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“Dense diffusion" in colloidal glasses: short-ranged
long-time self-diffusion as a mechanistic model for re-
laxation dynamics

J. Galen Wang,a Qi Li,b Xiaoguang Peng,c Gregory B. McKenna,b and Roseanna N.
Zia∗a

Despite decades of exploration of the colloidal glass transition, mechanistic explanation of glassy
relaxation processes has remained murky. State-of-the-art theoretical models of the colloidal
glass transition such as Random First Order Transition theory, Active Barrier Hopping theory, and
Non-equilibrium Self-consistent Generalized Langevin theory assert that relaxation reported at
volume fractions above the ideal Mode Coupling Theory prediction φg,MCT requires some sort of
activated process, and that cooperative motion plays a central role. However, discrepancies be-
tween predicted and measured values of φg and ambiguity in the role of cooperative dynamics
persist. Underlying both issues is the challenge of conducting deep concentration quenches with-
out flow and the difficulty in accessing particle-scale dynamics. These two challenges have led
to widespread use of fitting methods to identify divergence, but most a priori assume divergent
behavior; and without access to detailed particle dynamics, it is challenging to produce evidence
of collective dynamics. We address these limitations by conducting dynamic simulations accom-
panied by experiments to quench a colloidal liquid into the putative glass by triggering an increase
in particle size, and thus volume fraction, at constant particle number density. Quenches are per-
formed from the liquid to final volume fractions 0.56 ≤ φ ≤ 0.63. The glass is allowed to age for
long times, and relaxation dynamics are monitored throughout the simulation. Overall, correlated
motion acts to release dynamics from the glassy plateau — but only over length scales much
smaller than a particle size — allowing self-diffusion to re-emerge; self-diffusion then relaxes the
glass into an intransient diffusive state, which persists for φ < 0.60. We observe similar relax-
ation dynamics up to φ = 0.63 before achieving the intransient state. We find that this long-time
self-diffusion is short-ranged: analysis of mean-square displacement reveals a glassy cage size
a fraction of a particle size that shrinks with quench depth, i.e increasing volume fraction. Thus
the equivalence between cage size and particle size found in the liquid breaks down in the glass,
which we confirm by examining the self-intermediate scattering function over a range of wave
numbers. The colloidal glass transition can hence be viewed mechanistically as a shift in the
long-time self-diffusion from long-ranged to short-ranged exploration of configurations. This shift
takes place without diverging dynamics: there is a smooth transition as particle mobility decreases
dramatically with concomitant emergence of a dense local configuration space that permits sam-
pling of many configurations via local particle motion.

1 Introduction
Colloidal glasses are densely packed particulate suspensions that
provide unique mechanical and optical functions in natural and
engineered materials. Vitrified colloidal states are observed in
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paints and coatings as they cure1–3, in the bacterial cytoplasm
as a survival strategy4 and in food stuffs5,6, to name just a few.
Like colloidal gels, glasses result when a thermodynamic phase
transition fails2. That is, although colloidal suspensions display
equilibrium phase transitions quite similar to those in molecular
materials, they also display similar non-equilibrium transitions,
namely gelation, a process by which liquid-gas phase separation
fails7, and vitrification, a solidification process during which crys-
tallization fails2. Kinetics and aging are key to both processes; it
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has been shown that crystallization can sometimes emerge long
after vitrification8 as can phase separation after gelation9–11. The
failure of classical thermodynamics along the vitrification path
has led to a rich literature over the last 150 years12–40. The aim
of such work is twofold: to predict the conditions under which
vitrification occurs, and to explain the same mechanistically via
predictive theory.

There are many fine reviews of the colloidal glass transition
literature that together detail advancement toward consensus as
well as persistent open questions2,3,41–50. There is broad con-
sensus that hallmarks of vitrification include dramatic slowing
of relaxation timescales (whether measured directly via dynamic
light scattering30,51–53 or indirectly via rheometry54–62); frozen-
in liquid-like structure; and that polydispersity63–68 and interpar-
ticle potential51,69,70 change the volume fraction at which the
hallmark behaviors emerge. However, the continuous tempo-
ral evolution of transport coefficients and thermodynamic vari-
ables — e.g. in colloids, the viscosity, diffusivity, and moduli
— after the quench that exemplifies vitrification underlies the
most difficult open questions that remain. Among these are
the questions of whether cooperative motion drives glassy re-
laxation23,24,38,71–74; whether relaxation time formally diverges
and, if so, at what volume fraction2,36,48,68,75–78; what dynam-
ical process enables decorrelated dynamics to continue at high
volume fraction23,25,28,35,38,78,79; and what is the driving force
for such dynamical processes25,38,71,80. Although there has been
much effort devoted to developing a thermodynamic view of the
glass transition in the region where activation is dominant, and
to describing vitrification in terms of its onset and its long-time
“metastable" characteristics, no theory provides a problem-free
mechanistic explanation.

Putative divergent growth of relaxation time τrel or viscos-
ity η with increasing volume fraction φ is often the result of
a data-fitting procedure, where experimental data are fit to
phenomenological models (such as the Vogel-Fulcher-Tammann
(VFT) model15–17 and the Krieger-Dougherty model21), in order
to extrapolate to volume fractions that are inaccessible in exper-
iments2. The VFT fit typically extrapolates to divergence54,59–62

between φ = 0.56 and φ = 0.60, depending on polydispersity67,68.
The shortcoming of this approach is that the model a priori as-
sumes that divergent behavior exists, and then simply locates it at
a specific volume fraction φVFT . Further, the fit is agnostic to many
rate processes — it is an empirical fit to data — and mechanistic
theories are needed to interpret the observed and extrapolated
behaviors to give mechanistic insight into relaxation dynamics.

Formal prediction of a strict divergence of relaxation time with
increasing volume fraction is obtained by the Mode-Coupling
Theory (MCT), a hard-sphere model derived from conservation
laws28. The so-called idealized MCT predicts divergence to occur
at φg,MCT = 0.525. While this landmark work successfully recov-
ered the dramatic slowing of the α relaxation time (long-time
self-diffusion), as well as a more and more pronounced β relax-
ation (corresponding to in-cage diffusion in colloids) observed
in experiments of colloidal systems, it markedly under-predicts
the divergence point observed in experiments, which some claim
arises from MCT’s neglect of thermally activated processes48,80.

MCT thus keeps the door open to the possibility that no diver-
gence exists prior to random close packing (RCP). Ad hoc modi-
fications to MCT75 manage to align its prediction of divergence
with that inferred via fitting in experiments (e.g. van Megen and
Underwood51 find φg = 0.581). The ad hoc adaptations of MCT
are dissatisfying because firstly, there are any number of other
equally satisfying ad hoc adjustments to φg,MCT that could obtain
(or invalidate) the revised value, muddying the waters for mech-
anistic understanding. Secondly, later work by van Megen and
Williams67 showed that aging of the sample could move the di-
vergence point, widening disagreement between MCT and exper-
iments.

Contemporaneous development of the Random First Order
Transition theory (RFOT)35,71,76 made some headway with the
under-prediction of φg,MCT . RFOT was originally a spin-glass
model31–34 developed for molecular systems but has been in-
creasingly applied to colloidal systems. RFOT encountered the
same under-prediction as idealized MCT, and addressed it by con-
necting with a growing consensus in the literature that an acti-
vated process must exist to overcome some sort of energy bar-
rier, as originally proposed by Goldstein25. This idea in itself
simultaneously connected to the question of an underlying ther-
modynamic transition, as well as the still-open question of what
mechanism enables glassy relaxation. The failure of spin-glass
RFOT was hypothesized to arise from the mean-field nature of
that infinite-range model, which required correlations over infi-
nite distances that in turn presented an infinitely large barrier to
activated rearrangements. The idea that real glasses are finite in
extent led to a search for finite length scales over which thermally
activated processes can drive structural relaxation, decorrelation,
and finite relaxation time. To do so, RFOT patches together sev-
eral theoretical ideas48, borrowing the energy landscape idea
from Goldstein25, where a cooling molecular liquid explores an
energy landscape as its constituent elements rearrange. RFOT en-
visioned a landscape with finite barriers set by finite length scales
over which particle relaxation must occur; with higher volume
fraction, the barriers grow, the length scales diverge, and thus a
second-order thermodynamic glass transition is hypothesized to
occur, where a discontinuity in the Edwards-Anderson order pa-
rameter also occurs (this discontinuity underlies the “first order"
nature of RFOT). Relaxation is envisioned to require cooperative
motion over these defined length scales in order for decorrela-
tion to occur23, which has been appealing to an informal con-
sensus in the colloidal literature that cooperative motion drives
glassy relaxation. The hypothesized activated process respon-
sible for relaxation at φ > φg,MCT should ostensibly reveal the
sought-after mechanistic explanation of vitrification. However,
the entropic driving force so proposed by the authors has been
questioned80, and alternative explanations involving surface ten-
sion of the cooperative rearranging regions80 are equally unsat-
isfying. Nonetheless, the model ultimately proposes a diverging
relaxation timescale, but again only by pre-supposing vanishing
configurational entropy to occur at φRCP by enforcing the VFT
model: τrel ∼ exp(ν/(φRCP/φ−1)), where φRCP is the volume frac-
tion at random close packing (RCP) and ν is a fitting parameter.
At the very least the reliance of RFOT on an (extrapolated) ideal
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glass transition that assumes divergent behavior gives a simple
mandate to explore the validity of the assertion that colloidal dy-
namics slow divergently anywhere. If this test fails, then the flaw
in applying the equilibrium theory may be unfixable, and a new
approach required.

More recent attempts to frame the colloidal glass transition
within an energy landscape have focused on explicitly represent-
ing particle-scale dynamics in overcoming energy barriers, and
these provide more convincing estimates of relaxation dynamics.
To wit, Activated Barrier Hopping Theory (ABHT)36,37 utilizes
the Langevin equation to obtain particle positions and then trans-
forms them to a density operator. Density functional theory is
used to solve the resulting conservation equation, and recovers
naïve MCT if correlations are approximated as Gaussian. ABHT
uses this heuristic comparison to identify a volume fraction above
which activated processes are needed, φ = 0.432. At lower volume
fractions, the effective free energy is a monotonically decreasing
function of the separation distance between particles, encourag-
ing particles to move away from their neighbors, which they do
relatively freely. Above φ = 0.432, barriers in the energy land-
scape become sufficiently high that “activated processes" are re-
quired for particles to move relative to one another and explore
other configurations. However, ABHT predicts finite relaxation
time at φ = 0.58, contradicting scaled MCT as well as experimen-
tal data forced to fit the inherently divergent VFT equation that
assumes φg = 0.58. Indeed, ABHT predicts that no divergence
occurs for φ < 0.64. In fact, a “best" fit to the data suggests no
divergence even at random close packing36: the best fit grows
markedly faster than theoretical data points and the latter sug-
gest no divergent slowing of the relaxation time, at any volume
fraction. More recently, ABHT has incorporated phenomenologi-
cal modeling of relaxation dynamics beyond φ = 0.58, which the
authors hypothesize are collective. Physically, within a cage of
nominal size 6a (for particles of radius a) particles are said to
undergo non-vibrational hopping displacements and experience
a local excitation strain field that allows the cage to expand, with
the region outside the cage undergoing collective harmonic elas-
tic motions to accommodate the local rearrangement within the
cage38,39. These activated dynamics are hypothesized to drive co-
operative motion that underlies the finite relaxation time. Other
models for dynamics near the glass transition point include cage-
growth models for hindered diffusion, which prescribe divergent
behavior at maximum packing81–87.

Overall, theoretical models advanced or adapted to explain the
colloidal glass transition conflict with experimental observation:
none predict diverging relaxation time at φ = 0.58 and, further,
the cooperative motion proposed by theory has yet to be ob-
served in experiments. In particular, prescribing divergence any-
where (such as enforcement of the VFT, Krieger-Dougherty, or
other ad hoc divergence model) is ill-advised, and the driving
force for relaxation dynamics remains murky. Finally, all three
theories (MCT, RFOT and ABHT) are equilibrium-based models
and cannot address a key aspect of vitrification: aging. There has
been an attempt in subsequent studies to detect dynamical het-
erogeneity as a signature of cooperative relaxation. For instance,
Donati et al. 72 and Weeks et al. 73 observed dynamically distinct,

durable strings or clusters of particles that emerged in the plateau
of their mean-square displacement. Neither study reported re-
laxation within or of such structures, but they did hypothesize
that they play some role in glassy behavior. One key breakdown
in the literature ideas about cooperative motion as the mecha-
nism for glassy relaxation is that experimental studies such as
Weeks’ suggest very small clusters of particles with length scales
of two particle sizes, in contrast with theory such as RFOT which
posits a divergent growth of cluster size as the glass transition
is approached. We argue that the idea that cooperative motion
drives relaxation is incomplete, because the detailed role of this
motion is not explained. We recognize that in colloidal suspen-
sions (whether in the dilute, liquid, or glassy state) the plateau
between short-time self-diffusion and long-time self-diffusion by
definition corresponds to correlated motion (see, e.g., Rallison
and Hinch 88). We believe that the role of such correlated mo-
tion is simply to relax a surrounding cage, permitting long-time
self-diffusion to resume. Getting to the bottom of this, as well as
identifying what role is actually played by such correlated motion,
is one aim of the present study.

Medina-Noyola and co-workers have attempted to address ag-
ing in their non-equilibrium self-consistent generalized Langevin
equation theory (NE-SCGLE)40, based on a generalized Langevin
equation89 made self-consistent with a non-equilibrium extension
of the Onsager theory of thermal fluctuations. NE-SCGLE predicts
that a colloidal system can never reach thermodynamic equilib-
rium for volume fractions above φ = 0.582, effectively portraying
the glass transition as a crossover point below which the system
can reach an intransient state but above which it cannot. This
pioneering work addresses a key point rarely tackled directly in
the literature: that intransient versus permanently transient dy-
namics may separate the liquid from the glass. No mechanistic
picture is offered, however; what causes the transition from one
regime to the other and how relaxation occurs at φ > 0.582 are
left unexplained. The theory predicts divergent growth of equili-
bration time (different than relaxation time), with divergence at
φ = 0.582. However, their companion simulations conflict: their
systems suggest equilibration up to φ = 0.59. Unfortunately, no
simulations deeper into the glass region, (φ ≥ 0.59) are reported.
While disagreement between theory and simulations, along with
lack of a mechanistic model make the theory less convincing, NE-
SCGLE provides important insights about the role of aging in di-
agnosing vitrification.

Aging behavior is one of the hallmarks of vitrified colloidal
materials, as first demonstrated by the landmark experiments of
Pusey and van Megen29 that showed that colloidal crystalliza-
tion can be delayed temporarily or indefinitely starting at volume
fraction around φ = 0.60. Their follow-on work30,51,52,67 demon-
strated the impact of aging on the de-correlation plateaux used
to identify φg, a result subsequently overshadowed by the focus
on the impact of size polydispersity53,63–68 on φg. More recent
return to the investigation of aging in experiments has called in
to question once again whether there exists a divergently slow re-
laxation anywhere in volume fraction90,91, a result that is key to
the idea of whether an underlying thermodynamic colloidal glass
transition exists. Further, it is known that in molecular glasses
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mechanical “rejuvenation" leads to different responses than does
thermal “rejuvenation"92–94, and it is increasingly recognized in
colloidal glasses67,93,95,96 that sample preparation such as tum-
bling or shear melting29,62,73,97 can shift the colloidal glass tran-
sition point by biasing structure and dynamics.

The theories reviewed above form powerful tools to describe
several aspects of the colloidal glass transition phenomenon, and
gave the community a set of consensus ideas that (a) cooperative
relaxation of particles in finite-size domains enables decorrelated
dynamics at φ > φg,MCT ; (b) divergence of relaxation time occurs
prior to random close packing, at 0.56≤ φ ≤ 0.60 (but this conclu-
sion from modified MCT is contradicted by RFOT, ABHT and NE-
SCGLE theories and recent experiments53,98), and an underlying
thermodynamic glass transition exists (but this depends on fitting
models that prescribe rather than predict divergence); (c) diver-
gent growth of the size of cooperative relaxation regions makes
particle motion over this length scale more and more difficult as φ

increases; and (d) some activated process drives the cooperative
relaxation. There remain fundamental issues with these consen-
sus paradigms. Indeed, just the basic litmus test of the divergent
relaxation time produces widely disparate results and requires ad
hoc phenomenological approximation to locate it. Furthermore,
the dynamical behavior close to jamming, either at the single-
particle or collective scale, is virtually unexplored, even though
dynamics are at the heart of decorrelation during the glass transi-
tion, thus a direct observation of cooperative motion deep in the
glass is still lacking. Finally, theoretical modeling of vitrification
kinetics and glassy aging are rarely considered except for a few
phenomenological models99–102, even though aging behavior has
long been reported in the experimental literature. Overall, mak-
ing progress seems to hinge on gaining access to particle-scale
dynamics during and after the quench. Dynamic simulations can
make a unique contribution to this effort.

In the present work, we combine large-scale dynamic simula-
tions with experiments to carry out constant-volume, constant-
number-density particle-size jumps from a colloidal liquid state
to varying depths near and beyond the putative glass transition.
Experimental realization of a similar protocol to trigger the glass
transition was recently implemented with thermo-responsive mi-
crogel particles103–107; the first in silico modeling of a size-jump
volume-fraction quench was implemented recently in our study of
time-concentration superposition108. Here we expand that model
to interrogate detailed particle-scale dynamics. Dynamic simula-
tion is a powerful complement to experiments because of its abil-
ity to monitor individual particles to make detailed microscopic
measurements such as coordination number, single-particle and
collective dynamics, and contributions to osmotic pressure. Sim-
ulations are also free of many assumptions required by theory, e.g.
they allow access to many-particle interactions, polydispersity
and aging. Critically, we are free from the need to pre-suppose
divergent (or any other scaling) of relaxation time, because we
can perform quenches to arbitrarily close to maximum packing.
By tracking particle dynamics as a function of age, we can in-
fer directly the micro-mechanics of the relaxation process of a
model colloidal system. To look closely at single- versus collective
particle motion, we monitor colloidal dynamics via two means:

(a) (b)

Fig. 1 (a) Snapshot of one periodic simulation cell at the final volume fraction

φfinal = 0.63. The color indicates the number of contacts of each particle; the color

changes from red to white to blue as the number of contacts varies from 0 to 12.

(b) 10× magnification.

computing the decay of correlations via the intermediate scatter-
ing function and tracking particle displacements (to give mean-
square displacement over time). In our companion experiments,
particle dynamics are interrogated via the mean-square displace-
ment as determined from the intensity autocorrelation function
obtained in light scattering experiments.

The remainder of this paper is organized as follows: the study
begins with presentation of the model system and methods in
Section 2, including simulation techniques (in Section 2.1) and
experimental setups (in Section 2.2). The results follow in Sec-
tion 3. We first present results of self- vs coherent-intermediate
scattering function in Section 3.1. We then focus on single-
particle dynamics by comparing mean-square displacement and
self-intermediate scattering function in Section 3.2. And finally
we propose a new mechanism of glassy relaxation in Section 3.3.
We conclude with a discussion in Section 4.

2 Methods
2.1 Simulation

The LAMMPS molecular dynamics package109 provides an ideal
platform due to its ability to partition particles over large do-
mains across many processors, to enable parallel time-integration
of particle positions and velocities within each domain. We build
a system of 55,000 Brownian particles of size a suspended in a
Newtonian solvent of density ρ and viscosity η , which is peri-
odically replicated to model an infinite glass. A 7% size poly-
dispersity mimics controlled experimental conditions. Figure 1
shows a rendered image of one simulation cell as well as a mag-
nified image showing the crowded structure of a colloidal glass
at φ = 0.63. Colloidal particles interact via hydrodynamic (FH),
Brownian (FB), and interparticle (FP) forces, and the influence
of these forces on particle motion is described by the Langevin
equation, a stochastic force balance on each particle:

m · (dU
dt

) = FH +FB +FP. (1)

Hydrodynamic interactions play a role in suspension mechan-
ics even up to (and likely beyond) volume fractions as high as
0.55110. However, in the present work we make the simplify-
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ing assumption that hydrodynamic interactions between particles
can be neglected. The study of such freely-draining suspensions
has led to many fundamental insights and results111–114. This is
a reasonable approximation when the repulsion range between
particles keeps their no-slip surfaces separated by at least 20%
of the particle size. Thus the hydrodynamic force on each parti-
cle i moving with velocity Ui in a background flow with velocity
U∞(Xi) at the location Xi is of particle i determined by Stokes’
drag law:

FH
i =−6πηai [Ui−U∞(Xi)] . (2)

In this freely-draining limit, the Brownian force obeys Markovian
statistics115:

FB
i = 0, FB

i (0)F
B
i (t) = 2kT (6πηai)Iδ (t), (3)

where I is the identity tensor and δ (t) is the Dirac delta distribu-
tion. The interparticle force is here modeled as derived from a
spherically symmetric, steeply repulsive potential V (ri j):

FP
i =−∑

j

∂V (ri j)

∂ ri j
r̂i j. (4)

Here, r̂i j = ri j/ri j, where ri j = Xi − X j is the separation vec-
tor from the center of particle i to the center of particle j and
ri j = |ri j|. In the present work we model colloids as nearly-hard
spheres to correspond to experimental systems of hard spheres.
Particle softness and permeability play a role in some colloidal
glasses and modeling of these interactions requires additional
parametrization of the interparticle potential, or even new ap-
proaches116–127. Soft glasses are an active and important area
of study, where it has been shown that elastic deformation intro-
duces a new relaxation mechanism106,118,121–123. Here we wish
to focus on the most fundamental contributions to vitrification,
entropic exclusion and Brownian motion, we focus on nearly-hard
spheres, which we model via a nearly-hard-sphere Morse poten-
tial:

V (ri j)=−V0
(
2exp

(
−κ[ri j− (ai +a j)]

)
−exp

(
−2κ[ri j− (ai +a j)]

))
,

(5)
giving the interaction between particles i and j with centers sep-
arated by a distance ri j. The exponential shape provides steep
repulsion to represent nearly hard spheres. In Equation 5, V0 sets
the depth of the potential well, κ−1 determines the well width,
and ai and a j are radii of particle i and j, respectively. To represent
a strictly repulsive interaction, we cut off the attractive part of the
potential by setting the cutoff distance at exactly the minimum of
the potential: beyond this distance, particles do not interact at all.
We fix V0 = 6kBT and κ = 30a−1, which has been shown to recover
the structure and dynamics of a hard-sphere suspension9,10. The
novel feature of our model is that the glass transition is induced
by changing both ai and a j as well as the cutoff distance, and this
technique is crucial to forming a pristine glass, without the com-
plicating effects of flow. Comparison of equilibrium structure, dif-
fusion and osmotic pressure to published data128–132 verifies that
changes in particle hardness induced by the particle-size-jump al-
gorithm are negligible. The particle velocities and positions are

advanced in time numerically using velocity Verlet integration133

in LAMMPS. We select a small timestep, ∆t = 10−6a2/D, for the
integration, where a2/D is the diffusive time required for a single
particle of size a diffusing its size in a pure solvent, with the diffu-
sion coefficient D = kT/6πηa. This gives a Stokes number small
enough to faithfully model the colloidal (inertialess) physics. The
small timestep permits very small overlaps that are then resolved
via a standard Heyes-Melrose algorithm134, where the entropic
encounter contributes appropriately to the osmotic pressure.

Our computational studies comprise two parts. First, the sys-
tem was “quenched" from a low volume fraction (liquid state) to
a high volume fraction (solid state) by rapidly increasing the size
of each particle at fixed system volume. In the present work,
we fixed the initial volume fraction φinitial = 0.50 and the vol-
ume fraction quench rate dφ/dt = 0.25D/a2, and varied the fi-
nal volume fraction between 0.56 ≤ φfinal ≤ 0.63. This flow-free
method allowed us to transition from a liquid to a solid-like state
without biasing the structural evolution. Second, after reaching
the final volume fraction, we held the system at an iso-volume-
fraction condition, letting it evolve under only Stokes drag, Brow-
nian motion and entropic exclusion. During and following the
quench, the positions, velocities, and particle-phase stress were
tracked and utilized to characterize relaxation timescales and
structural changes. Throughout volume fraction “quenches" and
post-quench aging, we chose the diffusive time a2/D to make
all timescales t dimensionless in order to represent the relative
rates of quench and aging with respect to Brownian motion, and
we referred to the dimensionless time units as Brownian times,
t/(a2/D). Thus, quenches in our simulations took place over a
time interval 0.04 ≤ t/(a2/D) ≤ 0.52, much faster than the dif-
fusive time of a bare particle so that structural relaxation dur-
ing quenches was negligible. After each quench, the suspension
evolved undisturbed to an age of 80,000a2/D, during which we
monitored age-dependent structure and dynamics.

We track the absolute position X(t) of each particle throughout
the simulation. The mean-square displacement (MSD) is com-
puted as

MSD≡ 〈∆r(t)2〉= 〈
(
X′(t)−X′(0)

)2〉, (6)

where X′(t) = X(t)− 〈X(t)〉 and the angle bracket 〈·〉 denotes
an ensemble average over all particles. The coherent- and self-
intermediate scattering function, F(q, t)(CISF) and Fs(q, t)(SISF)
respectively, are computed as

F(q, t) =
1
N

〈
∑

j
∑
k

exp
[
−iq · (X j(t)−Xk(0))

]〉
q·q=q2

, (7)

Fs(q, t) =
1
N

〈
∑

j
exp

[
−iq · (X j(t)−X j(0))

]〉
q·q=q2

, (8)

where N is the number of particles, q is all wavevectors of mag-
nitude q = 2π/L, L is the specific length scale we want to probe,
and X j is the absolute position of particle j. The measurements of
the MSD directly probe particle encounters that, at lower volume
fractions, require traversal over long distance in order to sample
many different configurations as it wanders through the suspen-
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sion. The measurements of the CISF and the SISF, however, track
decorrelation over one specific wave number, thus we expect that
the two types of measurements may generate different results re-
garding length scales as well as timescales. The SISF takes on
a value of unity when particle positions are strongly correlated,
and a value of zero means that particle positions have completely
decorrelated. If relative particle motion in a suspension is Brow-
nian, the correlation in particle positions can decay from one to
zero with a rate that depends on particle mobility, essentially dis-
tinguishing between a liquid state and a solid state.

Colloidal glasses exhibit at least two well-defined diffu-
sive regimes, and these are typically interpreted as relaxation
timescales. At short times, particles diffuse within a cage of near-
est neighbors, producing the β -relaxation. At longer times, cor-
related interactions with the cage produce a plateau in both the
MSD and the SISF. Emergence from the caging plateau indicates
long-time self-diffusion, or α-relaxation. The α-relaxation time
measured in MSD, τα,MSD, is obtained by fitting the MSD to the
sum of two stretched exponentials as〈

∆r(t)2
〉
=A+B

[
1−exp

(
−(t/τβ ,MSD)

p1
)]

+C
[
1−exp

(
−(t/τα,MSD)

p2
)]

+Dt,

(9)

where A, B, C and D are fitting parameters. The stretched expo-
nential requires p1 < 1 and p2 < 1. Equation 9 thus incorporates
essential phenomenology for dense suspensions; the parameter D
is related to the long-time self-diffusion coefficient Ds

∞ by a 1/6
scaling factor, Ds

∞ = D/6. Similarly, the relaxation time measured
by the SISF is obtained by fitting a double stretched exponential
to the SISF:

Fs(q, t) = E exp
[
−(t/τβ ,SISF )

p3
]
+F exp

[
−(t/τα,SISF )

p4
]
. (10)

Here, E and F represent the magnitude of decorrelation for β -
relaxation (from unity to the β -plateau) and α-relaxation (from
β -plateau to zero), respectively. As such, their sum is unity. Both
p3 and p4 are smaller than unity, and the α- and β -relaxation
times are represented by τα,SISF and τβ ,SISF , respectively, ex-
tracted from Equation 10.

2.2 Experiment

We carried out experiments to compare with simulations, and
here we describe the materials and methods. The colloidal sam-
ples are polystyrene-poly(N-isopropylacrylamide) (PS-PNIPAM)
core-shell particles, with 18% polydispersity determined by dy-
namic light scattering108. The detailed synthesis process is dis-
cussed in our previous work108. We focus on a narrow temper-
ature range between 27◦C and 30◦C, such that the size of PS-
PNIPAM particles measured by dynamic light scattering depends
linearly on the temperature and can be described by a linear fit
dH(T ) = 194.65− 2.15T , where dH is the hydrodynamic particle
diameter in nanometers and T is temperature in ◦C, although the
accuracy of locating the no-slip surface on microgel particles is
the subject of ongoing study. The experimental “effective" volume
fraction is then calculated as φeff(T ) = φcollapsed[dH(T )/dcollapsed]

3,

where dcollapsed is the hydrodynamic particle diameter obtained
from dynamic light scattering, in the collapsed state. Here,
φcollapsed is the volume fraction in the collapsed state, computed
from the density and mass fraction of dry particles. The descrip-
tor “effective" is meant to convey that the volume fraction in our
experiments is calculated based on the hydrodynamic diameter of
particles in dilute suspensions obtained via dynamic light scatter-
ing and does not account for particle deformation at high particle
concentrations. The measured volume fraction of the collapsed
state further introduces uncertainty to the true volume fraction
of the particles105,108,135–137. As a result, we report “effective"
volume fraction as a relative volume fraction comparing to a ref-
erence state (the collapsed state).

Because the microgel particles are thermo-responsive, cooling
causes particle size to increase, triggering a volume fraction up-
jump (quench), analogous to the process modeled in our sim-
ulations. To make consistent temporal comparison to our sim-
ulations, we normalized experimental timescales with the diffu-
sive time of PS-PNIPAM particles, which was calculated as a2/D =

6πηa3/kT ≈ 0.01s108. All volume fraction jumps took place over
a time interval of 100 s, which corresponds to ∼ 10,000a2/D.
Following volume fraction jumps, the samples were aged up to
700,000a2/D. The quench rate differs between experiments and
simulations, which is expected to influence the dynamics of the
young glass more than those of the aged glass. Because the re-
laxation time is calculated at very long times, the stronger effects
of quench rate on system dynamics just after the quench is to
some extent avoided, although it may introduce other lasting ef-
fects. The cuvette, which is used to seal the sample against mois-
ture leakage, is mechanically compliant with the sample, mean-
ing that the whole system is always in equilibrium with the am-
bient pressure, thus it is not a pressure cell and the change of
temperature cannot cause a change in stress. As a result, ther-
mal stresses can be neglected. Subsequent aging processes fol-
lowing the jumps were explored by dynamic light scattering ex-
periments, performed using multi-speckle diffusive wave spec-
troscopy in backscattering geometry138, in which the sample was
illuminated by a 633 nm wavelength laser. A CCD camera with
frame rate of 120 frames/s collected the scattered light, from
which the intensity autocorrelation function g2(t) was obtained.
The relaxation time in experiments was calculated as the time
at which the intensity autocorrelation function g2(t) dropped by
half of its initial value103,104,106. The intensity autocorrelation
function g2(t) takes the following form related to the MSD139

g2(t)−1 = exp
[
−2γ

√
k2

0
〈
∆r(t)2

〉
+b+2γ

√
b
]

(11)

where the parameters in the equation are taken from else-
where140: γ = 1.9 is to quantify low-order scattering; b = 0.0035
characterizes the geometry; k0 = 2πλ/n is the wave number with
λ = 633 nm and refractive index n = 1.33. The MSD in exper-
iments was extracted from Equation 11 by solving for

〈
∆r(t)2〉,

providing another basis of comparison to our simulations. The
glass transition was identified as the effective volume fraction at
which relaxation time exceeds 10s.
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2.3 Relating simulation to experiment

Our goal is improved understanding of the hard-sphere colloidal
glass transition, without the complicating effects of particle defor-
mation or flow. The ideal experimental system is one in which the
concentration increase is triggered with no change in interparti-
cle potential. While we aim to accomplish this by rapidly increas-
ing the pressure of a hard-sphere system to compress the solvent,
such experiments are still in development. To make progress,
we use sudden swelling of microgel particles to increase volume
fraction103–107, but the swollen particles are substantially softer.
Softness complicates the calculation of volume fraction and in-
troduces elastic deformation and relaxation that shift the ran-
dom close packing (and presumably the glass transition) point to
higher volume fractions. Softness may also underlie finite relax-
ation time at very high volume fractions. Dynamic simulations are
essential to dealing with such issues. The experiments thus serve
to have established a set of tests and results that are postulated
to originate from particle softness, and we perform these same
tests on hard particles in simulations to disambiguate the effect
of softness. As such, we isolated the effect of entropic exclusion
and Brownian motion by starting with the simplest hard-sphere
model. While previous studies of hard-sphere colloidal suspen-
sions have used shear-melting in experiments29,30,51,53,67,73,97,98

(which generate non-equilibrium structures that naturally lead to
aging but are biased by external flow and are known to exhibit
different behaviors from the structure obtained in volume frac-
tion quenches96) and event-driven method in simulations132,141

(which focus on “equilibrium" amorphous state and cannot model
aging) to generate a dense, amorphous initial configuration, our
previous work108 and this study are the first to implement a
nearly-hard-sphere particle-size jump in simulations to gener-
ate non-equilibrium configurations without inducing an external
flow. Our algorithm is also a “true" volume fraction quench as it
is free of the effect of temperature changes as induced in our ex-
periments142. As a result, the comparison between hard-sphere
simulations and soft-sphere experiments is qualitative: we do not
and should not expect a quantitative agreement; rather, similar-
ities and differences should lead to a better perception of what
other experiments and what other simulations need to be done
next to fundamentally understand the physical picture of the glass
transition. This is discussed as future work.

3 Results and Discussion

To interrogate the hypotheses that collective motion produces
glassy relaxation that grows divergently slow with high volume
fraction, here we measure and compare both single-particle and
collective dynamics via the self-intermediate scattering function
(SISF) and the coherent intermediate scattering function (CISF),
respectively. We also present measurements of the mean-square
displacement (MSD) as a complement to the SISF. These results
are followed by analysis of the volume-fraction dependence of
the relaxation time, leading to a new mechanistic model for re-
laxation.

3.1 Effect of collective dynamics

We quench the system from a colloidal fluid into the putative
glass region, from φinitial = 0.50 to sequentially deeper quenches:
φfinal = 0.56,0.57,0.58,0.585,0.59, and 0.595, using the method de-
scribed in §2. Following each quench, we allowed the system
to age to an intransient state where dynamics no longer change
in time. The coherent and self-intermediate scattering functions,
CISF and SISF respectively, were measured at each volume frac-
tion and are plotted in Figure 2. Four plots are shown, one
each for scattering wave numbers qa = 3.25, qa = 1.57, qa = 1,
and qa = 0.5 corresponding to correlated dynamics over a length
scale approximately equal to 2, 4, 6, and 12 particle radii, respec-
tively. Physically, the SISF describes single-particle diffusion over
the length scale L ∼ 2π/qa, while the CISF represents collective
dynamics of a particle “cluster" of size L ∼ 2π/qa. By definition
the CISF includes a “self" part (the SISF) and a “distinct" part; the
magnitude and rate of decay of the CISF relative to those of the
SISF reveals how important collective dynamics are, relative to
self-motion. The rate of decay is typically the focus of analysis in
the literature; thus it is typical to normalize the CISF on its initial
value (the qa-dependent static structure factor, SSF) and observe
their relative rates of decay from unity (the initial value of the
SISF is always unity). The earliest time shown on the log-linear
plot is at 0.04a2D.

At qa = 3.25, the rate of decay of the CISF and SISF are the
same, which is expected, since both measure the motion of a
single particle moving its size. There is a nearly instantaneous
decorrelation at very short times followed by slower decay that
becomes a plateau at high volume fraction, and finally a long-
time decay emerges. However, over longer length scales of sev-
eral particle sizes [(b)-(d)], the CISF tracks the abundance of the
structures of those length scales and how the coherence of such
structures relaxes. The CISF gives a measure of how a collective
structure decorrelates from its initial configuration. When this
structure involves only one particle, the decorrelation is the same
as the SISF [(a)]. When two or more particles are involved [(b)-
(d)], there is a more substantial early-time decorrelation; for ex-
ample two particles quickly diffuse into a new pair configuration.
When more particles are present, it takes longer for this initial re-
configuration to occur, as shown by the monotonic growth of the
early-time relaxation with decreasing wavenumber. Nonetheless,
for qa≤ 2, the early-time nearly-instantaneous drop in the CISF is
more pronounced than the SISF, indicating that even though each
particle has not moved far from its original position (SISF), the
correlation of dynamics across different particles (CISF) is already
weak. Thus the short-time collective dynamics of a set of parti-
cles decorrelate faster than the self motion of particles at short
times, meaning that the short-time relaxation is dominated by
the slower process, that is, the self motion. At intermediate times
the CISF and the SISF both enter a glassy plateau at around the
same time. This correlated motion has well-known meaning in
the SISF, indicating that the motion of an individual particle is
hindered by its neighbors as it attempts to escape its surround-
ing cage. The meaning of the CISF in the glassy plateau may
reflect how the surrounding cage relaxes. We remark on the mag-
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nitude of the CISF relative to the SISF. Recall that normalization
can mask the relative magnitude of the CISF and the SISF. For
small wave numbers qa ≤ 2 in our purely repulsive, nearly hard-
sphere system, the Static Structure Factor is small (∼ 0.04), thus
the un-normalized CISF is two orders of magnitude smaller than
the SISF. Overall this suggests that cooperative motion may play a
role in cage “melting" during the plateau, but self-motion seems to
be the primary mechanism for reconfiguration of the cage. At long
times, the curves merge and decay together toward zero, which
is expected: as each particle has moved far enough to decorrelate
from its original position, the surrounding structure of the sus-
pension also changes. The CISF seems to persist as long as the
SISF deep into the glass at φ ≥ 0.585, but taking into account the
very small static structure factor (∼ 0.04) at qa ≤ 2 normalizing
the CISF, the contribution of collective motion to decorrelation is
much smaller than that of self-motion. Our results contradict the
proposal in prior theories28,35,36,38,71,76 that collective motion is
the activated process that permits relaxation beyond φg,MCT but
diverges as collective motion must occur over larger and larger
domains; we find evidence that no such structural domains exist.
The cooperative-relaxation model was additionally problematic
because it stopped short of describing how such motion actually
contributes to finite relaxation time. Our results suggest that cor-
related motion, which is distinct from collective motion88, plays a

weak role in melting the glassy plateau. In the simplified model of
a cage of particles that opens and permits one to escape, the tra-
jectories of the particles are correlated but certainly not aligned.
These results suggest that there are no appreciable dynamics for
structures larger than a particle size, and that long-time relax-
ation occurs via self-diffusion. In the next section we turn our
focus to self-motion.

3.2 Single-particle dynamics: decorrelation and diffusion

Now having eliminated large-scale collective motion as a primary
mechanism for glassy relaxation, we focus our attention on self
motion, the SISF. In most experiments, the SISF is plotted for
only a single wave number, qa = 3.25, which probes decorrelation
only over a single length scale. But dense suspensions exhibit re-
laxation over many length scales, which cannot be revealed by the
single-wave number SISF. As shown in Figure 2, one way to eval-
uate relaxation over other length scales is to measure the SISF at
many different wave numbers or, alternatively, one can measure
particle displacements directly and compute the mean-square dis-
placement (MSD). The key mechanistic behaviors being sought
are (a) does long-time self-diffusion continue, and (b) what sort
of motion (activated process) “melts" the glassy plateau beyond
φg,MCT , permitting long-time self-diffusion to continue?

Since we will compare post-quench particle dynamics via two
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Mean-square displacement (black solid line) and self-intermediate scattering function at different wave numbers (indicated by the colored text on each curve) as a function

of lag time, at φ = 0.51. The colored dashed lines are snapshots of the MSD that correspond to length scale interrogated by each wave number.

measurements, MSD and SISF, we first frame the comparison in
a thermodynamically well-defined transition: a jump from a low
concentration liquid state to a higher concentration, still liquid
state. We execute jumps from φinitial = 0.50 to sequentially deeper
quenches: 0.51, 0.52, 0.53, 0.54, and 0.55. We expect these
systems to be in the supercooled liquid region2. Figure 3(a)
shows the MSD plotted as a function of lag time for all of these
quenches; the measurement was taken at several different values
of wait time after the quench. Below φ = 0.53, the curves for
each volume fraction are indistinguishable, which signifies a lack
of aging, indicating that the reorganization of the initial struc-
ture of the fluid introduced by the rapid concentration change is
nearly instantaneous. As expected, the MSD shows barely-visible
plateaux and long-time dynamics remain diffusive. For φ ≥ 0.54,
the MSD curve at the earliest wait time (red, wait time=4a2/D)
is separated from the other curves (ages), suggesting that a finite
but short time is needed for the system to relax. However, the
system reaches an intransient state at finite times where particle
motions completely decorrelate, demonstrating that the system is
in the supercooled liquid state, which is not far from equilibrium,
and thus the measurements in this terminal state are unambigu-
ous. In Figure 3(b), the SISF for the same systems and the same
quenches are plotted for qa = 3.25, demonstrating behaviors very
similar to that of Figure 3(a) for the MSD. We recall that qa= 3.25
corresponds to α relaxation over a length scale of about one par-
ticle diameter, in contrast to the MSD plot which shows relaxation
over many length scales. Because particles can diffuse far beyond
one particle size in the supercooled liquid state, the MSD and

the SISF can access the same timescales and length scales. To
illustrate this point, Figure 3(c) gives a physically intuitive con-
nection between the MSD and the SISF at various values of wave
numbers qa for φ = 0.51. The black curve is the MSD, and the
colored curves are the SISF at several wave numbers as indicated
by the adjoining colored text. The time required for the MSD to
reach the length scales probed by the SISF are exactly the same
as the time required for the corresponding SISF to decay to zero.
Thus, in the supercooled liquid region, the MSD and the SISF
measurements are equivalent: the SISF can be mapped exactly
to the particle diffusion by probing multiple length scales, which
reflects the physical long-time self-diffusion, which occurs via mi-
gration from one local “cage" of nearest neighbors to another and
another. That is, in a dense suspension of mobile particles, diffu-
sive decorrelation requires long-distance motion throughout the
suspension to encounter numerous configurations. The fact that
the MSD and SISF at qa = 3.25 give the same answer indicates
that the “cage" size and particle size are the same in the super-
cooled region. We next ask if this equivalency holds at higher
volume fractions.

Upon quenching to higher volume fractions, the MSD and SISF
both now exhibit important new behaviors: the emergence of a
glassy plateau and long-time dynamics that emerge only after a
transient phase. These non-equilibrium behaviors indicate the
start of the glass transition. We recall that in Figure 3, a sys-
tem quenched into the liquid region relaxes very quickly from its
initial state following the quench, but now at higher volume frac-
tion, particle dynamics change with time following the end of the
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Fig. 4 MSD and SISF near to the glass transition: how they differ

and age effects. (a)-(f) Simulations comparing MSD to SISF for φfinal =

0.56,0.57,0.58,0.585,0.59,0.595 from top to bottom, all quenched from φinitial = 0.50.

Colors indicate different wait times, shown in the legend. In contrast to Figure 3,

decorrelation changes with age (wait time), taking longer as the sample gets older.

quench – the curves separate. This is illustrated in Figures 4(a-f),
which shows six side-by-side plots of the MSD and the SISF corre-
sponding to six different quenches. Each plot gives decorrelation
versus lag time, and several curves in each individual plot repre-
sent different wait times (ages) after the volume fraction quench

(at which the lag-time measurement was begun). Progressively
deeper quenches are shown sequentially in panels (a) through
(f), all having started from the liquid state φinitial = 0.50. The fi-
nal quenched volume fraction ranges from 0.56 ≤ φ f inal ≤ 0.595.
At early lag times, both MSD and SISF exhibit decorrelation: the
MSD is linear and the SISF shows characteristic β relaxation. That
is, both the MSD and SISF reveal short-time self diffusion. For
both the MSD and the SISF, the early-lag time diffusivity is inde-
pendent of age (wait time). The mechanistic origin of this age-
independent diffusion is the small length scales involved: short-
time particle dynamics take place over length scales much too
small to disturb surrounding structure, and thus require no struc-
tural relaxation to decorrelate. This is so-called in-cage diffusion.
At intermediate lag times, a plateau emerges in both the MSD
and the SISF, revealing the particles’ attempt to migrate out of
their nearest-neighbor cages, which produces correlated motion.
The plateau takes time (age) to emerge: just after the jump, re-
laxation is rapid and surrounding cages are evidently liquidlike.
But as vitrification continues with age (wait time), cages appar-
ently “firm up", requiring aging in order for particle motions to
decorrelate. This characteristic caging plateau reflects motion
of particles attempting to squeeze out of a local cage — a cage
that gets more durable with age (wait time). The lengthening of
the plateaux with age becomes more and more pronounced with
deeper quenches. Notably, the vertical overlap of the plateaux
suggest that the “cage" size is set by volume fraction, and does
not change with age. At long lag times, the curves peel apart
as they exit the glassy plateau both for the MSD and the SISF,
indicating that particle dynamics slow down with age. But even-
tually the curves rejoin onto an overlapping single curve at long
times, signaling the emergence of a long-time intransient state.
It is important to wait “long enough" to let the glass age to an
intransient state prior to drawing conclusions about terminal be-
havior. Now that we are able to observe the terminal behavior in
the volume fraction range (0.56≤ φ ≤ 0.595), we first focus on the
mean-square displacement: the MSD becomes linear again for all
volume fractions studied which, for 7% polydispersity, is well into
the glass52,67. This result signals finite relaxation time within the
putative glassy state, in contrast to prior predictions30,51,77. In
fact, the dynamics remain diffusive up to φ = 0.59 and nearly dif-
fusive even up to φ = 0.595 after a long plateau, suggesting that
correlated motion eventually liberates particles from the caging
plateau to let them undergo long-time self-diffusion to relax the
structure to the intransient state. That is, long-time self-diffusion
is not only the “signal", it is also the mechanism of glassy relax-
ation.

Our experiments confirm via dynamic light scattering the dy-
namical slowing down with age, shown in Figure 5, where a
similar lengthening plateau emerges with increasing wait time,
although the plateaux do not overlap, possibly due to the limited
time window that can be accessed in the experiments. Yet the
particle dynamics also display a nearly diffusive long-time regime
for all effective volume fractions explored in our experiments , re-
sembling our simulations (as a reference, the nominal glass tran-
sition in our experiments, defined as the effective volume fraction
where relaxation time exceeds 10 s, is at φeff = 0.390).
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Fig. 5 Experiments showing MSD from dynamic light scattering, all quenched from φeff = 0.364, measured at different wait times as it evolves into an intransient state.

Aging slows relaxation, but the duration of the quench obscures early-time behavior.

However, returning to simulation data reveals a breakdown in
the agreement between the MSD and SISF also emerges in the
glass: decorrelation takes much longer for the SISF than for the
MSD at a given quench depth. We demonstrate this discrepancy
in Figure 4(c) at φ = 0.58 by performing the same test as Figure
3. We recall that the SISF probes decorrelation at qa= 3.25, corre-
sponding to a length L/a = 1.93. The corresponding mean-square
displacement, 〈∆r2〉/a2 = 1.932, is obtained at t ∼ 1,900a2/D,
marked as a vertical dashed line in the same plot. However, by
that same time, Fs(t = 1,900a2/D) ≈ 0.25, which means that par-
ticle dynamics over the length scale of qa = 3.25 are still signifi-
cantly correlated. Thus the MSD shows diffusive behavior but the
SISF does not. This decoupling of the MSD and the SISF starts as
low as φ = 0.56 and is present up to at least φ = 0.595. Prior stud-
ies have reported a breakdown in the Stokes-Einstein relation,
termed a decoupling of mean-square displacement from viscos-
ity (relaxation time)143–145 and in some cases predict that total
breakdown will occur in the glass when length scales grow diver-
gently large146. However, our interpretation and mechanistic ex-
planation are not related to the prior phenomenology described:
the breakdown of the equivalency between the MSD and the SISF
reported here pertains to the hindrance of a cage-escape process.
We report a decoupling of the cage size from the particle size —
which can be discovered and quantified only via the analysis of
multiple wave numbers of the SISF; this is discussed next.

The contrast of this decoupling behavior to the exact match be-
tween the MSD and the SISF in the liquid region shown in Figure
3 suggests that the two methods probe different length scales in
glassy suspensions. The long-time MSD measures relaxation as-
sociated with a length scale set by a cage size, and these dynamics
are reflected by the caging plateau, i.e. the length scale associ-
ated with the plateau height. As the volume fraction increases,
cages become tighter. Thus, the MSD probes not only relaxation,
but also reveals that the characteristic length scale over which it
occurs changes with volume fraction. In contrast, when the SISF
is measured at a fixed wave number for all volume fractions (at
qa = 3.25, the typical value probed in experiments, which always
probes decorrelations over the length scale of one particle size),
it smears out this change in dynamics. Hence, the difference in
the glassy region between the decorrelation times in the MSD
and the SISF suggests that the wave number qa = 3.25 no longer
represents the motion over a single cage, but rather measures re-
laxation over several cages. We then ask whether a different wave

number for the SISF would reconcile the two measurements, that
is, if the relaxation of the SISF over the “cage" size matches the
relaxation of the MSD.

To this end, we repeated the measurement of the SISF decorre-
lation for several values of qa, for φ f inal = 0.58 and plotted the re-
sults in Figure 6. The most revealing result is that the relaxation
of the SISF at the wave number qa = 10, which is comparable to
the length scale probed by the plateau of the MSD (much smaller
than the size probed by qa = 3.25∼ particle size), is about an or-
der of magnitude faster than the relaxation at qa = 3.25, which
resolves exactly the difference between the relaxation times mea-
sured in the MSD and the SISF probed at qa= 3.25 in Figure 4(c).
The two measurement methods — MSD and SISF — now agree,
and both suggest that in the glass, the “cage" size that sets decor-
relation time is markedly smaller than a particle size. We can
now recognize that the SISF taken at qa = 3.25 in a glass actually
measures relaxation over several cages, explaining why decorre-
lation takes much longer than the MSD – and explains why the
SISF measured only at one wave number can fail to recover ongo-
ing diffusive relaxation captured by the MSD. We conclude that
the mean-square displacement gives a sensitive measure, in the
intransient regime, of the self-diffusion length and time scales
underlying relaxation during aging in a colloidal glass, and this
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Fig. 6 The SISF for qa = 3.25,5 and 10 from top to bottom at φfinal = 0.58.
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length scale decreases with increasing volume fraction as the pu-
tative glass transition region is traversed.

Overall, our results suggest that glassy relaxation is a two-step
process of cage melting via correlated (but not collective) motion,
followed by long-time self-diffusion that relaxes the glass into the
intransient state. The fact that the decoupling between the MSD
and the SISF emerges at the onset of aging dynamics, i.e. around
the putative glass transition at φ ≈ 0.56 where long-range motion
is suppressed, suggests a change in the mode of self-diffusion. We
discuss this next.

3.3 “Dense diffusion" as a mechanism of glassy relaxation

The key results thus far are that both the MSD and SISF con-
firm that self-diffusive dynamics emerge well into the glass and
act to relax the glass toward the intransient state; and that this
long-time self-diffusion in a colloidal glass occurs over very short
length scales – much smaller than a particle size. This contrasts
with the long-distance motion required in familiar models of long-
time self-diffusion, where cage-to-cage migration enables long-
time decorrelation over long distances required for particles to
explore many other configurations81,82,87,88. Those prior theo-
ries of long-time self-diffusion have focused on the contact value
of the radial distribution function, g(2), that grows with volume
fraction, suggesting that the cage size grows and the long-time
diffusion becomes cooperative as it involves more and more par-
ticles. This is in contrast to what we have already shown: that the
emergence of long-time self-diffusion is facilitated by a lengthy
correlated motion, both of which occur at a length scale only
a fraction of one particle size. The key idea to preserve is the
exploration of many configurations essential to decorrelation; in
the intransient state, the system must sample sufficiently many
configurations to decorrelate from its original state. However,
our dynamical data show that the configuration sampling process
happens over a length scale much smaller than one particle size.
The question then becomes, how does it encounter sufficiently
numerous configurations within a very small volume for its mo-
tion to decorrelate?

We propose that this small-scale long-time motion is actually
the emergence of a “dense diffusion" regime representing a dis-
tinct form of long-time self-diffusion. Recall that the long-time
self-diffusion is an ergodicity-restoring process where particles
lose memory of past configurations. In suspensions with volume
fractions far below maximum packing, all particles explore many
different local arrangements by undergoing a random-walk pro-
cess over long distances. At lower volume fraction there is sig-
nificant space between the particles, facilitating this exploration;
for this same reason they must wander long distances to decorre-
late their motion, because there is a dilute configurational space
(Figure 7 top row). Over short length scales, a particle essen-
tially samples only the solvent (i.e. no particle configurations are
sampled); only over longer distances, when particles develop cor-
related motion as shown in the caging plateaux in the MSD, can
they recognize a cage, and beyond this distance particle motion
decorrelates and long-time self-diffusion emerges. As concentra-
tion increases, this plateau becomes more pronounced. Thus,

long-time self-diffusion is typically viewed as long-range motion,
and it is ergodic: the configurations surrounding each particle
are on average the same as the configurations probed by a tracer
particle exchanging positions with other particles over long dis-
tances.

However, in very dense suspensions near to the glassy state,
particles are constrained in tight structures. The dense region
around a tracer particle creates a dense configurational space as
well. Even though particles are restricted to a small volume and
cannot trade places with others, now small movements of the
neighboring particles around a tracer generate numerous differ-
ent configurations; combined with its own small movements, the
tracer particle can encounter these many configurations (Figure
7 bottom row). The neighboring particles of the nearest neigh-
bors undergo the same small motion, essentially cascading con-
figurations far away to the tracer particle. Thus, instead of the
surrounding cage melting and letting the tracer particle wander
out, the tracer’s motion decorrelates as it moves within its origi-
nal cage, which deforms into entirely new configurations. That is,
the cage deformation process is caused by all further surrounding
particles cascading very small-scale relaxations to their neighbors
and eventually to the tracer particle. In this way, the tracer sam-
ples the entire suspension wandering a small fraction of its own
size.

The contrast between the two configurational sampling mech-
anisms can now be distinguished via comparison of Figure 3(a)
with Figure 4. In supercooled liquids (Figure 3), particles can
travel much farther than a particle size — even infinitely far —
the familiar cage-to-cage migration in mobile dispersions. In con-
trast, in very dense suspensions (Figure 4) particles enter the
long-time regime over a length scale much less than the particle
size, showing that each particle is confined within the volume of
its original cage, but the configuration of the cage has rearranged
so substantially that the particle sees a different configuration.
Without moving far beyond its original position in an absolute
sense, each particle loses memory of its original cage. We high-
light the fact that this is long-time self-diffusion of particles lib-
erated by short-ranged correlated motion that relaxes the cage,
rather than short-time self-diffusion as claimed in e.g. van Megen
et al. 52 .

This mechanistic model sheds new light on the colloidal glass
transition. We view the glass transition as a region in volume
fraction rather than a divergence point. Glassy arrest commences
at around φ = 0.56 where glassy aging emerges, but relaxation
via robust self-diffusion continues, and takes place over the parti-
cle length scale (as evidenced by the equivalence of S(qa = 3.25)
and the MSD). “Deep arrest" follows at around φ = 0.58, where
long-time self-diffusion transitions from long-distance to “dense
configuration", short-distance diffusion, over length scales much
smaller than a particle size (as evidenced by the decoupling of
S(qa) and MSD), and structural relaxation continues. This long-
time, short-distance self-diffusion remains well-separated (by a
long, glassy plateau) from short-time self-diffusion. Complete ar-
rest must then correspond to complete suppression of this dense
diffusion. Whether this complete arrest is the same as the “zero
temperature" vanishing of short-time self-diffusion remains to be
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Fig. 7 Different mechanisms of sampling configurations. In mobile suspensions (top row), the tracer particle (red filled circle) wanders far from its initial position, undergoing

long-time as well as long-distance self diffusion, to explore new configurations. Different colors indicate different paths the tracer particle can take, and each path ends up in

a different configuration. In glassy suspensions (bottom row), the bath is so dense that the tracer particle (red filled circle) is restricted, and it can only move by small amount.

However, new configurations are still formed by such small arrangements of many particles. The schematic shows that the tracer particle is surrounded by the same group

of neighboring particles, but different colors indicate that the neighboring particles can form different configurations by undergoing long-time, but small-scale, self diffusion.
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Fig. 8 Relaxation time vs age. (a) Relaxation time in simulation calculated from the MSD. (b) Relaxation time in simulation calculated from the SISF.

determined. We infer that only a strict topological constraint will
fully eliminate such dynamics, i.e. at random close packing, anal-
ogous to the absolute zero temperature in a molecular glass.

Our proposed mechanism suggests that relaxation time —how
long it takes for long-time diffusive dynamics (decorrelation) to
emerge — remains finite in a colloidal glass. One way to measure
the relaxation time is to fit the MSD data to Equation 9 or to fit
the SISF data to Equation 10. However, as is clear in Figure 4,
there are multiple curves for each final volume fraction owing to
glassy aging. The standard approach is to let the glass age to an
“intransient" state, where the MSD or SISF curves start to over-
lay one another, i.e., dynamics no longer change appreciably with
age. It is perhaps an oxymoron to call a glassy state an intran-
sient state, but the basic idea of measuring dynamics when they
do not change appreciably seems like a good idea. In simulations
we allowed the glasses to age for a time sufficiently long that the
long-time MSD and SISF curves overlap, indicating attainment of
an intransient state, up to φ = 0.595 (cf Figure 4. These intran-
sient data curves were fit at each volume fraction to Equation 9
(direct evaluation of the slope of the MSD curves produced iden-
tical results) and Equation 10 to give the the α-relaxation time,

τα . Figure 8(a) gives a plot of τα,MSD and Figure 8(b) gives
a plot of τα,SISF , versus the wait time. The results from all six
quenches are shown in the plots. In both (a) and (b), the relax-
ation time grows with time as the glass ages into deep arrest, but
for all quenches, each curve levels off to a plateau. The plateau
relaxation time is the terminal value which can then be employed
as an unambiguous measurement to test the idea of divergence.

In most prior approaches, the divergence of colloidal relaxation
time is assumed a priori, using ad hoc extrapolations of the relax-
ation time to extend from moderate to high volume fraction, e.g.
the Krieger-Dougherty equation21 or the Vogel-Fulcher-Tammann
fit15–17. These fits produce divergent behavior by construction,
which then permits extraction of the precise volume fraction at
which mathematical divergence takes place. Finding a divergent
fit is frequently invoked to declare the existence of an “ideal" glass
transition71,77,147, but this logic is circular because the origin of
the fits used to obtain divergence are built on an assumption that
an ideal glass transition exists. By analogue with the molecular
glass theory where the ideal glass transition is described as diver-
gent relaxation times at the Kauzmann temperature being above
absolute zero, TK > 0, an ideal colloidal glass transition is simi-
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Fig. 9 Relaxation time measured from the MSD and the SISF as a function of

volume fractions in hard-sphere simulations compared with literature. The detailed

normalization for each measurement is indicated in the legend. The volume fraction

represented here is the final volume fraction of each jump. Inset: relaxation time

measured from the MSD and the SISF for 0.51 ≤ φ ≤ 0.60; each set of data is

normalized to the value at φ = 0.51 to collapse the data there for easy comparison.

Black solid line in the inset is the VFT fit to relaxation time measured from the SISF;

the fitting parameters shown are for the raw data of the SISF in the main figure.

larly proposed as the vanishing of long-time relaxation dynamics
above “absolute zero temperature" in the volume fraction space –
the latter being where all dynamics vanish, including short-time
self diffusion (the point at which all dynamics vanish in colloids
is not well established or agreed; some infer it occurs with crys-
tallization71 while others argue it occurs at random-close pack-
ing77,147). Nonetheless, the existence of an ideal glass transition
has not been verified, and using it as an assumption is problem-
atic. Instead, one should quench to as high volume fraction as
possible and directly observe the dynamical behavior in the in-
transient state. If the relaxation time deviates from a divergent
fit, one can conclude that there is no smooth transition to diver-
gence.

Next, we plot the relaxation time in the intransient state as a
function of volume fraction. Figure 9 shows the relaxation time
computed in our simulations — both from the MSD (green filled
circles) and from the SISF (red filled circles). Alongside our data
we show data reported elsewhere in the literature2,98,148,149. Our
results agree well with the literature data. Testing for divergence
requires a closer look at the region 0.50≤ φ ≤ 0.60, which is plot-
ted in the inset. The relaxation timescales measured by both MSD
and SISF show the same behavior for φ < 0.56, which supports our
claim that the MSD and the SISF are equivalent in this regime. At
φ ≥ 0.56, we expect the two measures to differ because the cage
size (probed by the MSD) is no longer equivalent to a particle

size (probed by the SISF at qa = 3.25), and we indeed observe
the separation of two relaxation times in the inset. Strikingly,
the relaxation time extracted from the SISF starts to deviate from
the VFT scaling at φ ≥ 0.58 — growth slows — and the soften-
ing growth of relaxation time measured by MSD is even more
pronounced. That is, dynamics are faster than predicted by VFT
scaling. The apparent turnover of the curves occurs at the vol-
ume fraction where we predict the emergence of dense diffusion,
at φ → 0.59, and indicates that relaxation time remains finite.

Polydispersity is well-known to shift to higher volume fractions
the onset of glassy behavior. In the present study, we selected
a polydispersity of 7% that, according to theoretical estimates,
should lead to vanishing dynamics before φ = 0.58567. Clearly
this arrest is absent. Thus, even taking into account the effects
of polydispersity, we find that dynamics re-emerge well beyond
φg,MCT , and that the relaxation time remains finite well into the
putative glass.

Finally, to fully connect this finite relaxation to self-motion, we
plot the inverse of an estimated long-time self-diffusion coeffi-
cient in the inset of Figure 9. It follows a similar concentration
dependence as does the MSD and the SISF, consistent with a
marked deviation from the VFT function, which indicates finite
relaxation via single-particle dynamics.

Thus far we have confined our discussion to φ ≤ 0.595, where
it is not too difficult to reach an intransient state; in all cases,
diffusive dynamics re-emerge in well-defined terminal state, per-
mitting direct measurement of the relaxation time. Relaxation
remains finite for all φ ≤ 0.595, casting out the notion of a point
at which long-time dynamics vanish. More fundamentally, our
results indicate that the shift in dynamics is not an “ideal" glass
transition, up to at least φ = 0.595. In fact, there is only a smooth,
gradual transition in dynamics: the key features (intransient ter-
minal regime, emergence of long-time self-diffusin, finite relax-
ation time) are similar throughout the range 0.51≤ φ ≤ 0.595 (cf
Figure 3). The smooth, gradual transition from liquid-like dy-
namics to aging dynamics to strongly glassy dynamics suggests
that even at higher volume fractions, φ > 0.595, dynamics per-
sist. In addition, it would be surprising if the turnover of the
relaxation time in the inset of Figure 9 were to reverse at higher
volume fractions prior to maximum packing.

We now examine quenches beyond the previously identified
glass transition point, by conducting deeper quenches into the
glass. We present particle dynamics as they evolve over time after
quenches from φ = 0.50 to final volume fractions 0.56≤ φ ≤ 0.63
in Figure 10. Panels (a) and (b) are simulation data starting at
age 6,000a2/D after the quench. The long-time dynamics clearly
emerge following the glassy plateau, for all volume fractions,
even at φ = 0.63. The trend of the curves suggests that at longer
times (older ages), the curves could become fully linear. If an
intransient state exists, we thus expect that the long-time dynam-
ics are diffusive in what is perhaps a metastable state, similar to
what was shown above in Figure 4. However, since simulations
were not run long enough for φ ≥ 0.60, we do not demonstrate
that an intransient state exists beyond φ = 0.60, a perennial chal-
lenge very deep into the glass where the system is out of equilib-
rium. Nonetheless, the linear growth of MSD indicates continued
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“Equilibrium" mean-square displacement from PS-PNIPAM particles experiments.

“Equilibrium" here means that an intransient state which no longer depends on

wait time. (d) “Equilibrium" intensity autocorrelation g2 from PS-PNIPAM particles

experiments.

emergence of decorrelated particle motion above φ = 0.60, and its
emergence from a small cage size supports the model put forth
here that ”dense diffusion" within a small but configurationally
dense region relaxes the glass, arguably toward an intransient
state. Fluctuations in the long-time data become noticeable be-
yond φ = 0.60, which we believe reflects the physics of strongly
hindered relaxation: in our model of short-range, long-time diffu-
sion, the statistical sampling of the dense configuration space has
slowed down due to strongly restricted particle mobility. More re-
alizations of the simulation (or, equivalently, larger system size)
should reduce this noise. Overall these results for relaxation at
very high volume fractions confirm that individual particle dy-
namics continue to relax the structure well into the glass, that
dynamics do not vanish up to φ = 0.63, and that the model put
forth here of a dense diffusion regime explains the short-distance,
long-time dynamics that produce this relaxation.

Panels (c) and (d) of Figure 10 are experimental data from the
present study; the MSDs are shown in Panel (c), and the inten-
sity autocorrelation functions g2 are shown in Panel (d). In our
PS-PNIPAM experiments, each volume fraction can reach a sta-
tionary “equilibrium" state, yet the long-time dynamics are not
completely suppressed either; in fact the long-time dynamics re-
main quite diffusive for all volume fractions explored, possibly
due to softness of the particles that allows additional relaxation
modes via deformation150. The intensity autocorrelation function
measured in experiments agrees qualitatively with the SISF mea-
sured in the simulations, in terms of the emergence of a plateau,
where an upward shift of both sets of curves with increasing vol-

ume fraction corresponds to the downward shift of the MSD, and
the lengthening of the plateau corresponding to tighter cages.
These results provide further supporting evidence that there is
still small-scale particle rearrangement in these ‘glassy’ systems,
and it drives ongoing system relaxation.

In summary, deep into the glassy regime, long-time self-
diffusion still emerges, in the form of a “dense diffusion" regime,
in contrast to the long-range motion in the liquid regime. The re-
laxation dynamics slow down with volume fraction, but also oc-
cur over a shorter length scale, that is a “cage" size much smaller
than the particle size, thus the relaxation time does not diverge
before random close packing. While particles can move infinitely
far away from their initial position to sample configurations in a
mobile suspension, in glassy systems particles are restricted in a
small volume; instead, they cascade configurations to their neigh-
bors, essentially allowing the tracer far away to sample the entire
configurational space. This process eventually ceases when the
slowing down of dynamics outweighs the increase of density of
configurations, corresponding to a full dynamical arrest at ran-
dom close packing.

4 Discussion and Conclusions
We have conducted a detailed computational study of the col-
loidal glass transition in a model colloidal glass, accompanied by
experiments. Despite decades of study, the location and mecha-
nistic process of colloidal vitrification has remained murky. While
Mode Coupling Theory demonstrated the qualitative result of di-
vergent growth of relaxation time observed in experiments, MCT
substantially under-predicted the volume fraction of divergence,
φg,MCT = 0.525. Although ad hoc modification of MCT to account
for size polydispersity, particle roughness, and hydrodynamic ef-
fects revised the value to φg,MCT ≈ 0.581, more or less to match ex-
perimental observations, experimentally-obtained values for the
glass transition point are the product of extrapolation using a
fitting function that prescribes divergence of the relaxation time;
different functional forms of divergence trivially change the glass
transition point. Meanwhile, a separate avenue of inquiry aimed
to correct MCT’s under-prediction by incorporating an activated
relaxation process that permits relaxation for φ > 0.525 but slows
divergently with increasing volume fraction. RFOT and ABHT
each hypothesize cooperative motion over a distinct length scale,
and a mechanistic model for how motion over this length scale
grows more difficult with increasing volume fraction. For RFOT
applied to colloids, the barrier to relaxation is proportional to the
size of a growing particle cluster that grows to infinite size at
maximum packing. However, the theory relies on the existence of
an ideal glass transition that again prescribes rather than predicts
divergence. ABHT’s elastic cage model predicts no divergence to
occur where, again, cooperative motion permits ongoing relax-
ation. In both cases however, the lack of evidence of cooperative
dynamics leaves the mechanistic model of glassy relaxation un-
clear.

From this rich scientific history we identified four primary un-
resolved issues: (1) whether cooperative motion drives colloidal
glassy relaxation processes; (2) whether relaxation time formally
diverges and, if so, at what volume fraction; (3) what process
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enables dynamics to decorrelate within the putative glass region;
(4) what is the driving force for such dynamical process? These
remain unresolved because divergence is prescribed and the co-
operative motion claimed to be the mechanism of relaxation re-
quires large-scale structure or dynamics not observed. Both errors
emerge from the difficulty of quenching deep into the glass and
of making detailed observations of individual particle motion. In
the present study we leveraged the power of dynamic simulations
to overcome these barriers, and constructed a novel size-jump al-
gorithm and to quench deep into the glass, while monitoring the
displacements of 55,000 hard-sphere colloids during and follow-
ing the quench.

We first examined the consensus28,35,36,38,71,76 that collective
motion within dynamically heterogeneous regions of several par-
ticle sizes drives glassy relaxation in colloids – an assertion not
supported with measurements. To interrogate this idea, we mea-
sured and compared the self- and coherent-intermediate scatter-
ing function over length scales larger than one particle size. Prior
studies focus on the wave number corresponding to motion over
a single particle size, but we recognized that motion over that
length scale is at best an ambiguous indication of cooperative
motion. We measured the CISF and SISF over a range of wave
numbers, finding that the magnitude of the CISF is very small
compared to the SISF, from which we conclude that there are
no appreciable collective dynamics for structures larger than a
particle size, and surmised that long-time relaxation occurs via
long-time self-diffusion.

Having eliminated large-scale collective motion as the primary
relaxation mechanism, we shifted our focus to how single-particle
dynamics evolve in the glass. While most experiments search for
divergent relaxation time by examining the SISF at a single wave
number corresponding to motion of a particle size, we recognized
that relaxation occurs over many length scales in a concentrated
dispersion. We thus measured the mean-square displacement,
which automatically probes many length scales, and comparison
of SISF to MSD at various quench depths and at long wait times
(ages) uncovered four important results: first, we demonstrated
that colloidal self-diffusion drives relaxation to the intransient
state; second, such diffusion persists deep into the glass even up
to φ = 0.63; third, the range of diffusive motion corresponds to a
cage size that is only a fraction of a particle size, and shrinks with
quench depth; and fourth, there is a breakdown in the equiva-
lence between cage size and particle size.

The plateau height in the MSD reveals the physical cage size;
it is much smaller than a particle size and shrinks with quench
depth — but not with age — explaining the decoupling of the
SISF and the MSD. But even though particle dynamics slow dra-
matically as colloidal volume fraction increases, we show that the
length scale over which decorrelation occurs also shrinks, permit-
ting long-time diffusive relaxation well above φg,MCT. From these
results we showed that colloidal glassy relaxation occurs via a
two-step process comprising correlated self-motion that melts the
glassy plateau, followed by short-range, long-time self-diffusion
that relaxes the glass to the intransient state.

We thus propose that the colloidal glass transition is a shift from
long-ranged, long-time self-diffusion to short-ranged, long-time

self-diffusion, where a particle need travel smaller and smaller
distances to explore many configurations and decorrelate its mo-
tion. As particle volume fraction increases, the densely packed
structure does indeed reduce particle mobility, but also densifies
the local configurational space. Thus, long-time self-diffusion still
emerges as particles sample different configurations, but requires
them to explore only a very small volume. All particles in the
glass execute similar local exploration, cascading many configura-
tions from the far field toward a test particle, allowing the tracer
to sample the entire suspension without wandering far from its
starting point. We refer to this short-range, long-time exploration
of dense configuration space as dense diffusion.

Our finding that the increasing density of configuration space
underlies the persistence of relaxation deep into the glass sug-
gests an entropic driving force — possibly related to a contin-
ued search for crystalline structure. The fact that colloidal glassy
relaxation dynamics do not occur with diverging length or time
scales, but rather emerge at shorter and shorter length scales,
casts out the idea that the glass transition is a thermodynamic
transition. An examination of osmotic pressure and coordination
number may be more revealing of this driving force.

In terms of outlook, the natural next step is to explore the role
played by hydrodynamic interactions, particle softness, or par-
ticle roughness, the latter being straightforward to model via a
WCA/harmonic/Hertzian soft potential. This would potentially
improve direct comparison to experimental systems. Future study
should also explore the role of polydispersity in the dynamic
“changeover" regime, whether hard particles in experiments can
more closely match simulation results, and the role of hydrody-
namic interactions on the transition itself.
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