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Failure of confined granular media due to pullout of an intruder:
From force networks to a system wide response

Srujal Shah,a Chao Cheng,b Payman Jalali,a and Lou Kondic∗b

We investigate computationally the pullout of a spherical intruder initially buried at the bottom of a
granular column. The intruder starts to move out of the granular bed once the pulling force reaches a
critical value, leading to material failure. The failure point is found to depend on the diameter of the
granular column, pointing out the importance of particle-wall interaction in determining the material
response. Discrete element simulations show that prior to failure, the contact network is essentially
static, with only minor rearrangements of the particles. However, the force network, which includes
not only the contact information, but also the information about the interaction strength, undergoes
a nontrivial evolution. An initial insight is reached by considering the relative magnitudes of normal
and tangential forces between the particles, and in particular the proportion of contacts that reach
Coulomb threshold. More detailed understanding of the processes leading to failure is reached by
the analysis of both spatial and temporal properties of the force network using the tools of persistent
homology. We find that the forces between the particles undergo intermittent temporal variations
ahead of the failure. In addition to this temporal intermittency, the response of the force network
is found to be spatially dependent and influenced by proximity to the intruder. Furthermore, the
response is modified significantly by the interaction strength, with the relevant measures describing
the response showing differing behavior for the contacts characterized by large interaction forces.

1 Introduction
The processes related to failure in soft solids have been explored
for a long time, and in particular during last couple of decades
a significant progress has been achieved; excellent review arti-
cles are available, discussing soft solids in general1, failure in
the context of fracture and avalanching2, and related issue in the
context of glass transition of amorphous materials3, among other
research directions. In the context of granular matter, the con-
cept of failure is closely related to jamming, another topic that
has produced a significant interest, see4–7 for reviews. In particu-
lar, a close connection between particle scale information, includ-
ing local contact networks, and macroscale rheology of sheared or
compressed granular materials, has been established. In addition,
a point was made years ago8,9 that not only contact networks per
sé are important in governing the system response, but also their
strength; this point will be of particular relevance in present work.

In this paper, we focus on a system in which the connection
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between contact and force networks, and material failure, can be
analyzed in detail. We consider a spherical intruder, large com-
pared to particles size, that is initially buried in a granular col-
umn. The intruder is exposed to an upward pullout force which
increases with time until the material fails, similarly as considered
recently in two dimensions (2D) in experiments with photoelas-
tic particles10, and even more recently in 3D experiments11. To
some degree, this pull-out setup may be considered as a reverse of
the impact of an object onto the surface of granular material12,13,
although one may wonder to which degree slowing down a mov-
ing intruder is similar to the failure due to an applied force on an
initially static object. Another related setup of relevance is the one
of a solid rod that is pulled out of a granular column. This setup
was analyzed both computationally and experimentally, suggest-
ing that, once the rod starts to move, shear occurring in a cylin-
drical shear zone surrounding the rod may lead to local jamming
that increases frictional resistance14.

After discussing general, system-wide response to applied pull-
out force, we will focus in particular on the question of particle-
scale response, both from static and dynamic points of view. As
pointed out above, even if the intruder and the granular parti-
cles are stationary, there could still be changes in the network de-
scribing mutual interactions between the granular particles, par-
ticles and the intruder, as well as particles and the walls. In the
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present context, such a network is weighted by the strength of
the force between the particles. This strength can be quantified
by either normal, tangential, or some combination of these force
components. By now it has been established that the properties of
such force network are crucial for the purpose of developing bet-
ter understanding of granular systems in the context of analysis
of static packs15, shear16,17, compression18–20, wave propaga-
tion21,22, or impact23; see also7 for a recent review. Reaching
this understanding is however complicated by the complexity of
the force networks due to a large amount of time-dependent data.
Obviously, some type of simplification is needed; in addition, one
would like to use measures that are precisely defined and that al-
low for a meaningful comparison of the force networks at differ-
ent time instances, since we will be also interested in a dynamic
setting.

In recent years, significant progress has been made towards
developing better understanding of force networks using a va-
riety of tools, including force network ensemble analysis24–26,
statistics-based methods27–30, network type of analysis21,31–34,
and application of topological methods, more precisely persistent
homology18,19,35–41; see7,42 for recent reviews. While different
methods provide a complementary insight, we will focus here on
persistent homology based approach since it allows for significant
data reduction, for formulation of objective measures describing
the force network, as well as for precise comparison of differ-
ent networks in a dynamic setting. Such an approach was used
with success to discuss force networks for the systems that were
compressed18,19, vibrated40,41, or sheared43, as well as for the
analysis of experimental data17,23. For the problem considered
in the present paper, one crucial aspect of the method is that it
allows for consideration of the strength of interaction between
the particles. This will be an important quantity in the analysis
of the results. The robustness (and simplicity) of the measures
describing the considered network will allow us to obtain both
more precise and more intuitive understanding of the connection
between the system-wide failure and force networks properties.

This manuscript is organized as follows. We continue in Sec. 2
by discussing the methods used, providing first the basic descrip-
tion of the system considered in Sec. 2.1, and then describing
briefly the discrete element techniques employed in simulations
in Sec. 2.2, normalization and scaling in Sec 2.3, followed by
again brief description of the persistence homology techniques
that allow for the analysis of time-dependent weighted networks
in Sec. 2.4. Then, in Sec. 3, we discuss the main results, starting in
Sec. 3.1 with the macro-scale results describing intruder dynam-
ics, pullout force, as well as the force on the system boundaries.
In Sec. 3.2, we analyze the force network, describing in detail the
process of failure. Section 4 is devoted to the conclusions of the
present study and to the discussion of possible future research
directions.

2 Methodology

2.1 General setup

The simulation geometry consists of a vertical column of diameter
Dc filled with monodisperse spherical particles and a spherical

intruder. The intruder is initially at contact with the center of the
bottom of the column. Two column sizes are used, motivated by
the ongoing experimental efforts11. The columns are filled with
glass beads to a specified height, H, by pouring them randomly
from the top at a certain mass flow rate. The initial configuration
of particles and intruder is shown in Fig. 1.

Fig. 1 (a) Initial configuration of particles filling the column with the
intruder at the bottom. (b) A snapshot showing the configuration of
particles and the intruder as it travels upwards after failure. Note that
the particles in the front half of the column are not shown for a clear
visualization. An animation of the pullout process showing the forces on
particles is available as Supplementary Material44.

After filling to a desired height, the granular material is re-
laxed until particles velocities are near zero. Once the particles
come to a rest, the intruder is pulled vertically upward by a force,
Fp, which is specified as a linear function of time with the slope
of 1 N/s. At a certain force, namely the pullout force at failure
Fpf(H,Dc), the granular material fails and the intruder leaves the
granular bed in fraction of a second. Figure 1b) shows a snapshot
of the assembly where the intruder is halfway out of the granular
bed; see also Supplementary Material44, showing an animation of
the pull out process. For further illustration, Figure 2 shows the
forces between granular particles just prior to the failure. Nor-
mal and tangential forces between the particles are displayed in
this figure as a function of radial and vertical coordinates, and
averaged over the angular direction. We note a significant mod-
ification of the inter-particle forces in the region just above the
intruder, despite the fact that the intruder itself (and the granular
particles, as we will discuss later in the manuscript) are essen-
tially static.

2.2 Computational approach

2.2.1 DEM solver

We use the open source software, LIGGGHTS, for discrete ele-
ment method (DEM) simulations of our granular system45. The
DEM solves the equations of motion for individual particles and
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Fig. 2 Forces between granular particles just before failure at the time
when the pullout force (nondimensionalized as discussed later in the text)
is Fp = 50, as a function of r,z, both scaled by the the intruder diameter.
The intruder itself is at the bottom left corner of the figures, and the
visibly step-like contour for intruder surface is the result of binning process
used for the averaging of forces. The simulation parameters correspond
to the reference case (circled data point in Fig. 4) as presented later in
the paper. (a - b) Normal force between the particles in the r (a) and z
(b) directions. (c - d) Tangential force between the particles in the r (c)
and z (d) directions.

identifies the contacts and contact forces with neighboring parti-
cles. Applying the Newton’s second law for a particle j with mass
mj, the moment of inertia Ij, translation velocity, ~vj, and angular
velocity, ~ωj, the equations of motion can be written as follows

mj
d~vj

dt
= ∑

k

(
~Fn,jk +~Ft,jk

)
+mj~g,

Ij
d~ωj

dt
= ∑

k

~Tjk,

where ~Fn,jk and ~Ft,jk are the normal and tangential components
of the contact forces between particles j and k. ~Tjk is the torque
imposed by the tangential component of the contact force from
particle j on particle k, and ~g is the acceleration due to gravity.
The normal and tangential forces contributing in building the two
terms of stiffness and damping coefficients can be computed from
the modified Hertz-Mindlin model as below46,47

~Fn,jk =−
4
3

Y ∗
√

R∗δ
3
2

n ~njk +2

√
5
6

β
√

Snm∗~vn,jk, (1)

~Ft,jk =−8G∗
√

R∗δn~tjk +2

√
5
6

β
√

Stm∗~vt,jk, (2)

where Sn = 2Y ∗
√

R∗δn and St = 8G∗
√

R∗δn. Here, δn is the normal
overlap distance between the particles,~njk is the normal unit vec-

tor directed from the center of particle j to that of particle k,~tjk is
the tangential displacement vector calculated by integrating the
relative tangential velocity at the contact over time, ~vn,jk and ~vt,jk

are the normal and tangential components of the relative veloc-
ity of particles j and k. The expression for the torque is given as
~Tjk = Rj~njk× ~Ft,jk. The magnitude of the tangential force is trun-
cated by the Coulomb friction criterion: ~Ft,jk ≤ µ~Fn,jk, where µ is
the friction coefficient. In the above Eqs. (1 - 2), the coefficient
β , expressed as a function of restitution coefficient e, is given by

β = lne/
√

ln2 (e)+π2. The other quantities used in Eqs. (1 - 2)
are given as follows

1
Y ∗

=
1−ν2

j

Yj
+

1−ν2
k

Yk
,

1
R∗

=
1
Rj

+
1

Rk
,

1
m∗

=
1
mj

+
1

mk
,

1
G∗

=
2
(
2−νj

)(
1+νj

)
Yj

+
2(2−νk)(1+νk)

Yk
,

where Y ∗ is the effective Young’s modulus, G∗ is the effective
shear modulus, ν is the Poisson’s ratio, R∗ is the effective ra-
dius and m∗ is the effective mass. Similar equations as the above-
mentioned ones are used to compute particle-wall contact forces,
in which particle k is assumed to be a particle with infinite radius
and mass.

2.2.2 Simulation details

Table 1 Mechanical properties of materials and simulation parameters.
These parameters are used throughout the paper if not specified differ-
ently.

Mechanical Value Mechanical Value
properties properties
Young’s modulus, GPa Friction coefficient

intruder, bottom wall 200 intruder-glass beads, µig 0.45
glass beads 10 glass beads-glass beads, µgg 0.4
sidewall 3 glass beads-sidewall, µgw 0.3

Poisson’s ratio Restitution coefficient
intruder, bottom wall 0.3 intruder-glass beads 0.8
glass beads 0.2 glass beads-glass beads 0.9
sidewall 0.4 glass beads-sidewall 0.85

Simulation Value Simulation Value
parameters parameters
Density, kg/m3 Diameter, m

intruder 7728 intruder 0.0349
glass beads 2500 glass beads 0.005

Mass of intruder, kg 0.172 DEM time step, s 5×10−7

Table 1 specifies the mechanical properties of materials and
simulation parameters. The mechanical properties of materials
as given in Table 1 represent glass beads as the granular material,
the sidewall of the column has properties close to PVC, and the
intruder and bottom wall of the column have properties close to
steel, motivated by recent experiments11∗. The Young’s modulus

∗Since the experiments, that will be reported elsewhere, were carried out using sand
and involve huge number of particles, we do not discuss direct comparison in the
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and the Poisson’s ratio were obtained from literature48–50.
The value of the restitution coefficient between glass beads is

taken as 0.950. The restitution coefficient of steel is typically in
the range of about 0.6−0.9, and a value of 0.8 is assigned here for
steel and glass bead contacts. The restitution coefficient between
glass beads and sidewall is assigned as 0.85. The relevance of all
above-mentioned values of the coefficient of restitution is found
to be insignificant in present simulations as the granular material
remains essentially in static state prior to failure.

2.3 Normalization of relevant quantities

To obtain a better insight into the physics of the studied system,
and for simplicity, we normalize the relevant quantities using the
intruder diameter, Di and the reference force, F0. The choice of
F0 is based on the weight of a reference volume, which is taken as
a cylinder of diameter Di and height Di, filled with granular mat-
ter. Since the volume fraction changes (very slightly) with filling
height, H, due to gravitational compaction, we choose the aver-
age value obtained in simulations (that use different H), giving
the value of F0 = 0.425 N. We will see later in Sec. 3.1 that the
force scale chosen as specified is natural for the considered prob-
lem. From this point, all the results are given using Di and F0 as
the scales for the length and force, except if specified differently.
At a couple of places we will also need a time scale, which for
simplicity we take as

√
Di/g.

We note that the pullout force, Fp, does not include the weight
of intruder. Therefore, the value of Fp = 0 corresponds to the time
at which the applied force on the intruder is exactly equal to its
weight.

2.4 Persistent homology

For the present purposes, persistent homology could be thought
of a tool for describing a complicated weighted network (such as
the one describing interaction forces between the particles) in a
form of diagrams, so called persistent diagrams (PDs). These di-
agrams are obtained by filtration, or thresholding, the strength
of the interactions between the particles. As an example, let us
assume that this strength is quantified by the normal interaction
force between the particles in the system. Then, the simplest per-
sistence diagrams, which we refer to as β0 PD for the reasons
that will become clear shortly, essentially traces how ‘structures’
(could be thought of as ‘force chains’, without attempting to de-
fine them) appear as a filtration level is decreased, or disappear
as two structures merge. Such a PD contains rather complete in-
formation about how connectivity between the contacts depends
on their strength. Figure 3 shows examples of the PDs computed
at a given time for the system considered in the present paper
(both for β0 discussed above, and for β1, that describes loops or
cycles, and discussed further below). Each point (generator) in
this diagram has two coordinates, ‘birth’ - specifying when (at
which filtration level) it appeared, and ‘death’ - specifying when
it disappeared, due to merging with another structure. Note that

present paper.

the term ‘persistence’ in this context refers to the force range over
which a certain structure ‘persists’, or survives, as a considered
filtration level is changed. The interested reader could find rather
detailed description on how these diagrams can be (properly) de-
fined and computed in39, and a simplified description including
toy examples and insightful animations in19. For the purposes of
the present paper, we list here few key features of PDs that are
important for understanding their meaning, relevance, and use:

Fig. 3 Examples of persistence diagrams, PDs, for a) components (clus-
ters), β0, and b) for loops (cycles), β1. The axes show the force level at
which a structure appears (B) and disappears (D) The lifespan L = B-D
illustrates the force threshold range over which a a structure persists.
These particular PDs were obtained for the reference case discussed later
in the text (circled data point in Fig. 4), and for pulling force Fp = 9 (di-
mensionless value, as discussed in Sec. 2.3). See Supplementary Material
for the animations showing full evolution of the PDs as Fp increases and
failure is approached51.

• Persistent diagrams live in a metric space and therefore can
be compared in a meaningful manner. This means that one
can compare the weighted force network at different points
in time, which is a crucial feature if one wants to understand
an evolving system.

• Since the description of a weighted force network in terms of
persistence diagrams provides a significant data reduction,
there is an associated loss of information, and therefore PDs
do not provide full information about the underlying net-
work. However, the information contained in PDs still pro-
vides for all practical purposes a reasonably precise insight
not only regarding the number of structures, but about how
their connectivity changes as one considers different thresh-
olding (filtering) levels.

• The number of PDs for a given weighted network is equal to
the number of spatial dimensions: i.e., for a 3D system con-
sidered here, in principle there are three PDs that can be as-
sociated: β0 PD describing clusters; β1 PD describing loops
(cycles), and β2 PD describing three dimensional holes. In
the present work, we do not find β2’s, and therefore focus on
β0 and β1 PDs. Figure 3 shows that the β0 generators appear
on higher force level than β1 ones, since β0 structures need
to merge to form loops, and this happens on lower force lev-
els. The points at the death level D = 0 in Fig. 3b) show
all the loops that formed, but never died: a loop dies at the
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threshold level D when it is filled up with contacts with the
force of at least D, and for many loops this does not happen;
see39 for more details. On the other hand, all β0 compo-
nents disappear at nonzero D, since for low values of force
all separate clusters merge.

• A PD provides information about a weighted network that is
threshold independent: there is no need to specify a thresh-
old level to describe the considered network. A PD provides
information about all threshold levels at once. This is a ma-
jor difference compared to other measures describing force
networks, which often require separation of a force network
into a ‘strong’ or a ‘weak’ network. With this being said, one
can in principle consider only a subset of points in a PD, and
focus on a particular range of interest. For example, for the
diagram shown in Fig. 3, one could consider only the points
found for large thresholds, describing a strong part of the
force network, or the points for small thresholds, describing
a weak part of the network.

• The number of ‘force chains’ or ‘clusters’ of connected con-
tacts (or the number of loops (cycles)) characterized by a
force larger than a specified threshold can be easily extracted
from the PDs, providing therefore information about Betti
numbers, βn, that essentially measure a number of features
of a given type. Note however that the number itself does
not provide any information about connectivity. Further-
more, one can show39 that Betti numbers are susceptible to
noise, meaning that a small change in the input data could
lead to a large change of the Betti numbers. Finally, the βn’s
are threshold dependent, and therefore provide less com-
plete information about the underlying weighted network.

• The PDs are essentially point clouds, and an appropriate
measure for their quantification needs to be developed. One
possibility is based on the idea that both the number of
points in a diagram, and for how long (that is, for how many
thresholds levels) a point persists, are appropriate measures
describing the force network between particles. Using land-
scape as an analogy, the number of points in β0 PD spec-
ifies the number of (mountain) peaks, and their lifespan
(see below) describes how well developed these peaks are,
or, to push the landscape analogy further, how high they
are compared to the ‘valleys’ that surround them. The con-
cept of lifespan, L is illustrated in Fig. 3, as essentially the
difference between birth (B) and death, D, coordinates, so
L = B−D. Both measures could be combined into one by
defining total persistence, TP, as a sum of all lifespans. We
will be using TP in discussing some properties of the force
networks in the considered system.

• The reader should note the enormity of the data reduction
described so far: first a weighted force network is reduced
to a point cloud (PD) and then this point cloud to a single
number (TP). Such a reduction clearly leads to huge data
loss, but as we will see, still provides an insightful informa-
tion about the underlying weighted network.

PDs provide information about the state of the system at a
given time, and do not include any information about the dy-
namics. As pointed out, however, PDs can be compared, and in
particular the concept of distance between PDs is well defined39.
The distance between two PDs could be thought as a minimum
(Euclidian) distance by which the points in one diagram need to
be adjusted to map them exactly to the other one; if the number
of points in two PDs is different, then extra points are mapped to
the diagonal. Stated formally

dW q(PD,PD′) = inf
γ : PD→PD′

(
∑

p∈PD
‖p− γ(p)‖q

∞

)1/q

. (3)

Here, dW q stands for the degree q Wasserstein distance, and PD,
PD′ are the two considered PDs. Computing the distance is a
computationally expensive process in particular for complex di-
agrams with many points. In the present work, we focus on
q = 2 for simplicity, and perform calculations using the method
discussed in Refs.52,53.

3 Results and discussion
We discuss main findings in this section, focusing first in Sec. 3.1
on the system-scale response, including the force at the failure
point, the influence of system boundaries, geometry, and material
parameters. These results set a stage for Sec. 3.2, where more
in-depth analysis of the failure process itself is discussed by con-
sidering the weighted force networks that form spontaneously be-
tween granular particles.

3.1 Failure: Macro-scale picture

3.1.1 Failure force

We start by discussing the magnitude of the pulling force applied
to the intruder that causes failure. Figure 4a) shows how the
pullout force at failure, Fpf, depends on the filling height, H, for
the two granular columns; at first we focus on the s symbols
(connected by the solid lines) which show the results obtained
using the friction parameters given in Table 1.

We see that Fpf increases with H, as expected, since larger H
leads to a larger pressure on the intruder. Figure 4a) (inset)
also clarifies the force scaling: with the choice of F0 specified
in Sec. 2.3, Fpf extrapolates to Fpf ≈ 1 as H → 1 (note that all
quantities are dimensionless). Furthermore, we observe that Fpf is
larger for the smaller diameter column, showing the relevance of
particle-wall interactions. This finding can be understood based
on an increased forces on the side walls (Janssen effect, see54

for a recent discussion), which are considered in more detail in
Sec. 3.1.2. Note that the effect of the sidewall on Fpf diminishes
as H decreases, since for small H we enter the hydrostatic regime
where the column size is not relevant. Figure 4b), which also
plots the results obtained using smaller particles (diameter 3 mm,
in contrast to 5 mm particles used in Fig. 4a while keeping Dc the
same) leads to a consistent conclusion: influence of the sidewall
decreases as the number of particles increases, since for smaller
particle sizes there are more particles between the intruder and
the sidewall.
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Fig. 4 (a) The pullout force at failure, Fpf, for different filling heights, H,
and for two different column diameters, (red), Dc = 1.49, and (blue) Dc =

1.75. s and t corresponding to the higher (given in Table 1) and lower
(discussed in the text) values of the friction coefficients, respectively.
The circled data point shows the reference case that is analyzed in detail
later in the paper. The inset expands the region for small H, showing
that Fpf → 1 as H → 1 ((purple) dashed line). (b) The pullout force at
failure, Fpf, as the size of particles is modified, and the tube diameter is
kept fixed at Dc = 1.49: (red) 5 mm particles (the same data as shown
in (a), and (green) 3 mm particles. Note that all quantities in this and
the following figures are dimensionless.

One important question involves the influence of friction co-
efficient on the pullout failure force. In the present DEM sim-
ulations, there are three relevant friction coefficients: intruder
- glass beads, µig, glass beads - sidewall, µgw, and glass beads
- glass beads, µgg. Figure 4 shows the influence of friction: s

were obtained using the values of friction coefficients given in
Table 1, and the values shown by t were obtained for lower val-
ues of friction coefficients (µig = 0.4, µgg = 0.35, and µgw = 0.25).
One could wonder which of the three friction coefficients is the
most/least relevant; to answer this question, we discuss the ref-
erence case (circled data point in Fig. 4) in more detail. The
Fpf for the reference case is 50.8. When only µig is reduced, we
find Fpf = 50.1; when µgg is reduced, Fpf = 46.6, and when µgw

is reduced, Fpf = 43.8. Thus, the effect caused by the change in
particle-wall friction coefficient is the most dominant, although
all friction coefficients influence Fpf. We note that these variations
are considerably larger than the ones found between different re-
alizations of nominally the same simulation, when initial particle

configurations were modified. This variability is less than 1%.
The relevance of particle-wall friction discussed above also sug-

gests a possible explanation for a slightly weaker influence of fric-
tion for a larger column diameter, Dc. Furthermore, the influence
of friction disappears for small values of H. This finding shows
that in the hydrostatic regime frictional effects do not influence
the failure process; it should be noted however that frictional ef-
fects may be important once the system fails and the intruder
starts to move, as discussed for the case of a rod pulled out of
granular matter14.

3.1.2 Parameter study

Here we compare the results obtained using the smaller column
diameter, and varying the height of the granular material, H. Fig-
ure 5a) shows the (vertical) z-component of the force exerted by
particles on the sidewall, Fw, versus the pullout force, Fp, as H
is varied. The reported values of Fw are obtained by averaging
the instantaneous values over a short time window (of duration
t ≈ 0.13).

We focus at first on the results obtained for large filling heights
in Fig. 5a). Clearly Fw grows with Fp, showing that the pullout
force is transferred via particles to the sidewall. This growth
is non-trivial however: as Fp increases, the difference Fp − Fw,
shown in the inset of Fig. 5a), reaches a plateau whose height
depends on H. Therefore, for small Fp, the coupling of Fp and
Fw is not complete, with Fp increasing faster than Fw. However,
for larger values of Fp, the coupling becomes stronger, with es-
sentially all the applied force transferred to the sidewall. The fact
that the height of the plateau is H-dependent suggests that the
forces between the particles (that may depend on both H and Fp)
play a role. We defer further discussion of this effect until consid-
ering these forces in Sec. 3.2.

For small filling heights (H = 1.78 and H = 2.21 in Fig. 5a))
the results are less clear, with non-monotonous growth of Fp and
Fp−Fw as H is increased; possibly in this regime inverse Janssen
effect discussed recently54 becomes relevant. We leave detailed
discussion of this regime for future work.

Next, we focus on comparing the results of simulations carried
out using different column diameters, Dc, with the height, H, kept
fixed. Figure 5b) shows the results: we observe Fw depends on
Dc, with the larger magnitude of Fw at the failure for smaller Dc.
The inset in Fig. 5b), which plots the difference Fp−Fw, shows
that the height of the plateau at which this difference saturates in-
creases as Dc increases, and the plateau itself becomes less clearly
defined. This again shows that for larger column diameters, the
wall forces become less important in helping the granular mate-
rial to avoid failure. This motivates us to analyse further the re-
sponse of the force networks prior to the failure. This is discussed
in the next section.

3.2 Road to failure

In this section we discuss the failure process itself, focusing on
a single choice of parameters, represented by the reference case
(circled data point in Fig. 4). To analyze the failure, we use the
measures that are appropriate for discussion of the static and dy-
namic properties of the system, starting from the classical ones,
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Fig. 5 The sidewall force, Fw in the (vertical) z direction exerted by the
particles. (a) Dc = 1.49 with variation of the filling height: H = 4.18 (solid
blue line), H = 3.78 (dashed orange line), H = 2.89 (dash-dot green line),
H = 2.21 (dotted red line), and H = 1.78 (loosely dashed purple line). (b)
H = 4.18 with variation of the column diameter: Dc = 1.49 (solid blue
line) and Dc = 1.75 (dashed red line).

such as forces, energies, and particle contacts, and then focusing
on the force networks between the particles and the particles and
the intruder.

Fig. 6 Average normal (dashed red line) and tangential (dotted red line)
forces, Fn,a, Ft,a, respectively, between the granular particles, and the
particles and the intruder (left vertical axis); z-position (solid blue line)
of the intruder (right vertical axis); Inset: average ratio of Ft/Fn.

3.2.1 Forces, Energies, Contacts

Figure 6 shows the normal and tangential average forces,
Fn,a, Ft,a, respectively, between the particles (and the particles and

the intruder), as well as the intruder’s z-position. We focus on the
time period for which the pulling force is positive (after subtract-
ing scaled intruder’s weight). Figure 6 shows that the dynamics
of the intruder is minimal before the granular system fails: note
that the whole range on the vertical z axis is just 1% of the in-
truder’s diameter (see also51). While for smaller values of Fp, Fn,a

does not change much, for larger Fp’s, Fn,a grows approximately
linearly with Fp. Since the change of Fn,a is considerable, in what
follows we will use this time-dependent value of Fn,a for normal-
ization of the results discussing properties of the force network.

Tangential force, Ft,a, also shown in Fig. 6, provides relevant
additional information. While Ft,a is smaller than Fn,a (being lim-
ited by the Coulomb threshold), the ratio Ft,a/Fn,a grows as failure
is approached. This result provides an initial insight regarding
failure: the particle contacts get increasingly loaded by the tan-
gential force, and approach sliding. Significant amount of sliding
contacts appears as a precursor to failure. The sliding effect is also
confirmed by the inset which shows the average of Ft/Fn value at
each contact (note that this quantity is not necessarily the same
as Ft,a/Fn,a). We also comment on the similarities of the insets
of Figs. 6 and 5, with both showing similar qualitative behav-
ior: this is not surprising since the tangential inter-particle force
clearly plays a role in determining Fw. For larger filling height,
H, the normal forces between the granular particles will be larger
due to gravitational effects and therefore the allowed range for
tangential forces would be larger as well, leading to stronger wall
force, consistently with the results shown in the inset of Fig. 5(a).

Continuing the discussion of sliding contacts, Fig. 7 plots three
quantities of interest: Ns, the ratio of the number of contacts that
have reached Coulomb threshold (sliding contacts) and the total
number of contacts; Nb, the ratio of the number of broken con-
tacts and the total number of contacts, and the ratio of kinetic
and potential energies of the granular particles, Ek/Ep (here Ek

includes only translation degrees of freedom, and Ep is measured
relative to the bottom of the column). All quantities are calcu-
lated over the time intervals of duration ∆t ≈ 0.84. While the
results are rather noisy, we can still reach some relevant conclu-
sions, which could be also verified by inspecting the inset of Fig. 7,
which shows an expanded view of the energy ratio and Ns. First
of all, very small values of Ek/Ep suggest minimal rearrangements
of the particles during the period before failure, consistently with
small Nb (note that the latter quantity is barely visible in Fig. 7,
showing that only small fraction of contacts breaks before fail-
ure). While detailed inspection of the data does not show any
correlation between Nb and Ek/Ep, the same conclusion does not
apply to Ns, for which we find significant (anti)correlation with
Ek/Ep. This result shows that, while reaching Coulomb thresh-
old may not lead to breaking of a contact, it may lead to sliding,
which reflects itself in an increase of kinetic energy. We note that
Ep itself is essentially constant before failure.

The results presented so far provide a basic idea about the
processes leading to failure: the tangential force increases at
particle-particle and particle-intruder contacts faster than the nor-
mal force; the number of sliding contacts increases as well, until
at failure point the Coulomb threshold is overcome and the in-
truder starts to move. Until failure occurs, the intruder is essen-

Journal Name, [year], [vol.],1–11 | 7

Page 7 of 11 Soft Matter



tially static, with the change of position measured as a small frac-
tions of the intruder diameter. Additional insight can be reached
by considering spatial and temporal properties of the force net-
work, as discussed next.

Fig. 7 (left) Ek/Ep (dashed red line): the ratio of kinetic and potential
energies of the particles; (right) Ns (solid blue line): the ratio of the
number of contacts reaching Coulomb threshold and the total number
of contacts, the orange solid line shows the running average of Ns; Nb
(dash-doted blue line): the ratio of the number of broken contacts and
the total number of contacts. Inset: expanded view showing Ek/Ep and
Ns illustrating frequent anti-correlation.

3.2.2 Force network and failure

The tools of persistent homology, discussed briefly in Sec. 2.4,
provide an extensive information about the force networks. We
start by discussing rather straightforward measures focusing on
the structures (clusters or loops) introduced in Sec. 2.4. For
brevity, we focus in this section on discussing the measures com-
puted using the normal force, Fn, only; the findings obtained by
considering the tangential forces are found to provide consistent
information with the one reported here.

Figure 8 shows the results for the β0 (a, c), and β1 (b, d), both
for the size, Sc (a, b) and the (Betti) numbers (c, d) of the struc-
tures. These quantities can be easily extracted from the corre-
sponding persistence diagrams: Betti numbers, β0, β1 could be
found by subtracting the number of components that die from
the number of components that are born above specified thresh-
old, and Sc is simply the number of contacts (with force above
chosen threshold) divided by β0 or β1. Consistently with the
results discussed in Sec. 3.2.1, Fig. 8 shows that the force net-
work evolves even while the intruder is almost stationary, and
the contact network is essentially unperturbed. This evolution is
particularly obvious when considering β1 structures for the large
thresholds values: the (average) size of β1 structures increases
significantly as Fp increases, see Fig. 8(b), while the correspond-
ing β1 decreases, Fig. 8(d), albeit not so fast (note the log scale on
the vertical axes). Basically, what happens here is that the loops
become smaller and their number grows as the pullout force in-
creases. The conjecture is that the loops play an important role

in stabilizing the system exposed to external forcing, consistently
with the findings reached by considering impact experiments23,
where loops were found to play a significant role in slowing down
an intruder entering the domain filled with particles. The changes
in the size and number of β0 structures are much more gradual,
but consistent, showing (again for the large thresholds) a slow
increase in the size and slow decrease in the number - essen-
tially, the clusters merge together and encompass more and more
contacts as the pullout force increases. Regarding the threshold
dependence, we note that the number of β0 structures is an in-
creasing function of chosen threshold for the range chosen: here
we are considering the range of thresholds at which we still have
many contacts (viz. the PD diagrams shown in Fig. 3 and the cor-
responding animations in Supplementary Materials44); for even
larger thresholds, β0 would decrease similarly as observed in a
recent study of suspensions43. We also note that the sizes, Sc,
of β0 and β1 structures are comparable at large thresholds, as
expected. We remind the reader that the force thresholds used
in this figure are normalized by the current value of the average
(normal) contact force plotted in Fig. 6.

Fig. 8 (a, c) β0 component (‘force chains’) size (a) and number (c); (b,
d) β1 component (loops, ‘cycles’) size (b) and number (d) for different
force threshold values (shown by the color bar). Note the opposing trend
of β0 and β1; e. g., Betti numbers for the clusters (β0) increase for
the considered thresholds since for small threshold values all clusters are
connected; the loops (β1) (d) are more numerous for small threshold
values due to merging of the clusters. Note the use of log scale on the
vertical axes.

The concept of clusters and loops is useful since these quanti-
ties provide an initial insight, and also since they can be related
to the commonly considered ‘force chains’ and ‘cycles’. However,
this concept suffers from a significant deficiency, and that is the
threshold dependence. This deficiency is removed by the total
persistence, which essentially merges the complete information
(for all thresholds) into a single number, as discussed in Sec. 2.4.
Figure 9 shows the total persistence, TP for β0 (and for β1 in the
inset) structures. The TP for β0 structures (clusters) increases
continuously with the pullout force, showing again that restruc-
turing of the force network takes place (even when rescaling by
the average time-dependent normal force). We could now ask
whether TP increases across the whole range of the interaction
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forces, or whether the increase is concentrated in a particular
range. Figure 9 shows that the latter is correct: the values of
TP for the β0 structures characterized by the force significantly
larger than the average force, Fn,a, increase strongly, while the
TP for the structures born at the medium or weak level remain
essentially the same. The inset of Fig. 9 shows that the trend
for β1 structures (loops) is different, since TP decreases as Fp in-
creases; we discuss this behavior further below.

One could ask what is the nature of the changes in the force
networks that leads to such a strong increase of TP for the β0

structures born at a large force level: to use a landscape analogy,
one could ask whether the hills become higher, or there are more
hills as Fp increases (recall that TP essentially combines the in-
formation about lifespans, L , of the generators in PD’s, and the
number of generators). To answer this question, Fig. 10 shows
the number of generators. Most interestingly, we observe that the
number of β0 generators is essentially constant, saying that the
reason for the increase of TP for strong forces is an increased
range of the interaction forces: the strong generators are born at
even higher force levels. Regarding the loops, Fig. 10b), d), f)
show an increase of the number of loops in the strong region, on
the expense of the medium ones, consistently with the results for
TP in Fig. 9 (inset); however overall number of generators de-
creases, leading do a decrease of total TP. Supplementary Mate-
rial51 provide more detailed insight regarding the force network
evolution prior to failure.

Fig. 9 Total persistence, TP for β0 structures (clusters) (main figure)
and for β1 structures (loops) (inset). The total value (solid blue line)
of TP is shown, as well as the values of TP for the birth coordinate in
strong range (dashed orange line) (> 2.5), medium range (dash-dotted
green line) [1.0 − 2.5] and weak range (dotted red line) [0.0 − 1.0].

Another question to ask is to which degree TP captures spa-
tial dependence of the particle interactions, illustrated for Fp = 50
(so just before failure) in Fig. 2. To answer this question, we com-
pute TP separately for five different parts of the system, according
to the distance from z = 0 (bottom of the column). Figure 11a)
shows the results; for simplicity, here we consider β0 TP only, and
also normalize TP by the number of particles, Np, in each of the
separate regions the size of the regions was chosen so that Np does

Fig. 10 Number of generators (points in the PD’s) using the same line
and color convention as in Fig. 9: strong (a, b), medium (c, d), and weak
(e, f).

not change much between the regions. We see that the changes
of TP are concentrated in the parts of the system that are close to
the intruder, with the most pronounced changes in the layer just
above the intruder itself, consistently with the snapshot shown in
Fig. 2.

So far, we have focused on the analysis of system properties at
a specified time instant, without attempting to discuss temporal
evolution of the force network. However, temporal evolution is
very much of interest as well, in particular since the animations
in Supplementary Materials44,51 suggest that time dependency
of force networks is far from simple. To gain at least basic in-
sight into this evolution, we use the concept of distance between
PDs, discussed in Sec. 2.4, see Eq. (3), normalized by the num-
ber of particles in each region, Np. Figure 11b) shows the results,
again for the five regions mentioned above. For simplicity, we
consider only dW 2 distance. Figure 11b) shows the localized (both
in space and time) changes of the distance, which are particularly
prominent in the region close to the intruder itself. The inset of
Fig. 11b) shows expanded view, illustrating sudden changes of the
considered distance measure. These results show clearly that the
force network starts evolving while the particles (and the contact
network) are essentially static, and that the changes of the force
network are not continuous, but consist of short bursts of activity,
which become more prominent as the system approaches failure.

As mentioned at the beginning of Sec. 3.2.2, we focus on the
normal forces only in this section. While we found that the tan-
gential forces provided relevant information about the mecha-
nism of failure as well, the measures obtained by computing per-
sistence and derived quantities turn out to be qualitatively simi-
lar to the ones obtained based on the normal forces only, so for
brevity we do not discuss them further.

4 Conclusions
DEM simulations of the pullout of an intruder buried in confined
granular media show that the force required to fail the material
varies both with the height of the granular material and with the
column diameter. Frictional effects are found to be important for
large material heights only, showing that in hydrostatic regime
(for small filling heights), the frictional effects are not relevant.
While for smaller pullout forces the force exerted by the granular
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Fig. 11 (a) Total persistence, TP for β0 structures (clusters), computed
separately for the five parts of the system, for 0 < z < 1 (solid blue line),
1< z< 1.72 (dashed orange line), 1.72< z< 2.44 (dash-dotted green line),
2.44< z< 3.16 (dotted red line), and 3.16< z< 4.18 (loosely dashed purple
line). (b) Distance dW 2 for β0 structures for the same five regions as in
(a), using the same convention for lines patterns and colors. The inset
expands a part of the considered range of the pulling force, Fp.

particles on the sidewall remains small, for larger pullout forces,
these two forces change at the same pace, illustrating the role
that the sidewalls and particle-wall interactions play in the failure
process.

Analysis of the interparticle forces, using both classical and
novel methods based on persistent homology, uncovers the de-
tails of the failure process. While the intruder and the granular
particles are essentially static before failure, and characterized by
a (static) contact network, the (weighted) force network that in-
cludes the information about the particle contacts goes through
significant changes. The tangential forces between the particles
increase as the applied force becomes larger, leading to a larger
number of sliding contacts. The normal force between the parti-
cles evolves as well, and the force network based on the normal
force becomes more structured, involving larger number of loops
and stronger forces between the particles, even when normalized

by the mean. The failure itself occurs through a culmination of
temporally intermittent changes that take place predominantly in
the physical proximity to the intruder. Furthermore, the changes
in the force network are focused in particular on the strong forces
when considering clusters of contacts, while the loops that form
in a network are evolving at all considered levels of the interac-
tion strength. We find that careful analysis of the evolving loops
provides particularly useful insight into the failure process.

By combining classical and newly developed approaches for de-
scribing both statics and dynamics of a granular system, we have
discussed in this work precise and objective measures that can be
used to describe a failure process in the considered system. It re-
mains to be seen to which degree the presented findings apply to
other systems close to failure. We hope that both the methods and
the results presented in the current paper will provide guidance
for future research in this direction.
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