precluding the need for complex 
mathematical calculations or machine learning to create 
classifiers. The analysis can be paired with particle tracking as a 
function of time to investigate colloidal crystal growth 
mechanisms and dynamics. We envision that the particle 
classification approach described herein will allow for adaptable 
and multi-faceted analyses of mixed anisotropic colloidal arrays, 
especially for the quantification and detection of intermixed 
particles of different plane symmetry groups that form 
boundaries or colloidal polymorphic crystals.

Results and discussion
Our anisotropic particles are elliptical with sizes of about 2 μm 
in length and 1 μm in width. The assemblies they form are a 
function of the particle aspect ratio.5 We analyse three optical 
micrographs constituting particles of aspect ratio 1.89, 1.49, 

and 1.35 respectively: a 1D colloidal chain assembly 
(Supplementary Image 1), a 2D assembly of particles in both pgg 
and cmm plane symmetry groups (Supplementary Image 2) and 
a 2D assembly of particles in both the p4m and cmm plane 
symmetry groups (Supplementary Image 3). 

An overview of the algorithm workflow divides the image 
analysis process into six steps (Fig. 1). For both the 1D and 2D 
assembly images, the first two steps - image segmentation and 
the determination of particle properties - are functionally 
identical. Image segmentation is a critical part of the image 
analysis, in which the original optical micrograph is separated 
into a particle region and a background region. The direct 
exploration of traditional particle image analysis methods that 
typically involve locating the particles by methods that analyse 
spherical shapes46 may cause mischaracterization of anisotropic 
particle centres without further image pre-processing.45  Thus, 
we employ a different approach of image segmentation and 
particle location where we ultimately perform blob detection 

Fig. 1 Algorithm diagram: the algorithm can be broken down into six unique steps: (1) 
The original optical micrograph is subject to a series of filtering and thresholding to 
binarize the image into particles vs. background. (2) The properties of each individual 
particle are abstracted. The interparticle properties, including difference in orientation 
angle and distance, are calculated. After applying thresholds on the interparticle 
properties, a colourmap is generated to aid in determining the amount of parallel and 
perpendicular neighbours to be used as classification rules. (3) Initial classification rules 
are created, and the particles are colour labelled into the initial classes. (4) Classification 
requirements are modified using particle classes as additional criteria to more 
accurately classify the particles. (5) The particles are reclassified using the updated 
requirements. Steps 4 and 5 are then repeated until the classification rules classify the 
particles as desired. (6) A bar graph and table depicting the quantification of the particle 
classes is generated as well as a table of script parameters. 
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on the particles, first filtering the particles based on the local 
standard deviation (Fig. S1).

When considering the particle as a whole instead of two 
attached spheres, it is apparent that the colour of the particle 
delineates the particle from the background. Typically, a 
particle has a high internal contrast consisting of bright centre 
region(s) that become darker toward the edges, while the 
background is more uniformly shaded. Our strategy targets this 
rapid change in intensity, and entails subjecting the image to a 
threshold based on local standard deviation of the image to 
initially remove the particle from the background (Fig. S1a). This 
process effectively excises the particle shapes from the original 
image, as the local standard deviation of each particle is high 
compared to that of the background. This approach removes 
the image background independent of particle shape, given that 
the rapid change in intensity holds.

The local standard deviation of the particle centres, 
however, can fall below the threshold if the centre region(s) of 
the particle is smooth and has a small local standard deviation. 
Thus, the applied threshold can unintentionally remove a 
portions of the particles. A 2-D Gaussian filter is applied to the 
image to reduce the noise and blur particle edges, effectively 
removing the holes (Fig. S1b). The intensity values of the image 
are then adjusted so the particles are remapped to high 
intensity (Fig. S1c). This allows for an intensity threshold to be 
applied (Fig. S1d), which functionally converts the image to 
binary – retained particles and background. Unwanted image 
regions, such as particle aggregates or debris, are removed by 
filtering the image based on the size of each white region (Fig. 
S1e). The particles can be further filtered based on an 
eccentricity threshold (Fig. S1f). The final result of this image 
segmentation process is also a binary image, where the 
remaining particles of interest are the connected white regions, 
and the background is black. To verify that the image is 
segmented properly, the binary image can be cast as a mask 
over the original image (Fig. S2).

For each algorithm, particle properties are found from the 
binary image using the MATLAB function regionprops (Fig. 2). 
This function treats all connected white regions as blobs and 
returns the region properties, namely the centroid coordinates 
and the orientation of the major axis. Determining the particle 
centroid allows each particle to be treated as an individual point 
on a Cartesian plane. The orientation angle of major axis of each 
particle with respect to the x-axis (θo) denotes the tilt of the 
particles (Fig. 2a). These two properties are the particle 
properties that will be used to determine neighbouring particles 
(NP) of interest. First, the distance between each particle to all 
other particles is calculated using the Euclidean distance 
formula, where the centroids of particle i and particle j are 
inputs for calculating the distance of between particles i and j, 
d(i,j), where i and j span the total number of particles (Fig. 2b). A 
manually adjustable threshold distance between NP, D, is then 
determined. An image with labelled particle numbers is created, 
and two typical neighbouring particles of interest, particle i and 
particle j are manually found. By inputting the particle number 
(i and j) of these two particles, the interparticle distance, d(i,j) is 
then displayed, and a suggested range for D is calculated as d(i,j)  

< D < 2d(i,j). This range is used as a threshold distance for NP so 
D is large enough to capture all NP, but not too large as to count 
non-adjacent particles as NP. This approach was chosen 
because d(i,j) was similar for all NP across our images regardless 

of aspect ratio and pattern characteristics, and thus D is 
constant as a global threshold per image. Additionally, this 
approach allows for the use of an additional lower bound of 
interparticle distances to be introduced for other kinds of 
particle image analysis. The difference in orientation angle (θ(i,j)) 
is then found between NP (Fig. 2c) by subtracting the two 
orientation angles of each adjacent particle i and j. When used 
in conjunction, NP that have a particular θ value (which is taken 
as an input of range θlow < θ(i,j) < θhigh) are determined. When 
both the angle and the distance criteria (Fig. 2d) are met, the NP 
are considered as accepted neighbours (AN). At this point, all 
the individual particles are effectively located and can be 
summated to obtain the total particle neighbour count per 
particle (n), if desired (Fig. S3).

1D Particle Classification

The 1D particle classification is similar in logic flow as the 2D
particle assembly but overall simpler: there are no boundary 
particles and only one angle relationship. Thus, there is less 
complexity in analysis, and no need for modifying the 
classification requirements using the initial classification as new 
criteria.

To consider the chains constituted of elliptical particles, NP 
must have a particular orientation angle difference that is 
required for particles to count as AN in the chain. All particles in 
the 1D elliptical chain assemblies must be oriented similarly, i.e. 
the major axes orientations are parallel, and thus θ must be 
small. For the ideal case of a straight chain, θ(i,j) = 0°. For our 
classification, a tolerance of θ(i,j) ± 15° is used as an acceptable 
range for θ(i,j) to allow for imperfections in the chain assembly. 
This range was chosen by adjusting the angle until the expected 

Fig. 2 Determination of particle properties: (a) The centroid of each particle (green) is a 
single point on the Cartesian plane. The orientation angle that each particle’s major axis 
(red) makes with the x-axis (purple) is θo (blue) is determined. (b) The interparticle 
distance d(i,j) is calculated between the  centroids of particles i and j. (c) The difference 
in orientation angle between particles i and j, θ(i,j), is determined by subtraction of the 
θo of individual particles (pink). (d) Accepted neighbouring particles are defined as those 
where the distance between centres is less than a defined distance threshold (d(i,j) < D), 
and difference in orientation angle meets of θlow < θ(i,j) < θhigh.
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classification of the AN was obtained. The overall classification 

rule defining the AN that are potential members of a chain can 
then be input as follows: 1) The particles have a small 
orientation angle difference (θ(i,j) = 0° ± 15°), 2) the particles are 
NP (d(i,j) < D) and 3) the NP meet filtering criteria, such as an 
interparticle end-to-centre distance threshold, that discount 
particles meeting the first two AN rules, but are positionally 
offset and do not visually form a chain. 

After defining all particles that meet the AN criteria, the 
chain lengths can be summated. There are three different 
potential situations for our particle chains that require different 
counting approaches. The first is particles not in a chain (chain 
length = 1), where the particles have no AN. For particles in a 
chain, there are typically two types of particles: exterior 
particles, located on either end of the chain, and interior 
particles, which are encapsulated by the two exterior particles. 
There are therefore two classification rules for counting these 
chains (Table 1): one AN denotes an exterior particle, while two 
AN denote interior particles nested between exterior particles 
(Fig. 3).77 Thus, it is possible to locate the beginning of a chain 
as an exterior particle (AN = 1), then trace the chain to any 
interior particles (AN = 2). The chain ends when another exterior 
particle is encountered (AN = 1). The span of these connected 
particles delivers the chain count. 

All parameters used to process the 1D chain assembly using 
a sample image are listed in Table S1. The quantitative results 
for the classification and chain counting of the 1D assembly are 
shown in Fig. 4. In the labelled optical micrograph, all assembled 
chains are assigned a colour representing the total length of the 
chain they are a member of, whereas singular particles are 
labelled with a black X. In total, 2195 particles were considered 
by the algorithm. The particle class with the highest count of 
891 particles (40.6 % of particles) is where chain length is 1, i.e. 
unassembled, single particles were the most populous. Of the 
particles constituting chains, the highest count is that of 2, in 
which 652 (29.7% of particles) particles comprise 326 total 
chains. The amount of n-member chains decreases directly as a 
function of n, where the smallest amount of chains occurred 
where n = 6. In this case, 30 particles (1.37% of particles) 
constituted a total of five 6-membered chains. 

Though only the quantitative data and parameters are 
output as tables, it is possible to use any of the data abstracted 
by the algorithms (i.e. centroids, AN, etc.) for further desired 
analysis. It is also possible to manipulate the tabulated data, 

depending on the desired analysis. For example, the presented 
data can be further manipulated to represent assembled chains 
only, i.e. the data for singular particles can be removed, and the 
percent of chains can be recalculated (Fig. S4).

Table 1. Classifying particle chains rules.

 

2D Particle Classification

The classification procedure for the 1D and 2D particle 
assemblies delineate for the remainder of the algorithm. To 

demonstrate how the inputs of the algorithm can be 
customized depending on the particle assemblies, two sample 

Particle Class Location Angle 
Difference

Rule

Exterior Edge Parallel AN = 1
Interior Centre Parallel AN = 2

Fig. 4 Labelled image and quantitative results of 1D particle chains: final labelled optical 
micrograph of the counted particle chains and corresponding bar graph. The chains are 
colour-coded, where the more blue-shifted the particle chain, the higher the chain count. 
A black X denotes the particle is singular. The corresponding colour-coded bar graph 
depicts the number of particles that are members of each chain class as a function of 
chain length. Scale bar, 5 μm.

Fig. 3 Classifying particle chains: particles in the chain are labelled as either interior or 
exterior particles, depending on location.
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analyses of 2D assemblies are depicted. To analyse each optical 
micrograph, we first visually inspect the image to determine 
how many potential classes the particles will fall into. We also 
predetermine approximately the values of θ for each class (for 
example, parallel particles have ideally θ(i,j) = 0°). Alternatively, 
it is possible to change the input range of θlow < θ(i,j) < θhigh in our 
algorithm to find an appropriate range.

1. pgg vs. cmm. Upon visual inspection of the original optical 
micrograph of the 2D assembly of particles with an aspect ratio 
of 1.49, we determined that particles assembled into either one 
of two symmetry groups, or lack structural order (disordered). 
To differ between these assemblies, there are two unique angle 
relationships that can differentiate the two symmetry classes: 
particles of the pgg assembly have approximately perpendicular 
particles and approximately parallel particles, where cmm 
assemblies contain approximately parallel particles. Therefore, 
two initial groups of AN are determined: parallel AN and 
perpendicular AN. For the perpendicular case, θ(i,j) = 90° ± 30° 
was chosen, where for the parallel case, θ(i,j) = 0° ± 11° was 
chosen. To demonstrate the creation of the initial classification 
rules, a small sample region of structured particles was 
manually colour-labelled to the expected particle class (Fig. 5). 
An illustration of each of the particle classes, as well as the 
perpendicular and parallel relationships between particle pairs 
in each class is shown in Fig. 5a. These particles are further 
divided into particles on the centre, edge, and corner of the 
region (Fig. 5b). 

Initial classification rules can then be created for each class 
by using a labelled image of the count of AN for both the 
perpendicular and parallel case (Figs. S5 and S6, respectively). 
We observed and tabulated for each sample image how many 
AN were in each angle range for each possible particle position. 
Considering each position allows for the creation of the ranges 
in which the amount of AN exists for both angles for each class. 
Structures of the same class outside the sample region with AN 
counts that extend the range were also noted. As a result, 
classification rules were created for each particle class, where 
ANlow < AN ≤ ANhigh for both angles (Table 2). In case where the 
rules overlap, initial classification priority is given as follows: 
cmm, then pgg, then boundary. For the case of the disordered 
class of particles, these particles do not meet any of the 
classification rules. By applying these rules to the particle 
property data, an initial classification of the particles is obtained 
(Fig. S7). 

To increase the accuracy of the initial classification, 
classification requirements were modified using the initial 
classification as new classification criteria. The additional 
requirements are custom to each dataset and must be adjusted 
depending on the desired final classification. For example, to 
remove particle classification where only two particles in a 
region are labelled as a given class, conditions can be added 
where AN of a particle of that class must have (or be adjacent 
to) at least two other AN of the same class. In our first example, 
we add a modified condition that AN must not be initially 
classified as disordered. This effectively removes stray particles 
from the edges of assembled regions that meet both the angle 

and distance criteria from being counted as parallel or 
perpendicular AN. 

We determined here that particles of the boundary class are 
under-classified. To correct this, after recounting neighbours 
added an additional pathway for prioritized classification over 
pgg particles as boundary particles: if particles are cmm and are 
parallel to pgg neighbours, or if pgg particles are perpendicular 
to cmm particles, they are counted as having boundary 
neighbours. The pgg initial classification step is then modified 

Fig. 5 Determination of initial classification rules: (a) Sketch of the different particle 
assembly symmetry classes cmm (top right), p4m (bottom left) and pgg (bottom right). 
Sample perpendicular pairs (orange) and parallel pairs (purple) are highlighted in each 
class to demonstrate angle relationships between neighbouring particles.  (b) A sample 
region of the pgg vs. cmm crystals is manually labelled as the expected particle class pgg 
(red), boundary (green), or cmm (blue), and are outlined based on location within the 
region. Particle aspect ratio = 1.49. (c) A sample region of the p4m vs. cmm assembly is 
manually labelled as the expected particle class p4m (red), boundary (green), or cmm 
(blue), and are outlined based on location within the region. Particle aspect ratio = 1.35.
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to be branched: if a particle meets the initial pgg classification 
rule, it is first checked for having at least one boundary 
neighbour and one parallel neighbour classified as cmm. If true, 
the particle is prioritized as a boundary particle. To be classified 
as pgg, the particle must then have at least one perpendicular 
neighbour classified as pgg. The remaining particles are 
classified following the same initial classification rules, 
prioritizing cmm then boundary. This neighbour recount and 
reclassification step can be repeated until the reclassification of 
the particles is as desired for the given analysis. All parameters 
used to process the pgg vs. cmm image are found in Table S2. 

The final labelled image of the particle classifications is 
shown in the Fig. 6a. A colour labelled tracing of the major axis 
for each structured particle is shown, as well as disordered 
particles marked by a black X. From this image, it is possible to 
visualize each structured region, notably the boundaries 
between each symmetry group region. These results can be 
adjusted by changing the parameters such as θ ranges and D, as 
well as adding/removing added requirements until the results 
are visually reasonable. A bar graph of the particle counts for 
each of the four particle classes is also shown in Fig. 6a. In this 
sample image, it is determined that cmm particles are most 
abundant (41.3%), followed by disordered particles (37.9%). 
The remaining pgg and boundary classes have similar 
frequency, with 12.2% and 8.6% respectively.

2. p4m vs. cmm. Much of the process used to analyse the 
other 2D particle assembly of particles with an aspect ratio of 
1.35 is identical to that of the previous example, except pgg is 
replaced by p4m. Two unique angle relationships were similarly 
observed as the previous example. In this case, the two angle 
ranges are defined as follows: for the perpendicular case, θ(i,j) = 
90° ± 20° was chosen, where for the parallel case, θ(i,j) = 0° ± 15° 
was chosen. Initial classification rules were similarly created as 
previously described, and the perpendicular AN and parallel AN 

are similarly visualized (Figs. S8 and S9, respectively). A sample 
region is shown in Fig. 5c, as well as the determined initial 
classification rules (Table 3). Structures of the same class 
outside the sample region with AN counts that extend the range 
were similarly noted. By applying these rules to the particle 
property data, an initial classification of the particles is obtained 
(Fig. S10). Modification of the initial classification conditions 
was also performed. We ensured that disordered particles were 
not counted toward any AN requirements. We then added a 
modified condition that to be classified to a structured class, the 
particle must itself have (or a neighbour have) two AN of the 
same class. This rule enforced that the structured particles must 
at least exist in regions of three. As before, we created 
additional pathways for particles to be classified as boundary 
particles. We asserted that cmm particles with two 
perpendicular neighbours or pgg particles with two parallel 
neighbours should be prioritized as particles shared between 
these two structured groups at the boundary. All parameters 
used to process the p4m vs. cmm image are found in Table S2. 
The final labelled image of the particle classifications is shown 
in Fig. 6b. 

Particles constituting p4m are the most abundant class with 
49.9% of particles. The next abundant class is disordered 
particles (22.7%), followed by boundary particles (21.2%) and 
cmm particles (6.2%). When considering the results of the 
analysis of both 2D optical micrographs, choosing experimental 
conditions to optimize a particular yield of a desired particle 
class is possible. 

Error Analysis

The error for each algorithm was determined by cropping a 
1200 x 1200-pixel region of the 1D and cmm vs. pgg image, and 
1200 x 993-pixel region of the cmm vs. p4m image. The particle

Table 2. Classification rules for the pgg vs. cmm sample region

* defines particles regions that are not shown in Fig. 5b but counted in a different region. Extended ranges affecting the rules are shown in brackets.

Table 3. Classification rules for the p4m vs. cmm sample region

Classification Angle 
Difference

Centre Edge Corner Rule 

Parallel AN = 2 AN = [1,2] AN = 1 1 ≤ AN ≤ 2pgg
Perpendicular AN = 4 AN = [2,4] AN = 1 1 ≤ AN ≤ 4

Parallel AN = 4 AN = 2 AN = 2* 2 ≤ AN ≤ 4Boundary
Perpendicular AN = 2 AN = 1 AN = 1* 1 ≤ AN ≤ 2

Parallel  AN = 6* AN = 4 AN = [3,2*] 2 ≤ AN ≤ 6cmm
Perpendicular AN = 0 AN = [0,1*] AN = [0,1*] 0 ≤ AN ≤ 1

Classification Angle 
Difference

Centre Edge Corner Rule 

Parallel AN = 0 AN = [0,1*] AN = [0,1*] 0 ≤ AN ≤ 1p4m
Perpendicular AN = 4 AN = 3 AN = [1*,2] 1 ≤ AN ≤ 4

Parallel AN = 2 AN = 2 AN = 1 1 ≤ AN ≤ 4Boundary
Perpendicular AN = 2 AN = 2 AN = 1 1 ≤ AN ≤ 2

Parallel  AN = 6* AN = 3 AN = 2 2 ≤ AN ≤ 6cmm
Perpendicular AN = 0 AN = [0,1*] AN = [0,1*] 0 ≤ AN ≤ 1
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* defines particles regions that are not shown in Fig. 5c but counted in a different region. Extended ranges affecting the rules are shown in brackets.

classification was then validated by comparing the output 
classification to the expected target classification (which was 
determined manually). The overall accuracy for the 1D 
classification was found to be 98.9% (Fig. S11). Causes of error 
are from the image segmentation process, where some 
particles were not detected properly. For the 2D particle 
classification, the overall accuracy was found to be 96.1% and 
94.7% for the cmm vs. pgg and cmm vs. p4m algorithms, 
respectively (Figs. S12 and S13). In addition to image 
segmentation, the error can be attributed to multiple sources. 
The classification is sensitive to interparticle distance and angle 
ranges chosen as input parameters: the smaller these ranges 
are, the fewer particles will be classified as ordered. 

Furthermore, modified requirements depending on the initial 
particle classifications, such as requiring that particles be in 
regions of 3 similarly ordered particles to be counted, can cause 
error: if one particle in a region is classified incorrectly, the error 
propagates to the surrounding particles.

Experimental
The particles analysed in this disclosure were synthesized 

and assembled as described in the literature.5 A brief overview 
is included as follows: Poly(styrene) (PS) seed particle spheres 
of 500 nm diameter were synthesized using an emulsifier-free 
polymerization process. After purification, the particles were 

Fig. 6 Labelled images and quantitative results of 2D particle assemblies: (a) Final labelled optical micrograph of pgg (red), boundary (green), cmm (blue), and disordered (black) 
particles. (b) Final labelled optical micrograph of p4m (red), boundary (green), cmm (blue), and disordered (black) particles. The colour corresponding bar graph to the right of each 
analysed micrograph depicts the percent of total particles in each class. Scale bars, 5 μm.
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swollen to 900 nm diameter using a two-stage swelling process. 
Using these particles as seeds, PS clusters were then created by 
an emulsion droplet templated assembly process. The PS 
dimers were isolated via density gradient centrifugation.78 The 
PS dimers were washed with DI water.

The PS dimers were encapsulated by 3-(trimethoxysilyl) 
propylmethacrylate (TPM) monomer to create biphasic PS-
TPM-PS particles. The TPM monomer was added to a 
suspension of dimers, which nucleated on the dimer surface. 
The TPM monomer was then coalesced by the addition of 
toluene, which, afterwards, was selectively evaporated off, 
leaving the merged TPM monomer on the waist of the dimer 
surface. After initiation of the polymerization and purification, 
biphasic triblock PS-TPM-PS particles were obtained. Different 
amounts of TPM were added to create different aspect ratios. 
The assembly of PS-TPM-PS particles induced by the depletant 
Pluronic F127 yielded various assemblies as a function of 
particle aspect ratio. Optical micrographs of the three unique 
assembly conditions were taken using a Nikon TE300 
microscope and CCD camera.

All scripts were written in MATLAB (2019b, update 5), using 
the Image Processing Toolbox, and Statistics and Machine 
Learning Toolbox (algorithms) and Deep Learning Toolbox 
(error analysis). Each algorithm is presented as a MATLAB 
LiveScript with user interface controls over the input 
parameters. 

Conclusions
This contribution presents a methodology to classify and 

quantify particle assemblies constituted of anisotropic colloidal 
particles where the major axis is larger than the minor axis. By 
taking into account both the positional order of the particle 
neighbours about an origin particle and the difference in 
orientation of the major axis of each of the neighbours, we have 
successfully classified and counted particles in 1D and 2D 
anisotropic particle assemblies. In the 1D image analysis, we 
determined that the maximum chain length the particles 
assembled into was 6-membered chains, and successfully 
counted the number of particles that constitute each n-
membered chain. In the 2D image analysis, we successfully 
classified particles into one of the two structured classes (pgg 
vs. cmm or p4m vs. cmm). Results of this analysis reveals 
important structural information about our particle assemblies. 
For example, to maximize cmm assemblies, particles with an 
aspect ratio of 1.49 should be used instead of 1.35.

Our algorithm is inclusive of a step-by-step analysis regime, 
where the raw optical micrograph is manipulated and analysed 
based on parameters input by the user. The scripts are 
presented with user interface control for easy parameter 
manipulation and live visualizations of the image analysis. Our 
algorithms are customizable in regard to particle shape, size, 
and desired particle classification analysis. The free section of 
additional, modifying requirements allows for strong user 
control and extension of particle classification, where our 
particle parameter abstraction serves as a scaffold for further 
analysis or manipulation of particle classification. 

The approach to create the classification rules can be 
expanded to different polymorphic assemblies of differing 
plane groups and other particle assemblies where orientation 
of the major axis is crucial for detection of order. The 
quantitative information yielded as an output from these 
algorithms can be used for further analysis where particle count 
is an input, such as chain curvature or count of particles in 
lattice regions of a given symmetry. 
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