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Non-monotonic fluidization generated by fluctuating
edge tensions in confluent tissues

Takaki Yamamoto,∗a,b Daniel M. Sussman,c Tatsuo Shibata,a and M. Lisa Manning∗d,e

In development and homeostasis, multi-cellular systems exhibit spatial and temporal heterogeneity in
their biochemical and mechanical properties. Nevertheless, it remains unclear how spatiotemporally
heterogeneous forces affect the dynamical and mechanical properties of confluent tissue. To address
this question, we study the dynamical behavior of the two-dimensional cellular vertex model for
epithelial monolayers in the presence of fluctuating cell-cell interfacial tensions, which is a biologically
relevant source of mechanical spatiotemporal heterogeneity. In particular, we investigate the effects
of the amplitude and persistence time of fluctuating tension on the tissue dynamics. We unexpectedly
find that the long-time diffusion constant describing cell rearrangements depends non-monotonically
on the persistence time, while it increases monotonically as the amplitude increases. Our analysis
indicates that at low and intermediate persistence times tension fluctuations drive motion of vertices
and promote cell rearrangements, while at the highest persistence times the tension in the network
evolves so slowly that rearrangements become rare.

1 Introduction
Spatiotemporal heterogeneity plays important roles in various bi-
ological processes1–12. At the molecular scale, molecular mo-
tors such as kinesin1–3, myosin4 and F1-ATPase3,5 utilize ther-
mal temporal fluctuations to function. At the scale of single cells,
structures such as the cytoskeleton and focal adhesions spatially
self-organize to execute necessary cellular functions6,7. Finally,
at the multi-cellular scale, spatiotemporal heterogeneity of gene
expression and downstream cell differentiation are necessary for
tissue homeostasis8 and proper development9. Cooperatively
with this biochemical heterogeneity, multi-cellular systems con-
trol mechanical properties and cell motility to establish and main-
tain structures such as compartments and organs, and drive mor-
phogenetic processes such as gastrulation and invagination10–12.
Therefore, it is essential to understand how spatiotemporally het-
erogeneous forces in multi-cellular systems affect the dynamical
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and mechanical properties of the tissue.
Work over the past decade has suggested that the physics of

jamming and glasses is a good starting point for understanding
the mechanics and dynamics of multicellular tissues. Experiments
have shown that dense biological tissues undergo solid-to-fluid
transitions13–17, and near such transitions many systems, includ-
ing Madin-Darby canine kidney (MDCK) cells16 and primary hu-
man bronchial epithelial cells (HBECs)13, exhibit heterogeneous
dynamics that are a hallmark of glassy dynamics. Recent work in
vivo suggests that zebrafish use a spatial gradient in the fluid-to-
solid transition to help drive body axis elongation15. Also, theo-
retical studies have elucidated such glassy behaviors using math-
ematical models of confluent tissues such as the cellular vertex
model (CVM)18–20, the voronoi model (VM)18,21 and the cellular
Potts models22. For instance, a VM study by Bi et al. reported
that fluctuations induced by self-propulsion of the cells works in
concert with cell mechanics to induce solid-to-fluid transitions21.
Some of us demonstrated anomalous glassy behavior in 2D con-
fluent tissue driven by Brownian fluctuations in both CVM and VM
18. Very recent work, initiated independently and concurrently
with the work reported here, studied the effect of fluctuating ten-
sions on confluent19 and non-confluent20 CVMs. In general, all
of these models agree that increasing either the magnitude of the
fluctuating forces, or the persistence of such forces, can drive sys-
tems from the solid phase to the fluid phase.

In contrast, Yan et al. report on a mechanism that can drive
a confluent tissue in the other direction, from a fluid state to a
solid state23. While all VMs and most CVMs restrict allowable
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topologies to 3-fold coordinated vertices, Yan and collaborators
demonstrate that introducing rosette structures, which are n-fold
vertices (n > 3), imposes topological constraints on the network
of the CVM that can rigidify the tissue23 in static calculations.
Recent work has studied the effect of explicit pinning of rosette
structures in a fluctuating system, though pinning timescales are
put in by hand24,25. Since rosette structures appear frequently
during developmental processes26–28, it is possible that rigidifi-
cation driven by multi-fold vertex formation is competing with
fluctuation-driven fluidization.

The effect of persistent fluctuations has also been studied in
particle-based glassy systems, with results that are fairly similar
to those reported in CVMs and VMs, except when the fluctuations
possess very large persistence times. Interestingly, in that regime
the fluctuations become less effective at driving the system from
the solid to the fluid phase29. It is an open question how these
processes – that can either enhance or inhibit fluidity – interact
with each other to generate tissue dynamics and remodeling.

One obvious framework that could naturally give rise to both
fluctuations and rosette formation is cellular dynamics driven
by spatio-temporally fluctuating tension along cell-cell interfaces.
Such fluctuations are regularly observed in experiments30 and
controlled by expression and localization of cytoskeletal and ad-
hesion molecules. For example, fluctuating tension was previ-
ously reported for the dynamics of Drosophila pupal notum, which
is a 2D confluent epithelial tissue30. In ref. 28, the authors
showed that a 2D CVM with fluctuating tension with some am-
plitude and persistence time is consistent with the experimental
observations. Furthermore, an experimental study combined with
a 2D CVM simulation reported that fluctuating tension fluidifies
tissues by the intercalation of cells31. A study concurrent and in-
dependent of the work we report here, by Kranjc19, analyzed the
phase space of fluid-solid transitions in similar CVM models with
fluctuating tension. However, it appears that the parameter range
of tensions and persistence times studied in that work focuses on
the regime where fluidization always dominates over rosette for-
mation. Given experimental observations, this may not be the
full experimentally relevant range. In this work, we extend those
previous ideas to characterize how fluctuating tensions across a
broad parameter range affect the global tissue mechanics and lo-
cal cell motion in 2D confluent tissues. We find strongly non-
monotonic mechanical response and cell diffusion as a function
of the magnitude of the stress fluctuations and their persistence
time, consistent with the picture that fluidization due to fluctua-
tions competes with rigidification due to rosette formation.

2 Results

We model the dynamics of a 2D confluent tissue using the well-
studied 2D CVM, where the cells are represented by polygons,
and cellular deformations and motions are described by displace-
ments of the vertices and changes in the network topology32. In
the 2D CVM, the cellular mechanics and dynamics are governed
by the mechanical energy. The non-dimensionalized mechanical
energy ε of the epithelial tissue is written as a functional of the

T1 transition

(a) Persistent model

Eq.(3)

(b) Resetting model

(c) Resampling model

Sampling

If

Stochastic

Fig. 1 Schematic illustration of three vertex models with different ways
of updating ∆λi j upon a T1 transition: (a) the persistent model, (b) the
resetting model and (c) the resampling model. In the box for each model,
the red solid, the black dashed and the green solid edges show the edges
with positive, zero-valued and negative ∆λi j, respectively. Only edges
with positive ∆λi j before a T1 transition are shown, because such edges
should tend to shrink more frequently than those with negative ∆λi j.

vertex coordinates {~ri};

ε({~ri}) =
1
2

N

∑
α=1

{
kα (aα −a0,α )

2 +(pα − p0,α )
2
}

+ ∑
(i, j)

∆λi j(t)`i j, (1)

where α and N denote the label of each cell and the total num-
ber of the cells, aα and pα are the area and perimeter of cell
α, and a0,α and p0,α are the preferred area and perimeter, re-
spectively. We choose the length scale to satisfy the average cell
area 〈aα 〉 = 1. kα is the relative area stiffness with respect to
the perimeter stiffness of the cell. Furthermore, we introduce the
time-dependent fluctuating part of the tension ∆λi j(t) as the last
term in Eq. (1), where `i j is the edge length between the ith and
jth vertices and the summation runs over the pairs (i, j) of the
vertices composing the edges. Based on this mechanical energy,
the dynamics of the vertices is described by the following time-
evolution equation;

η
d~ri

dt
= −

∂ε({~ri})
∂~ri

, (2)

where η is the friction coefficient.
We introduce the dynamics of fluctuating part of tension ∆λi j(t)

as a general form using a colored Gaussian noise by an Ornstein-
Uhlenbeck process19,30:

d∆λi j(t)
dt

=−
∆λi j(t)

τ
+ξi j(t), (3)

where ξi j(t) is a white Gaussian noise satisfying 〈ξi j(t)〉 = 0
and 〈ξi j(t1)ξkl(t2)〉 = 2σ2/τδikδ jlδ (t1− t2). Here, ∆λi j(t) satisfies
〈∆λi j(t)〉= 0 and 〈∆λi j(t1)∆λkl(t2)〉= δikδ jlσ

2e−|t1−t2|/τ . The char-
acteristic time scale of the fluctuating tension is determined by
the persistence time τ, and σ sets the characteristic amplitude.

In this study, we investigate the effect of σ and τ on the cellular
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τ = 0.01, σ = 0.3(a) (b) τ = 1, σ = 0.3

(c) τ = 10000, σ = 0.3 (d) τ = 1, σ = 0.02

(e)

Fig. 2 Snapshots of the cellular configurations obtained in our numerical simulation with different τ and σ : (a) τ = 0.01,σ = 0.3, (b) τ = 1,σ = 0.3,
(c) τ = 10000,σ = 0.3, (d) τ = 1,σ = 0.02. We draw the edges with the color mapping the value of ∆λi j. The color is mapped to ∆λi j ranging in
[−σ ,σ ] using the color map in each figure. If ∆λi j < −σ (∆λi j > σ), we color the edge with the color corresponding to ∆λi j = −σ (∆λi j = σ). The
trajectories of cells marked with red circles are also shown with black solid lines in the insets. We show the trajectories in the interval of 3000 time
unit for (a)(c)(d) and 300 time unit for (b). In (a-d), we also highlight the trapped edges defined in the main text with the squares colored using the
same color map as the other edges. (e) Average cell shape index 〈qα 〉 for p0 = 3.90. σ ∈ [0.02,0.05,0.10,0.15,0.30] (from dark color to light color).

dynamics. In our numerical simulation, we solve Eq. (2) using the
forward Euler method with a time step δ t = 0.01. We set kα = 1
and η = 1. We initially prepare a hexagonal pattern of 340 cells
in a squared area with periodic boundary conditions, then run
the simulation with a large amplitude of fluctuation in tension
to randomize the cellular configuration for 100 natural time units
(σ = 0.35,τ = 1). After the randomization, we simulate dynamics
in the system with the target values of σ and τ for 104 natural time
units to initialize the system, then report dynamical data over an
additional 105 natural time units. We perform T1 transitions by
flipping edges with a length below a threshold lth in clockwise
direction by 90◦, if the energy decreases after the T1 transition.
We set lth to 5% of the length lhex =

√
2
√

3/3 of an edge of a
regular hexagonal cell with area 1.

Unfortunately, there is little experimental data describing how
tensions evolve after a T1 transition. In the absence of such data,
one could envision several scenarios for how to specify the ten-
sion on the newly formed edge. We consider three options in
this manuscript, illustrated schematically in Fig. 1. In the first
“persistent model", we keep the same value of the tension ∆λi j(t)
after the T1 transition as was on the shrinking edge before the
T1 transition. In the second “resetting model", ∆λi j(t) along the
new edge is set to zero after the T1 transition. In the last “resam-
pling model", we resample ∆λi j(t) from the normal distribution
N(0,σ2) with zero mean and variance σ2, which is the station-
ary distribution of the Ornstein-Uhlenbeck process described by

Eq. (3).
Our first set of results focus on the persistent model, as there

are some minimal observations in the literature that are consis-
tent with it. For example, Bosveld et al. reported that increas-
ing tension at cell edges causes the accumulation of F-actin bind-
ing protein Vinculin at the tri-cellular junctions (TCJs), while re-
ducing tension decreases the amount of active Myosin II at the
TCJs33. Furthermore, Tricellulin, which is a protein localizing
at TCJs, recruits the Cdc42 GEF Tuba, which activates Cdc42 to
promote the assembly of an actomyosin meshwork at the TCJs
as well as bicellular junctions. This suggests that there could be
a positive correlation between the activity of TCJs and the edge
tension, and that TCJs may retain memory of the edge tension be-
fore the T1 transition. Also, there is some experimental evidence
for a correlation in myosin intensity before and after a T1 transi-
tion30. We discuss the resetting and resampling models later in
the manuscript.

First, we study the qualitative effect of varying the overall mag-
nitude σ and persistence τ of stress fluctuations on cellular struc-
ture. Snapshots of the cellular configuration from the numerical
simulations for different sets of σ and τ for fixed p0 = 3.9 are
shown in Fig. 2. For fixed σ = 0.3 (Fig. 2(a-c)), we found that the
cellular shape is more irregular for larger τ, while larger σ gives
more irregular cell shapes for fixed τ = 1 (Fig. 2(b) and (d)).

Figure 2(e) quantifies the cell shape index qα = pα/
√

aα , which
tends to increase when the cellular shape is anisotropic or the
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D

Time (t)

Sub-diffusive regime

Fig. 3 Cell dynamics as a function of the magnitude of stress fluctua-
tions σ and the persistence of stress fluctuations τ. (a) Mean-squared
displacement (MSD) as a function of time for different σ with fixed
τ = 1 are shown. The solid lines are guides for eyes indicating the power
laws t and t2, respectively. The subdiffusive regime is also indicated for
σ = 0.02. (b) Long-time diffusion constant D extracted from the MSD as
a function of τ for different σ . The box highlights D values correspond-
ing to τ = 1, derived from the data shown in panel (a). In (a) and (b),
σ ∈ [0.02,0.05,0.10,0.15,0.30] (from dark color to light color).

number of edges composing the cell is large. This panel confirms
that cell shape index increase with increasing τ and σ . This is
not surprising, as increasing τ and σ increases the number of
persistently shrinking (large positive ∆λi j) and expanding (large
negative ∆λi j) edges.

There is one surprise. Although previous work in vertex models
has identified a strong correlation between cell shape and tissue
fluidity, it is clear from the insets of Fig. 2(a-c) illustrating cell
trajectories that there is a non-monotonic behavior for cell diffu-
sivity as a function of increasing τ, despite the fact that cell shapes
become more irregular with increasing τ. Similarly, Fig. 2(e) illus-
trates that there is a small-τ regime where the cell shape depends
sensitively on τ, and a large τ regime where cell shape becomes
almost independent of τ. Moreover, at these larger values of τ,
irregular cell shapes coexist with many very short edges, high-
lighted with square symbols in Fig. 2, a point we will return to
later.

To quantitatively characterize the cellular dynamics and begin
to understand the origin of the observed non-monotonic behav-
ior, we calculate the mean-squared displacement (MSD) of the
area centroid of the cells. Example cell trajectories are shown in
the insets to Fig. 2. In Fig. 3(a), we show the MSD curves as a

function of the time t for τ = 1 and p0 = 3.9. Previous work has
demonstrated that at zero temperature this model transitions to
a fluid-like state for p0 > p∗0 ∼ 3.8, so that this system is in a fluid-
like phase, albeit with glassy dynamics. Different values of p0 are
explored below.

The curves exhibit ballistic behavior with MSD ∼ t2 at short
time scales t � τ. At long time scales t � τ, the cellular dynam-
ics exhibit diffusive behavior with MSD ∼ t. Notably, we found
that the MSD exhibits a sub-diffusive regime characterized by
MSD∼ tα with 0 < α < 1 at intermediate time scales. This subdif-
fusive regime, also seen in CVM simulations with Brownian noise
on the vertices18, is a characteristic feature of glasses and indi-
cates that cells are being caged by their neighbors at intermediate
timescales. The subdiffusive regime becomes less prominent at
large values of σ , suggesting that σ is playing a role similar to an
effective temperature, where the system becomes more fluid-like
as σ increases the overall level of fluctuations.

We further characterize the dynamics by estimating the diffu-
sion constant D = limt→∞ MSD(t)/4t for values of t > 104 for dif-
ferent τ and σ as shown in Fig. 3(b). The diffusion constant D
exhibits non-monotonic dependence on τ, where D is maximized
at intermediate τ ∼ 1−10. This quantitatively confirms the cellu-
lar dynamics exhibits two different regimes at small and large τ,
respectively, which we discuss in detail below.

We also investigate the effect of shape index p0, another param-
eter which is known to control the rigidity of the tissue13,21,34.
Previous 2D CVM studies showed that the confluent tissue be-
comes solid-like (fluid-like) for small (large) p0 with the transi-
tion point p∗0 ∼ 3.8113,21. In Fig. 4(a), we show the MSD curves
for different p0 with fixed τ = 10 and σ = 0.05. For small p0, the
MSD curves show ballistic behaviors at short time scales, plateaus
at intermediate time scales and diffusive behaviors at long time
scales, indicating fluidity at the longest timescales. Again, the
plateau indicating glassy dynamics is less prominent for large p0,
confirming that the tissue becomes less glassy and more fluid-like
as p0 increases. Figure 4 also shows the MSD curves for different
σ with fixed p0 = 3.45 and τ = 10. Since p0 = 3.45 is well below
p∗0, for small σ the tissue is solid-like, exhibiting non-diffusive be-
havior at long timescales, but increasing σ leads to diffusion at
long timescales, indicating fluidization of the tissue.

Therefore, in our model, the trio of parameters [p0,σ ,τ] con-
trols the fluid-to-solid transition. While the shear modulus is a
natural metric for the fluid-to-solid transition in systems with-
out fluctuations35, subtleties arise in thermalized or active sys-
tems because calculating the shear modulus requires taking the
limit of infinitely slow driving. In the glassy physics community,
therefore, a solid is usually defined as a system where the vis-
cosity is larger than an arbitrary threshold. Previous work21,36

has demonstrated that a similar metric, namely a threshold on
the diffusivity, accurately distinguishes between solid-like systems
where the cells largely remain within a cage of their neighbors
and fluid-like systems where cells regularly exchange neighbors.
The dashed lines in Fig. 4(a)-(b) correspond to a threshold in
measured diffusivity of D∗ = 10−4, illustrating that, for the system
parameters we study in this work, this choice of threshold does in-
deed distinguish between systems with a significant sub-diffusive

4 | 1–8Journal Name, [year], [vol.],

Page 4 of 8Soft Matter



FluidSolid

(c)

(b)

(a)

M
S

D

Time (t)

M
S

D

(d) (e)

Fluid

Solid

Time (t)

Fluid

Solid

Fig. 4 Glassy behaviors of the confluent tissues for different p0, τ and σ .
(a)(b) The MSD curves for fixed (τ = 10,σ = 0.05) and (p0 = 3.45,τ = 10)
are shown. The dashed lines distinguish between the fluid-like and the
solid-like phases. The solid lines are guides for eyes indicating the power
law t and t2, respectively. In (a), p0 ∈ [3.45,3.55,3.65,3.78,3.82,3.86,3.90]
(from dark color to light color). In (b), σ ∈ [0.02,0.05,0.10,0.15,0.30]
(from dark color to light color). (c-e) Phase diagrams for the glassy
behaviors. The solid-like (D < D∗) and fluid-like (D > D∗) tissues are
shown as purple and yellow data points, respectively. The dashed line in
(d) is the scanning line for the data in (a).

Persistent

Resetting

Resampling

Light

Dark

Fig. 5 Comparison of D between three models: the persistent model
(circle), the resetting model (square), the resampling model (triangle). D
vs. τ for the three models, respectively. Dark and light markers represent
the data with σ = 0.02 and σ = 0.15, respectively. The distributions F(li)

were too broad to determine the threshold l∗ for the trapping edges in the
following data points: (τ,σ) = (0.1,0.02) in the persistent model, (τ,σ) =

(0.1,0.02/0.15),(1,0.02) in the resetting model, (τ,σ) = (0.1,0.02/0.15),
(1,0.02/0.15), (10,0.02/0.15), (100,0.02), (1000,0.02), (10000,0.02) in the
resampling model. We hence set l∗ = lth for these data points.

plateau (e.g. cells trapped by a cage of neighbors) and those
with no such plateau (e.g. cells changing neighbors). Therefore,
we define the fluid-solid transition by a threshold in the mag-
nitude of the diffusion constant D∗ = 10−4. In Fig. 4(c-e), we
show the cross-sections of the three dimensional (3D) phase dia-
gram of solid-to-fluid transition with respect to these parameters.
As highlighted in Fig. 4 (d) and (e), there is always a re-entrant
fluid-solid transition as a function of τ.

One obvious question is whether our results depend strongly on
our choice of how to resample the tension in the newly created
edges after a T1 swap. The “persistent” model we have consid-
ered so far gives the new edge after a T1 swap the same tension
as the old edge, which will clearly favor trapped edges where the
tension is larger and contractile, since edges with large tension
are likely to keep shrinking. Therefore, we also investigate more
“democratic” ways of sampling tensions in the new T1 edge, illus-
trated schematically in Fig 1 (b) and (c), which we term “reset-
ting” and “resampling” models. Figure 5 shows that the resetting
and resampling models generate the same diffusion constants as
the persistent models in the small-τ regimes, consistent with the
hypothesis that fluctuation-driven diffusion, which should be the
same in all models, dominates at low τ. In addition, there is still
non-monotonic behavior in all three models, with the diffusion
constant decreasing at large τ.

To investigate the mechanisms driving this re-entrant behav-
ior, we focus on the persistent model with p0 = 3.9, since the
re-entrant behavior is observed for many p0 values. We first fo-
cus on the small-τ regime, where increasing τ increases diffusion.
Since cell diffusion is driven by cell rearrangements that occur
when a T1 edge shrinks to zero, we first consider the character-
istic timescale required for an edge of length l to shrink to zero.
This is not a straightforward first-passage-time problem, however,
as the edges in the tessellation cannot grow towards positive in-
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finity. When the length rises significantly above unity, a T1 tran-
sition in a neighboring edge is likely to be triggered, generating a
complicated absorbing boundary condition.

Ultimately, we are interested in the diffusion of a cell’s cen-
ter of mass. We anticipate that when an edge shrinks to zero
and experiences a T1 transition, the cell center displaces a char-
acteristic fraction of the distance over which the edge shrinks.
The cell center-of-mass displacements can be approximated as a
memory-less chain of edge-shrinking events. Therefore, rather
than focusing on first-passage time statistics, we study the mean-
field behavior of an edge length, and calculate the characteristic
timescale over which it diffuses in the absence of any boundary
conditions. In section I in ESI, we also perform a numerical study
of a related first-passage-time problem and demonstrate that it
also exhibits the same scaling in the small-τ regime as described
below.

Assuming that the tension of the edge is determined only by
the fluctuating part of the tension ∆λ , we obtain the following
time-evolution equation for the edge length l;

dl
dt

=−∆λ , (4)

where the time-evolution of ∆λ is given by Eq. (3) with li j = l
and ∆λi j = ∆λ . Then the time evolution of the MSD of l is:
MSDl(t) = 2σ2τt + 2σ2τ2(exp(−t/τ)− 1)37. Accordingly, when
t � τ, the MSD of l scales as MSDl(t) = 2Dlt, where Dl = σ2τ

is the diffusion constant of the edge length l. If we assume that
this is the primary timescale driving cell rearrangements as dis-
cussed above, then we predict the total diffusion rate is simply
D∼ Dl = σ2τ. This is in good agreement with numerical data for
the small-τ regime as shown in Fig. 6. This confirms that in this
regime, the fluidization generated by increasing τ occurs because
edges shrink more persistently.

This argument obviously breaks down in the large-τ regimes
(τ >∼ 1), where we observe that the diffusion constant decreases
with increasing τ.

One way the argument could break down is that cells no longer
rearrange when edges shrink to zero length, resulting in “trapped"
edges, or rosette structures, where more than three cells meet. A
CVM study by Yan et al. in the limit of zero fluctuations recently
showed that rosette structures can rigidify the epithelial tissue23.
Although our model strictly only contains 3-fold coordinated ver-
tices, in the persistent model we indeed observe a large number of
very short edges at large τ as shown in Fig. 2(a-d) and Fig. S5(b)
in ESI, and it could be that such short edges are constraining the
structure in a manner similar to rosettes.

Alternatively, our argument could also break down if the rate-
limiting step is not the time it takes an edge to shrink in the pres-
ence of unbalanced forces. This could happen, for example, if
the tension network evolves so slowly that it takes a long time to
achieve a state with unbalanced forces.

To test the first possibility, we performed a thorough analysis of
both the number of trapped edges and the time over which such
edges remained trapped, discussed in detail in the ESI. While we
find a significant increase in trapped edges in the persistent model
(Fig. 2(a-d)), we find only a small increase in the resetting model

(a)

(b)

Fig. 6 Data collapse in a plot of Dτ/σ2 vs. τ demonstrates the scal-
ing relation D ∝ σ2τ in the small τ regime. The solid line is a guide
to the eye indicating the power law τ2. σ ∈ [0.02,0.05,0.10,0.15,0.30]
(from dark color to light color). Data collapse in a plot of Dτ/σ vs.
τ demonstrates the scaling relation D ∝ σ/τ in the large τ regime.
σ ∈ [0.02,0.05,0.10,0.15,0.30] (from dark color to light color).

and almost no change in the resampling model for small force
amplitudes. This indicates that trapping of edges is not the dom-
inant mechanism contributing to the non-monotonic behavior of
the diffusivity (Figs. S7 and S8 in ESI).

Fig. 6(b) shows a scaling collapse of the large τ regime of the
persistent model. This scaling demonstrates that D asymptoti-
cally approaches D ∼ σ/τ, and Fig. S3 in ESI demonstrates simi-
lar scaling at large τ in the resetting and resampling models. As
the diffusion constant is the rate at which the system rearranges
to explore new configurations, this indicates that new configura-
tions are being explored at precisely the same rate that the ten-
sion network is being remodeled, independent of the details of
T1 rearrangements. This in turn suggests that there may be a
separation of timescales, so that a rearrangement quickly allows
the system to find a slow, nearly force-balanced state, which be-
comes unbalanced again over a timescale τ and generates a new
rearrangement.

Unfortunately, even in non-active disordered glasses, identify-
ing such a separation of timescales directly in simulations is noto-
riously difficult due to the presence of avalanches and long-range
elastic interactions38. Nevertheless, the fact that a similar scaling
with persistence time τ is seen in a very different glassy simu-
lation of active Ornstein-Uhlenbeck particles29,39 suggests that τ

generically sets the timescale for the diffusion dynamics when it
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is larger than any other relaxation timescale in the problem.

3 Discussion
Taken together, these results suggest that in tissues with fluctuat-
ing tensions, there is a fast-fluctuation regime dominated by the
time it takes an edge to shrink, and a slow-fluctuation regime
dominated by the slow evolution of the tension network. In gen-
eral, increasing the magnitude of the tension always increases the
fluidity of the tissue, while increasing the persistence of fluctua-
tions has a non-monotonic impact on tissue fluidity. For short
persistence times, the diffusivity is dominated by fluctuations and
increases with increasing persistence. We confirm this by pre-
dicting and demonstrating a scaling collapse of our data in this
regime. In contrast, for larger persistence times the cell dynamics
are governed by the persistence time itself, suggesting they are
slaved to the slow dynamics of the tension in the network.

Our results in the small-τ regime are entirely consistent with
independent work recently published by Kranjc19, which found
simple monotonic relationships between σ , τ, and the diffusivity
in this regime.

However, it is reasonable to expect that fluctuations in stress,
generated by correlated and cooperative localization of large
number of cytoskeletal molecules, may persist longer than the
natural time unit in these simulations, which roughly corresponds
to the time required for cells to find a new stable state after ex-
ecuting a T1 transition. For example, rough estimates for rear-
rangement timescales from experiments in Drosophila are typi-
cally less than 10 minutes40, while fluctuations in tensions due to
mechanisms like planar cell polarity can last upwards of 30 min-
utes40, and multi-fold coordinated vertices are often observed in
such systems. Therefore, the large-τ regime, explored in vertex
models for the first time, is likely to be relevant for many experi-
ments.

One open question is whether the trapped edges that we ob-
served in the persistent model are contributing to the rigidifica-
tion for that model. Strictly speaking, the constraint counting
argument developed in ref. 23 depends on the fact that multi-fold
coordinated vertices explicitly reduce the number of degrees of
freedom available to the system. This is not the case for our
effective multi-fold coordinated vertices, where the total num-
ber of degrees of freedom remains constant. On the other hand,
very short, high tension edges do place strong constraints on the
dynamics of the attached vertices. As shown by some of us in
ref. 41, such short edges in systems with heterogeneous tensions
can generate cusps in the potential energy landscape that can trap
vertices41. Therefore, future work could focus on using some of
these ideas to generalize the static arguments made in ref. 23 to
explain enhanced rigidity in dynamic systems. In particular, it
would be interesting to know what sets the characteristic length-
scale for trapped edges, and whether it depends on an effective
temperature driving fluctuations.

From an experimental perspective, our work clarifies that fluc-
tuating tensions can drive either fluidization or rigidity depend-
ing on the parameter regime. Given that the tension dynamics
just after T1 transitions play an important role in this balancing
act, it would be especially useful to gather data, using tools such

as laser ablation or optogenetics, about how these tensions evolve
in different in vivo and in vitro systems. As the rigidity/fluidity of
biological tissues can help set timescales for processes like body
axis elongation15,17 or wound healing, it could be that organisms
tune the magnitude or persistence time of stress fluctuations to
control such processes. It would be interesting to look for such
trends in model organisms.
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