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Spherical colloids that catalyze the interconversion reaction A � B between solute molecules A
and B whose concentration at infinity is maintained away from equilibrium effectively interact due
to the non-uniform fields of solute concentrations. We show that this long range 1/r interaction is
suppressed via a mechanism that is superficially reminiscent but qualitatively very different from
electrostatic screening: catalytic activity drives the concentrations of solute molecules towards
their equilibrium values and reduces the chemical imbalance that drives the interaction between
the colloids. The imposed non-equilibrium boundary conditions give rise to a variety of geometry-
dependent scenarios; while long-range interactions are suppressed (except for a finite penetration
depth) in the bulk of the colloid solution in 3D, they can persist in quasi-2D geometry in which the
colloids but not the solutes are confined to a surface, resulting in the formation of clusters or
Wigner crystals, depending on the sign of the interaction between colloids.

1 Introduction
To build a macroscopic machine capable of directly utilizing
chemical energy to perform mechanical work, bypassing heat, is a
long standing and unresolved engineering challenge. At the same
time, on the macromolecular or colloidal scale, this is routinely
done by molecular motors moving on a solid substrate1 or by
colloidal swimmers moving through a fluid2. In the latter case,
mechanical motion is usually achieved by diffusiophoresis, i.e.,
the drift of a colloidal particle (or a liquid droplet) in a solvent,
induced by gradients in the concentration of chemical species
(solute)3–6. The phenomenon is driven by short-range interac-
tions between the surface of the particle and the solute molecules
which result in different energies of a solute molecule close to the
surface of the particle and away from it and, depending on the
sign of the interaction, it leads to the motion of the particle along
or opposite to the direction of the concentration gradient. Re-
cently, diffusiophoresis has been proposed as a non-equilibrium,
non-motor protein mechanism for metabolism-dependent trans-
port of protein filaments, plasmids, storage granules, and foreign
particles of different sizes in cells7,8. Related cross-diffusion and
chemotaxis effects9 have been also implicated in the aggrega-
tion of enzymes and the formation of metabolons in regions of
high substrate concentrations10. Under the name “chemically
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(or phoretically) active matter” these systems attracted much
attention from theorists in recent years. A far reaching phe-
nomenological theory was developed by Ramin Golestanian with
co-authors11–18 and in a number of other works19–21 (reviewed
in17).

One simple way to create solute concentration gradients is to
have colloidal particles catalyzing the reaction A � B between
substrate A and product B molecules, provided that substrates
are supplied to the system, while products are washed away. An
interesting observation about such a system is that concentration
gradients typically decay as 1/r with distance, thus leading to
effective interactions which are long-ranged and reminiscent of
electrostatics or gravity13,20,21. This realization leads to predic-
tion of a plethora of beautiful and unusual states of this “phoreti-
cally active matter”13.

We here want to revisit that same system in order to clarify one
aspect of it, which is the following. Whenever there is a catalyst
that accelerates chemical transformation of A (“fuel”) to B (“ex-
haust”) molecules, A ⇀ B, it accelerates also the reverse reaction,
A ↽ B; in other words, it accelerates relaxation to equilibrium. This
fact has interesting consequences for the analog of Debye-Hückel
electrostatic screening in systems of catalytic colloids. Specifi-
cally, in electrostatics, the field that is being screened is, of course,
the electric field, or potential. What is screened in our chemi-
cal system? We shall show that it is the field of chemical im-
balance that measures the deviation from chemical equilibrium,
ψ(r)≡ k→cA(r)−k←cB(r), where cA(r) and cB(r) are local concen-
trations of solute components, while k→ and k← are correspond-
ing catalytic rate constants. For instance, in a canonical example,
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when there is a large crowd of catalytic particles confined in an
osmotic bag permeable for fuel A and exhaust B molecules, but
not permeable for catalytic particles, and even if chemical imbal-
ance is maintained outside by supplying A and removing B, the
chemical imbalance field ψ(r) penetrates into the crowd only by
a finite distance and decays exponentially beyond that distance.
Deep inside the crowd of catalysts both A and B are present, but
in chemical equilibrium. This main point of our work has some
important consequences which we will discuss at the end.

The plan of this article is as follows. To make the work self-
contained and to establish the notations, we rederive some of the
well-known results13 about concentration profiles around single
catalyst and about interactions between two catalysts in section
2. This section contains no new results and serves mostly peda-
gogical purposes, except that unlike previous authors, we never
omit the fundamentally important reverse catalytic reaction. The
crowd of catalysts, screening22, Wigner crystals23, and clusters
of catalytic colloids, are considered in section 3.

2 The 1/r interaction between catalytic col-
loids

Let c∞
A and c∞

B be the respective concentrations (molecules per
unit volume) far away from the catalysts. We will assume that
the energy barrier for the interconversion reaction A � B is suffi-
ciently high so that, in the absence of catalysts, the system can be
maintained indefinitely out of equilibrium and therefore c∞

A and
c∞

B are externally controlled parameters.

Consider first a single spherical particle of radius R which can
catalyze the reaction A � B on its surface by reducing the energy
barrier to a value comparable to kBT . Assuming for simplicity
that concentrations are sufficiently small, the steady state rate
(current) of catalytic reaction can be written as

J = vk→cA(R)− vk←cB(R) , (1)

with k→ and k← forward and backward rate constants, cA(R) and
cB(R) the concentrations of A and B species at the surface of the
catalyst, and v the volume where reaction takes place (for in-
stance, if catalysis occurs uniformly along the spherical surface,
then v = 4πR2d, with d a molecular length scale). As we stated,
Eq. (1) is valid only for sufficiently small concentrations of A
and B, otherwise the catalyst gets “clogged” and a non-linear
Michaelis-Menten reaction rate has to be used, as it was done
in13. However, for our purpose, it is important to have both for-
ward and backward reaction taken into consideration, which at
large concentrations would require using the so-called reversible
Michaelis-Menten kinetics24,25 which was not done in13. Because
of the dramatic simplification, we stay with the linear relation (1).
Since solute particles A and B have to be delivered to and from
the catalyst surface by diffusion, their steady state concentration
profiles must be found from the appropriate diffusion equation.
For a spherically symmetric catalyst, the concentration fields of
all solutes A and B are spherically symmetric as well:

cA(r) = c∞
A −

J
4πDAr

; cB(r) = c∞
B +

J
4πDBr

, (2)

where DA and DB are the corresponding diffusion coefficients.
Plugging these expressions (at r = R) back to Eq. (1) which serves
as a boundary condition for the diffusion equation, produces an
equation for the current J with the solution

J
v
=

k→c∞
A − k←c∞

B

1+ v
4πR

[
k→
DA

+ k←
DB

] . (3)

This result is easily generalized for the case when several species
of Ai and B j are present.

Current J (3) vanishes in thermal equilibrium, since the equi-
librium concentrations ceq

A and ceq
B obey the detailed balance con-

dition, k→ceq
A = k←ceq

B . In this sense, the quantity in the numera-
tor of formula (3) characterizes the degree of chemical imbalance
which drives the process, and which can be governed by energy
(if energy of a fuel molecule is larger than that of exhaust), or by
entropy (if c∞

A > c∞
B ), or by any combination of the two.

We now consider two catalytic spheres, some distance r apart,
such that r� R; the catalyst spherical symmetry assumption will
be relaxed later on. Because of the short-range interactions be-
tween solute molecules A and B and the catalyst, and because
steady state concentrations of A and B are non-uniform in space,
the energies of these two spheres depend on the distance r be-
tween them, i.e., there is an interaction force between them.
This problem can be treated, in the first approximation (see Sup-
plemental Material26), by imagining one particle located in the
origin, while the other particle, positioned at distance r away,
interacts with unperturbed concentration fields cA(r), cB(r) Eq.
(2) created by the first. Expanding the surface energy of a
sphere in small concentrations cA and cB at the sphere surface,
as σ ' σ0 + cA(r)σ ′A + cB(r)σ ′B (where prime signs indicate partial
derivatives of surface tension with respect to the corresponding
concentration), we write distance-dependent part of energy for
two spheres as follows:

E
4πR2 = σ

′
A [cA(r)− c∞

A ]+σ
′
B [cB(r)− c∞

B ] . (4)

For brevity, we again drop the generalization for the case of sev-
eral species Ai and B j. The constant (r-independent) c∞

A and c∞
B

terms are subtracted such that this energy vanishes when two
droplets are infinitely far. Plugging in the concentration profiles
Eq. (2), the force on each sphere is

f
4πR2 =

J
4πr2

[
σ ′B
DB
−

σ ′A
DA

]
. (5)

where the current J is given by Eq. (3) (we have neglected the
hydrodynamic interaction contribution to the force, f = −∇E;
see18). This force depends on the distance as 1/r2 i.e., it is a long-
range interaction similar to gravitational and Coulomb forces, as
it was pointed out in11–13,16,20,21. Furthermore, the force is pro-
portional to J – the chemical rate (or current) of interconversion
of A to B, which emphasizes that the entire phenomenon is of non-
equilibrium nature. It is driven by the supply of fuel A molecules
as well as removal of exhaust B molecules at infinity.

A word of caution is in order about our usage of equilibrium
surface tension σ and its derivatives σ ′A and σ ′B in this decidedly
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Fig. 1 Diagram of regimes for two catalytic spheres in terms of energies
ε̃A and ε̃B, according to Eq. 6c. Yellow marks the region where interaction
force is repulsive, in other areas it is attractive. The plot is constructed for
DA = DB; the only modification required in the case DA 6= DB is change of
scales along axes.

non-equilibrium context. In fact, it is well justified by the assump-
tion that colloidal catalytic particles are much larger and move
much slower than the solute molecules A and B.

The interaction force (5) between catalytic colloids can be ei-
ther attractive or repulsive. To see this, consider the following
simple model. Imagine that catalysis takes place in a narrow layer
of thickness d around the catalyst surface, then

k→ =
1
τ

eβ(εA−ε†) k← =
1
τ

eβ(εB−ε†) , (6a)

where 1/τ is the attempt rate, β = 1/kBT , while εA and εB are
the bulk free energies of A and B, and ε† is the free energy of
the transition state of the catalytic surface reaction (for reasons
of brevity, we will refer to these free energies as energies in the
following). Furthermore, if energies of A and B molecules inside
surface layer of a colloid are ε∗A and ε∗B, different from their bulk
values εA and εB, then σ ′A = dε̃Ae−β ε̃A and σ ′B = dε̃Be−β ε̃B , with
ε̃A = ε∗A− εA and ε̃B = ε∗B− εB. In this approximation,

J
4πR2d

=
c∞

A eβεA − c∞
B eβεB

Rd
DA

eβεA + eβε†
τ + Rd

DB
eβεB

(6b)

f
4πR2 =

Jd
4πr2

[
ε̃B

DB
e−β ε̃B − ε̃A

DA
e−β ε̃A

]
. (6c)

Inspection of Eq. (6c) confirms that the force between catalysts
can be attractive or repulsive, depending on the energies εA, εB,
ε∗A and ε∗B, as shown in the Fig. 1 (see also19). For instance, if
both A and B molecules are attracted to the surfaces of catalytic
particles, ε∗A < εA and ε∗B < εB, then the resulting long range in-
teraction between catalysts is a competition: interaction with A
pushes each sphere away from the other, towards greater supply
of A, but interaction with B pulls catalysts towards one another,
towards where new B is produced. Therefore, overall attraction
between spheres occurs if ε∗B−εB < ε∗A−εA, and overall repulsion
takes place in the opposite case.

In equations (6), we expressed phenomenological quantities σ ′A
and σ ′B, as well as rate constants k→ and k← in terms of energies
such as ε∗B, εB, ε∗A, εA; these mechanical quantities are easy to

imagine for a theorist, but virtually impossible to measure. Fur-
thermore, we consider only the force acting on catalytic colloidal
particles, which is, in principle, measurable in an optical tweezers
experiment, but we do not consider their motion under this force.
Translating force into velocity requires the knowledge of mobil-
ity, and simple minded assumption of Stokes friction is known
to be only qualitatively and not quantitatively right. More sys-
tematic phenomenological treatments11,12 operate with directly
measurable surface tensions, Onsager coefficients, and other phe-
nomenological parameters. We present the somewhat more naive
approach based on equations (6) only because of its simplicity
and pedagogical value.

Our consideration so far was restricted to spherically symmet-
ric catalytic particles. This idealization is perhaps rarely real-
ized. A catalytic particle without spherical symmetry creates
non-isotropic concentration fields of reagents, which can result in
auto-diffusiophoretic motion of the catalyst4,19,27–37. Such self-
diffusiophoretic particles are of considerable current interest and
considered an important example of the so-called active swim-
mers34–36,38. Speaking about concentration field mediated inter-
actions between catalysts, we should think of multipole expansion
of the concentration fields (see also37). Then, exactly as in the
familiar electrostatics context, the dominant long range contribu-
tion is that from a monopole,∼ 1/r2, which is what we considered
above, while dipole (like for Janus particles), quadrupole, and
higher order multipoles are important for the near field. Thus,
we will continue working in the monopole approximation which
is only justified when distance between catalysts is large. Accord-
ingly, we do not consider self-diffusiophresis, simply because it
was already studied in detail11–13,16,19,27,28,35.

3 A crowd of catalysts

We now turn from considering the force between two catalytic
particles to the case when there are many catalysts. Since cata-
lysts reduce free energy barriers, thus paving the way for the sys-
tem to approach chemical equilibrium, in order to maintain the
system away from equilibrium in the presence of a finite concen-
tration of catalysts, it is necessary (though maybe not sufficient)
to confine the catalysts to a region of space that is surrounded
by a “bath” in which non-equilibrium concentrations of A and B
molecules are enforced and maintained from outside. Our goal
now is to explore implications of such boundary conditions.

Consider a crowd of catalytic particles, with density of ρ(r) cat-
alysts per unit volume. On the mean field level, overall behavior
should be described by the volume fraction of catalytic centers
in space, φ(r) = vρ(r), where v (exactly as before) is the volume
of the region in which catalysis takes place on the surface of one
catalytic particle. Now, let cA(r) and cB(r) be the concentration
fields of “fuel” and “exhaust” molecules A and B, coarse grained
over distances large compared to the typical distance between cat-
alysts, ` (`−3 ∼ ρ). Then mean field equations for concentrations
of A and B read

ċA(r) = DA∇
2cA(r)−φ(r) [k→cA(r)− k←cB(r)]

ċB(r) = DB∇
2cB(r)+φ(r) [k→cA(r)− k←cB(r)]

(7)
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To analyze these equations, we introduce the “field of chemical
imbalance”

ψ(r)≡ k→cA(r)− k←cB(r) . (8)

The meaning of ψ(r) field (8) is clarified by noticing that, up to
a constant factor 1/v, ψ(r) is equal to J(r) – the rate of chemical
reaction (1) in the vicinity of point r, coarse grained over the scale
` in the same way as concentrations and ψ. Therefore, according
to Eq. (5), it also follows that ψ(r) determines the strength of
interactions between catalytic colloids around r.

In steady state, time derivatives vanish and, combining Eqs. (7)
with proper weights, we find that ψ(r) satisfies

∇
2
ψ(r)−ξ

−2(r)ψ(r) = 0 , (9)

where

ξ
−2(r) =

[
k→
DA

+
k←
DB

]
φ(r) . (10)

At first glance, Eq. (9) is identical to the celebrated Debye-
Hückel equation22 for the electrostatic potential around a point
charge in an ionic solution, implying that ξ (r) can be interpreted
as the screening length (see equation (8) in reference13). Upon
further inspection one notices significant differences. First and
foremost, electrostatic potential is defined up to an additive con-
stant, while field of chemical imbalance does not have this gauge
freedom, because ψ = 0 is the special state of chemical equilib-
rium. Because of that, the boundary conditions on our chemical
imbalance field ψ(r) are quite different from those on the poten-
tial in a typical electrostatics problem: while the electric poten-
tial diverges at the point charge and decays to a constant, usually
identified as zero, at large distance from it, ψ is maintained at
some fixed non-equilibrium value away from the catalysts where
φ(r) = 0. Depending on the geometry, ψ vanishes or reaches some
lower value inside the colloid-occupied region (φ(r) 6= 0) because
catalysis always tends to reduce the degree of chemical imbalance
and drive the system towards equilibrium at which detailed bal-
ance is obeyed and ψ(r) = 0. This effect has not been noticed in
previous works, in which the reverse reaction (the second term in
Eq. (8)) that drives the system to equilibrium, was omitted.

In order to understand the physical meaning of the length ξ let
us consider the 3D situation shown in Fig. 2: catalytic colloids
are confined inside a spherical osmotic bag of radius L which is
permeable to solute molecules A and B but not to the colloids.
Substrate molecules A are delivered by diffusion from infinity,
and product molecules B are also absorbed at infinity such that
their concentrations at infinity are fixed at some non-equilibrium
values c∞

A and c∞
B , respectively (note that since chemical reactions

take place only inside the bag, these bulk concentrations can be
arbitrarily far from equilibrium). As shown in Fig. 2, the chem-
ical imbalance field ψ(x) penetrates up to a penetration depth ξ

into the catalysts-occupied domain. Deeper into the bulk of the
catalysts-occupied region ψ(x)→ 0, the concentrations of A and
B approach equilibrium values. More specifically, assuming the
concentrations to be c∞

A and c∞
B at infinity, concentration profiles

2R

ξ

2L

ℓ

ψ(∞)

ψ(∞) ψ(∞)

ψ(∞)

cA(r)

cB(r)

ψ(r)

Fig. 2 Catalytic particles, of diameter 2R each, are distributed in an os-
motic bag of diameter 2L (shown by thick dashed circle), while substrate
molecules A diffuse from outside, and product molecules B diffuse out
to infinity. The chemical imbalance function k→cA(r)− k←cB(r) = ψ(r) is
shown in shades of gray. Deep in the crowd of catalysts, there is no
chemical imbalance between A and B, ψ(x)→ 0. For plotting, we as-
sumed c∞

B = 0, ξ = L/5, k←
k→

= 1
2 and DB

DA
= 1.

are expressed in terms of chemical imbalance function ψ(r)

cA(r) = c∞
A +

ψ(r)−ψ(∞)

DA

(
k→
DA

+ k←
DB

) (11a)

cB(r) = c∞
B −

ψ(r)−ψ(∞)

DB

(
k→
DA

+ k←
DB

) , (11b)

while ψ(r) itself is found for this spherical geometry, based on the
Eq. (9), along with boundary conditions of continuous function
and its derivative and no singularity at the origin:

ψ(r)
ψ(∞)

=

 1− L
r +

ξ

r tanh L
ξ

at r > L
ξ

r
sinhr/ξ

coshL/ξ
at r < L

(11c)

These results are plotted, for specific values of parameters, in
Fig. 2. As expected, the current J vanishes inside the crowd of
catalysts along with ψ, and the forces between colloids vanish as
well. These forces (attractive or repulsive) will be significant only
inside the boundary layer of thickness ξ . If the size of the os-
motic bag L is smaller or comparable to the penetration depth ξ ,
depending on the sign of the force in Eq. (6c), catalysts will at-
tract one another and form an aggregate (which could be smaller
than the available volume of the osmotic bag) or repel each other
and form a Wigner crystal23 (occupying the whole accessible vol-
ume).

A more subtle and experimentally relevant case is a quasi-2D
system, where the container has a finite depth H, while catalytic
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H

2L

h

H

2L

h

ψ(∞)

ψ(∞)

ψ(∞)

ψ(∞)

ξeff

A

B

Fig. 3 Catalytic colloids are located within a gravitational height h from
the bottom of the container of depth H. As before, the chemical imbal-
ance field is approximately shown by shades of gray. Barriers or osmotic
bag are shown by thick dashed lines. In case of a deep container (fig-
ure A), diffusion in 3D is sufficient to supply fuel and remove exhaust for
all colloids, and chemical imbalance field ψ penetrates to all colloids. In
case of a shallow container (figure B), the middle part of the “pancake” of
colloids is not accessible to chemical imbalance field.

colloids are confined due to gravity within a short distance h,
sometimes called gravitational height, from the bottom (or from
the top if they float) of a container, as shown in a cartoon, Fig. 3.
Boundary conditions, in addition to fixed value of ψ(∞) at r→ ∞,
require zero normal (vertical) flux of either A or B particles, thus
vanishing normal derivative of ψ on both top and bottom surfaces
(we note in passing that this does not have simple electrostatic
analogy). The situation, as it turns out, depends sensitively on
the relations between several relevant length scales.

If the depth of the container is infinite or very large, as in Fig.
3A, then although colloidal spheres are confined in 2D by barri-
ers or osmotic bag to the interior of a circle of radius L, the fuel
A and exhaust B molecules are diffusing in 3D. Formally, in this
case, equation (9) gets reduced simply to ∇2ψ = 0 everywhere
except a very thin pancake-shaped region of thickness h and ra-
dius L, and finite penetration depth ξ (10) exists only inside the
pancake. If h is very small and ξ � h, then delivery of A and
removal of B by diffusion in 3D is unhindered and reaches every
point of the pancake from the top. Therefore, the force of interac-
tion between catalytic colloids still obeys the 1/r2 law everywhere
inside the pancake, unlike the 3D case where colloids in the bulk
of the confined region essentially do not interact. In the attractive
case, we expect catalysts in 2D to form a large aggregate whose
growth may be stopped only when its diameter becomes com-
parable to H. For repulsive forces we expect formation of a 2D
Wigner crystal whose size is not limited by ξ and is controlled by
the confining boundaries or an osmotic bag only.

Consider now the opposite limit of a shallow container, as
in Fig. 3B. Clearly, on horizontal length scales larger than H
the problem becomes essentially two dimensional. Averaging
Eq. (9) along the vertical direction, we obtain 2D equation of
the same form, except with effective penetration depth given by
ξ
−2
eff = ξ−2h/H. The solution of the corresponding 2D problem is

qualitatively similar to Eqs. (11), which means that the field of
chemical imbalance penetrates into the pancake of catalysts only
to horizontal distance about ξeff = ξ (H/h)1/2. Closer to the mid-

dle of the pancake the local imbalance field is reduced by catalysis
and long-range interactions between colloids are suppressed. In
this case we expect attractive catalysts to assemble in 2D aggre-
gates of size no larger than ∼ ξeff. Repulsive catalysts will form
2D Wigner crystals only for L≤ ξeff.

This conclusion is reminiscent of the fact that “live” colloids
in the experiments by Pallaci et al34, by Buttioni et al35, and by
Theurkauff et al38 formed 2D aggregates of limited size that did
not grow further. These colloids were not spherically-symmetric
and exhibited self-diffusiophoretic swimming. Moreover, they
were shown34 to form the so-called “living crystals”, a find-
ing which was interpreted as an experimental confirmation of
the theoretically predicted activity-driven condensation39–48. We
speculate that the limited size of the aggregates could be due
to screening (screening does not require catalysts to be spher-
ically symmetric and is expected to take place even for self-
diffusiophoretically driven swimmers).

4 Conclusion
To summarize, we have presented a very simple schematic the-
ory demonstrating that spherical colloids capable of catalyzing a
reversible chemical reaction between solutes, experience a pecu-
liar interaction which exists only as long as the concentrations of
the solutes are maintained out of equilibrium by constant supply
of high free energy “fuel” and removal of “exhaust” molecules at
the boundaries of the colloid solution. The long range (1/r) in-
teraction between colloids is driven by the chemical imbalance
field that measures the deviation from chemical equilibrium. We
have shown that, despite the apparent similarity of the underly-
ing equations, the origin of this effect is very different from the
Debye-Huckel electrolyte polarization mechanism in electrostat-
ics: catalytic activity drives the concentrations of solute molecules
towards their equilibrium values and therefore reduces the chem-
ical imbalance that controls the strength of the diffusiophoretic
interaction between the colloids.

We demonstrated that the combination of boundary conditions
and finite penetration depth has a profound effect on the interac-
tion between catalytic colloids. Thus, in a realistic 3D geometry
of a colloid solution enclosed in an osmotic bag (permeable to
solute molecules but not to colloids) and surrounded by a “bath”
that fixes the concentrations of solutes at some arbitrary values,
non-equilibrium concentrations of solutes can be maintained in
steady state only within a penetration depth (screening length)
from the boundary, and therefore interactions between colloids
vanish in the bulk of the colloid solution. The effects of finite
penetration depth can be overcome in quasi-2D geometry (with
colloids confined to a surface and solute molecules free to move in
3D) where unscreened 1/r attractions between colloids can lead
to macroscopic aggregates or to Wigner crystals, depending on
the sign of the diffusiophoretic interaction between colloids. In
the attractive case, we predict that finite 2D clusters of colloids
will form if the depth of the 3D container is finite and that the
diameter of these clusters will be proportional to the effective
correlation length that increases as the square root of the depth
H. In the repulsive case one expects Wigner crystals to form if
the separtion between the barriers that confine the colloids in 2D
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is smaller than the effective penetration length. These theoretical
predictions await experimental verification.
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Chem. Chem. Phys., 11:897âĂŞ912, 2009.
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