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We study how solidification of model freely rotating polymers under athermal quasistatic com-
pression varies with their bond angle θ0. All systems undergo two discrete, first-order-like tran-
sitions: entanglement at φ = φE(θ0) followed by jamming at φ = φJ(θ0) ' (4/3±1/12)φE(θ0). For
φ < φE(θ0), systems are in a “gas” phase wherein all chains remain free to translate and reorient.
For φE(θ0)≤ φ ≤ φJ(θ0), systems are in a liquid-like phase wherein chains are entangled. In this
phase, chains’ rigid-body-like motion is blocked, yet they can still locally relax via dihedral rota-
tions, and hence energy and pressure remain extremely small. The ability of dihedral relaxation
mechanisms to accommodate further compression becomes exhausted, and systems rigidify, at
φJ(θ0). At and slightly above φJ , the bulk moduli increase linearly with the pressure P rather than
jumping discontinuously, indicating these systems solidify via rigidity percolation. The character
of the energy and pressure increases above φJ(θ0) can be characterized via chains’ effective as-
pect ratio αeff. Large-αeff (small-θ0) systems’ jamming is bending-dominated and is similar to that
observed in systems composed of straight fibers. Small-αeff (large-θ0) systems’ jamming is domi-
nated by the degree to which individual chains’ dihedrals can collapse into compact, tetrahedron-
like structures. For intermediate θ0, chains remain in highly disordered globule-like configurations
throughout the compression process; jamming occurs when entangled globules can no longer
even locally relax away from one another.

1 Introduction
Jamming of semiflexible polymers and fibers is of broad scientific
interest for several reasons. A key parameter for these systems
is the aspect ratio α, which is commonly defined as the square
root of the average ratio of the maximum to minimum eigen-
values of chains’ radius of gyration tensors. As chains’ stiffness
increases, their configurations interpolate continuously between
random walks with α ' 3.41 to rigid rods with α ∼ N (where N
is their degree of polymerization). The synthetic macromolecular
polymers in typical commodity plastics lie near the flexible end of
this spectrum; their rigidity plays only a secondary role in their
rheology and glassy-state mechanics.2,3 At the opposite end of the
spectrum, carbon nanotubes and stiff biopolymers such as F-actin
are rodlike in the absence of thermally induced bending.4,5

Many systems lie between these two limits. The natural elastic
fibers birds use to build their nests are rather stiff but not particu-
larly straight, and hence have α that are significantly below their
effective N.6. Many biological structures, e.g. the collagen that
gives our skin and tendons their elasticity, are semiflexible-fiber
networks.7 Synthetic semiflexible elastic fibers have long been
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used in a wide variety of commodities such as textiles and steel
wool,5 and are now attracting significant interest for their poten-
tial use in metamaterials.6

The tools of theoretical polymer physics and granular physics
should be applicable to these systems because they are both
polymer-like and (at most) weakly thermalized, yet they have
attracted little interest from the soft matter physics community
until very recently. Athough jamming of rodlike grains has been
fairly well studied,8–12 theoretical analysis of the jamming of
semiflexible-fiber-like grains with internal degrees of freedom and
1� α � N has only just begun.6,13 Thus there is an opportunity
to gain key insights into these systems through simulations of sim-
ple coarse-grained models that capture their essential features.

Model freely rotating (FR) polymers are composed of N tan-
gent spheres of diameter σ , with fixed bond lengths (` = σ)
and bond angles (θ = θ0); see Figure 1. Unlike freely jointed
(FJ) polymers, FR-polymer systems necessarily possess extensive
frozen-in 3-body structural correlations arising from the fixed
bond angles. The distance between second-nearest intrachain
neighbors is always d13(θ0) = 2σ cos(θ0/2), where σ is monomer
diameter. This θ0-dependent constraint significantly influences
the structure of FR polymers’ jammed states, even for the mini-
mal N = 3.14 For larger N, these constraints causest FR polymers
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to exhibit jamming phenomenology13 that is profoundly differ-
ent than that of their FJ-polymeric counterparts.15–19 Whereas
FJ polymers jam at φ ' φ mon

J ' .64, are isostatic at jamming, and
possess polytetrahedral structural order very similar to that of
jammed monomers,15–17 FR polymers jam at significantly lower
φ = φJ(θ0,N), their jammed states are quite hypostatic, and both
their intrachain and interchain structural order at the 2-, 3-, and
4-monomer levels depend strongly on θ0.13,14

Fig. 1 Typical chain configurations at φ = φ mon
J /3 ' .21 for our highest

and lowest aspect ratio polymers, i.e. FR polymers with θ0 = 6◦ (blue)
and θ0 = 90◦ (red). The apparent overlap of monomers in the θ0 = 6◦

chain is an illusion arising from the planar projection.

In this paper, we extend our previous studies13,14 by study-
ing athermal solidification of long FR polymers in much greater
detail. We find that athermal solidification of these systems oc-
curs in two distinct stages, characterized by two critical packing
fractions: φE(θ0) and φJ(θ0). At φ = φE(θ0), systems undergo an
entanglement transition where the system transitions from a dis-
ordered gas-like phase to a disordered liquid-like phase. The en-
tanglement transition is marked by sharp, first-order-like jumps
in the average cooordination numbers for both monomers and
chains. However, chains can still locally relax via dihedral rota-
tions, and hence systems’ energy and pressure remain extremely
small. At φ = φJ(θ0) ' (4/3±1/12)φE(θ0), systems jam (rigidity-
percolate). The cooordination numbers for both monomers and
chains jump again, and the bulk modulus B begins increasing lin-
early with the pressure P. This two-stage process is a critical dis-
tinction between θ0 > 0 FR polymers and stiff fibers such as rods,
spherocylinders, and θ0 = 0 FR-polymers, all of which jam when
they entangle (i.e. have φE = φJ

8,9,20).
In addition to these universal features, systems exhibit several

qualitative θ0-dependent differences. Large-α (small θ0; see Fig-
ure 1) systems’ jamming is bending-dominated and is similar to
that observed in systems composed of straight fibers.7,21 Chains
tend to form large-scale arcs as systems are compressed; jam-
ming occurs when these arcs can no longer bend further without
an energy cost. Small-α (large θ0) systems’ jamming is domi-
nated by the ability of chains to locally collapse into compact,
tetrahedron-like structures. Four-monomer chain segments be-
come increasingly compact throughout the gas and liquid phases;
jamming occurs when they can no longer collapse further without
an energy cost. For intermediate θ0, chains remain in highly dis-
ordered globule-like configurations throughout the compression.
These globules become more compact as compression proceeds.
but do not locally collapse; jamming occurs when entangled glob-
ules can no longer even locally relax away from one another.

The rest of our paper is organized as follows. In Sec-
tion 2, we describe our FR-polymer model and the molecular-
dynamics/energy-minimization algorithms we use to simulate
athermal solidification of these systems. In Section 3, we describe

our results for these systems’ athermal solidification mechanisms
and the mechanics of their jammed states in detail. Finally, in
Section 4 we summarize our results, discuss their potential impli-
cations for real systems, and conclude.

2 Model and Methods
2.1 Freely rotating polymer model
All systems are composed of Nch = 1600 chains, each containing
N = 100 monomers of mass m. All monomers interact via a har-
monic potential UH(r) = 5ε(1− r/σ)2Θ(σ − r), where ε is the en-
ergy scale of the pair interactions, σ is monomer diameter, and Θ

is the Heaviside step function. Covalent bonds are modeled using
the harmonic potential Uc(`) = (kc/2)(`−σ)2, leading to tangent-
sphere polymers with equilibrium bond length `0 = σ . Angular
interactions between three consecutive monomers along a chain
are modeled by the harmonic potential Ua(θ) = (ka/2)(θ − θ0)

2,
where θ is the angle between consecutive bonds and is zero for
straight trimers. To capture a wide range of chain aspect ratios,
we study systems with θ0 = 3i◦ for i = 2,3, ...,30. We do not re-
port data for systems with θ0 < 6◦ here because such systems are
effectively in the elastic-rod-like (θ0 = 0) limit previously studied
by Rodney, Picu and collaborators.20,22–24

Ideal FR chains are obtained in the limit (kc,ka) → ∞. The
harmonic bond and angle potentials employed here limit the
maximum MD timestep to dtmax ∼ k−1

c . To make our simu-
lations computationally feasible, we choose kc = 300ε/σ2 and
ka = 600ε/radians2. These parameter choices limit deviations from
` = σ to less than 10−3σ and deviations from θ = θ0 to less
than 2◦ under the conditions of primary interest here (T = 0 and
φ <∼ φJ + .1). We will contrast results for these systems to those
for fully-flexible (ka = 0) chains, i.e. FJ chains.

2.2 Sample preparation and compression protocol
Studies of particulate granular systems can be conducted in a
limit where φJ is well defined25 by employing initial states with
packing fractions φinit that we verified are low enough for φJ to
be φinit -independent.26 This is not the case for studies where
the grains have internal degrees of freedom and can contract
during compression. For FR polymers, the low-φinit limit would
produce chains that are maximally collapsed before they come
into contact. Since this is not the type of experiment we wish
to model, we choose to employ initial states with a common
φinit = exp(−1.5)φcp = .1652, where φcp = π/

√
18 ' .7405 is the

3D close-packing density. We emphasize that smaller or larger
φinit can produce different results.∗

We prepare our systems using standard molecular dynamics
techniques. All MD simulations are performed using LAMMPS.27

Initial states are generated by placing all chains with random
positions and orientations within cubic cells of side length L0,
such that φinit = πNchN/6L3

0. Periodic boundary conditions are ap-

∗ For example, we prepared a few systems at φinit = exp(−2.0)φcp = .1002. These sys-
tems had slightly lower φJ than their larger-φinit counterparts, but all trends with θ0

remained qualitatively the same as those reported below. We expect this qualitative
similarity to break down in the low-φinit and high-φinit limits.
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plied in all three directions. Newton’s equations of motion are
integrated with a timestep dt = .005τ, where the unit of time is
τ =

√
mσ2/ε. All systems are equilibrated at T = ε/kB until both

intrachain and interchain structure have converged, then cooled
to T = 0 at a rate 10−5ε/kBτ. For this value of φinit , all systems
remain homogeneous and isotropic throughout this process, i.e.
they do not develop nematic order.

After cooling, we simulate athermal solidification under qua-
sistatic compression using alternating intervals of slow dynamic
compression and energy minimization. During dynamic com-
pression, L is varied in time as L(t) = L0 exp(−ε̇t). We choose
ε̇ = 10−6/τ, which is the slowest rate feasible for our employed
system size (NchN = 1.6 · 105). At increments ∆φ/φ = −.001 (i.e.
every time density has increased by 0.1%), we stop this compres-
sion and allow systems to relax and minimize their energy. We
find that the optimal energy-minimization strategy for our sys-
tems is letting them relax via damped Newtonian dynamics, i.e.
using the equation of motion m~̈ri = ~Fi−~̇ri/τdamp for all monomers,
where ~Fi is the usual Newton’s-2nd-law force on monomer i and
τdamp = 10τ is the damping time. This dynamics allows monomers
to push completely off one another during energy minimization,
and yields lower total system energies Etot(φ) than the Polak-
Ribiére congugate-gradient,28 Hessian-free truncated-Newton,29

or FIRE30 algorithms. We find that the minimal minimization
time per cycle that yields converged results for our N = 100 sys-
tems is τ̃min ' 4 ·104τ; all results presented below are for this τ̃min.
After energy minimization, we restart the dynamic compression
and repeat this compression-minimization cycle until φ = .67.

Jamming is defined to occur when the pressure P within
energy-minimized states exceeds Pthres = 10−6ε/σ3. As in our pre-
vious study,13 we choose to identify jamming with the emergence
of a finite bulk modulus31 rather than with the vanishing of soft
modes32 because proper handling of soft modes associated with
“flippers” (interior monomers with zero or one noncovalent con-
tacts16) is highly nontrivial.

2.3 Measuring polymers’ φ -dependent aspect ratios

An essential difference between rigid-rod-like particles (e.g. sphe-
rocylinders and large-α ellipsoids) and the systems considered
here is that the latter have internal degrees of freedom (i.e. their
N− 3 dihedral angles) and can reconfigure during compression.
Their aspect ratio α is not fixed; it decreases with increasing φ as
chains adopt more compact configurations. Specifically, it is given
by

αeff(φ) =

〈√
Ai(φ)

max[ai(φ),σ2/6]

〉
, (1)

where Ai(φ) and ai(φ) are respectively the maximum and mini-
mum values of chain i’s radius of gyration tensor, and the average
is taken over all chains. Ideal random walks have αe f f = αRW '
3.435.1 To compare our results for FR polymers to analogous re-
sults for rods and ellipsoids,8,9,33,34 we monitor how our systems’
αeff vary during compression.

Figure 2 shows αeff(φ) for all systems. αeff decreases signifi-
cantly with φ for all θ0 even when chains are not in contact [i.e.
for φ� φE(θ0)] because the equations of motion employed during
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Fig. 2 φ -dependent aspect ratios for all systems. The color-scale legend
indicates θ0, and the dashed horizontal lines indicates αRW. Lower φinit
lead to lower αeff for any given φ in regimes where αeff� αRW. Note that
αRW is the lower bound of αeff only for random-walk-like configurations;
spherelike collapsed globules have αeff ' 1.

our dynamic compression intervals are those of standard strain-
controlled molecular dynamics, i.e.

~̇ri =~̇vi− ˙̄ε ·~ri and ~̇pi = ~Fi + ˙̄ε ·~pi , (2)

where~ri, ~vi and ~pi are respectively the position, velocity and mo-
mentum of monomer i, ~Fi is the total force on monomer i, and ˙̄ε is
the true strain rate tensor.35 This protocol mimics embedding the
polymers in a medium (e.g. a dense solvent) that favors affine
contraction under hydrostatic compression. It becomes equiva-
lent to the standard MD protocol for simulating jamming of par-
ticulate systems, where instantaneous finite increments ∆φ/φ are
imposed,32 in the limit ε̇ → ∞. However, it is distinct from a “sol-
ventless” compression that lacks the ˙̄ε ·~ri terms, i.e. it is distinct
from a protocol that shrinks the simulation cell without moving
monomers. Such a protocol would reduce the rate of decrease of
αeff(φ), particularly for φ < φE(θ0). Other details of the results
shown above will be discussed below.

3 Results
In this Section, we present results for systems’ jamming densi-
ties, hypostaticities, stress-strain curves and how they break down
into pair vs. bond vs. angular contributions, liquid (entangled)
phase structure, microscopic (sub-chain-scale) jamming mecha-
nisms, and stress transmission mechanisms vary with θ0. All re-
sults presented below are averages over three independently pre-
pared systems. We emphasize that the below results are not for
the long-chain (large-N) limit, especially for θ0 < 20◦.13 This limit
is reached only when N�C∞, where C∞ is the statistical segment
length above which chains become random-walk-like. Chains in
this limit have αeff ' αRW, a property which is incompatible with
the present effort to study semiflexible chains with 1� α � N.

3.1 Densities and aspect ratios at jamming
Figure 3 shows φJ(θ0) for all systems. As we previously re-
ported,13 φJ(θ0) increases monotonically with θ0. The quasistatic
protocol employed here enables large-scale stress-relaxation pro-
cesses that are frozen out for dynamic compression for currently
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feasible ε̇; for this reason, the φJ(θ0) shown here are larger than
those reported in Ref.13. For θ0 <∼ 9◦, systems are in a rigid-
rod-like limit where φJ is almost θ0-independent (albeit φinit -
dependent). Beyond this limit, φJ increases rapidly, with an in-
flection point at θ0 ' 15◦. The rate of increase ∂φJ/∂θ0 decreases
with increasing θ0, and φJ nearly plateaus for 60◦ <∼ θ0 < 75◦.
Finally, another inflection point makes φJ(θ0) concave up for
θ0 ≥ 75◦, and it continues to increase slowly all the way up to
θ0 = 90◦. We will show in the following sections that θ0 < 27◦,
27◦ ≤ θ0 < 75◦, and θ0 ≥ 75◦ systems define three regimes with
qualitatively different jamming phenomenology. For the remain-
der of the paper we will refer to these as the small-, intermediate-,
and large-θ0 regimes, or alternatively as the high-, intermediate-,
and low-aspect ratio regimes.
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Fig. 3 θ0-dependence of φJ and αJ . Blue, green, and red symbols re-
spectively indicate the small-, intermediate-, and large-θ0 regimes. The
horizontal dashed line in the inset indicates α = αRW.

As shown in Fig. 2, chains’ αe f f (φ) decreases smoothly with
increasing φ ; no jumps are apparent either at φE(θ0) or φJ(θ0).
This indicates that chains’ structure on scales comparable to their
radii of gyration evolves continuously in all systems. Thus it is
worthwhile to measure their effective aspect ratio at jamming,
αJ = αeff(φJ). Results for all systems are shown in the inset to
Fig. 3. θ0 = 6◦ polymers have αJ ' 17, which is comparable to
yet significantly below αRR ' 28 (the αeff value for ideally rigid
N = 100 θ0 = 0 chains with ai = σ2/6). These chains are well
into the semiflexible regime defined by αRW < αJ < αRR. αJ(θ0)

decreases monotonically with increasing θ0 before plateauing at
αJ ' αRW for θ0 ≥ 60◦. N = 100 FR polymers with θ0 ≥ 60◦ are
therefore random-walk-like when they jam. We will show below
that this random-walk-like structure leads the marginally jammed
states to share some common features, but that other features
remain qualitatively different, especially for low- vs. moderate-
aspect-ratio chains.

3.2 Hypostaticity of marginally jammed states
A freely rotating N-mer has ndof = N + 3 degrees of freedom: 3
rigid translations, 3 rigid rotations, and N−3 dihedral angles. The
Maxwell criterion for jamming suggests that these systems should
jam at ZJ = Ziso ≡ 2ndof/N = 2+6/N. On the other hand, aspher-
ical particles ranging from rods8 to superballs36 always jam hy-

postatically. Moreover, we previously showed that FR polymers
jam hypostatically under dynamic compression, with a ZJ that
decreases with decreasing θ0 and with increasing N.13 Here we
examine their hypostaticity in more detail. Figure 4 shows ZJ(θ0)

and ZJ(αJ) for the current systems; only noncovalent contacts are
included in ZJ . Note that the ZJ(θ0) shown here are significantly
larger than those of Ref.13 because they are for quasistatic rather
than dynamic compression; here the pressure defining φJ comes
from a larger number of smaller-overlap contacts.
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Fig. 4 θ0- and αJ-dependencies of ZJ . The dotted gray curve in the inset
shows ZJ = .61674+4.48568/α.

As in our previous study,13 ZJ increases smoothly and
monotononically with θ0 before plateauing for θ0 > 60◦. This
large-θ0 plateau in marginally jammed systems’ hypostaticity
H(θ0) = 2 + 6/N − ZJ(θ0) is of fundamental interest. One ex-
pects jammed FR polymers to be at least somewhat hypostatic
since the forces and torques transmitted along chains via their
bond and angular interactions do not contribute to ZJ . Previ-
ous results showing FJ polymers jam isostatically15–17 were ob-
tained for tangent hard-sphere models that lack bond tensions.
Another potential source of the hypostaticity is that although our
model does not include friction explicitly, friction is nonetheless
present.† The friction arises from chains’ pearl-necklace struc-
ture, and can be understood in terms of their local concavity and
their tendency to interlock.37,38 Our previous work on bent-core
trimers14 suggests that the present systems’ φJ(θ0) would be in-
creased and their H(θ0) reduced if chains had greater monomer
overlap, i.e. equilibrium bond lengths `0 < σ .

We find that ZJ decreases smoothly and monotononically with
increasing αJ . Results for our highest-aspect-ratio systems are
consistent with ZJ ∼α

−1
J , which is consistent with results for rigid

rods and θ0 = 0 FR polymers.8,20 Comparing the results shown in
Fig. 4 to those shown in Fig. 3 makes it clear that the functional
form of ZJ(αJ) is far simpler than that of ZJ(φJ); this suggests that
ZJ is primarily controlled by αJ rather than φJ . More generally,
the data show some of the trends observed for rods8, θ0 = 0 FR
polymers,20,22 and ellipsoids,33 but also major qualitative differ-

†The frictional and frictionless isostaticity criteria, ZJ = 2ndo f /N and ZJ = ndo f /N +1,
are almost identical for our systems because ndo f /N = 1+3/N ' 1.
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ences.
Axisymmetric rigid rods’ coordination number at jamming be-

comes α-independent for α > 15, while their density continues to
decrease as φJ ∼ α−1.8 Rodlike (θ0 = 0) FR polymers show simi-
lar behavior; as few as 4 total interchain contacts are sufficient to
produce jamming.20 Clearly early even our stiffest systems, which
have NZJ(6◦) ' 88 interchain contacts at jamming, are very far
from this limit. This is unsurprising given that θ0 > 0 FR polymers
possess internal degrees of freedom, but the large variation of ZJ

with θ0 and αJ shown in Fig. 4 demonstrates that semiflexible-
polymer jamming is controlled by fundamentally different physics
than that of both their sitff and flexible counterparts.

Ellipsoids jam hypostatically because their spatially varying lo-
cal curvature can block rotational motions.34 Their degree of hy-
postaticity H(α) = 2ndof−ZJ(α) decreases with increasing α, and
saturates at its minimal value H ' 0.1 for α > α∗, where α∗ is the
aspect ratio that maximizes φJ .33,34 FR polymers with θ0 >∼ 60◦

have αJ ' αRW and H(θ0) ' .17; this value is comparable to but
slightly larger than ellipsoids’ minimal H(α). However, since FR
polymers’ H(θ0) increases with increasing chain length,13 this
good agreement may be coincidental.

3.3 Mechanics of jammed systems
For φ < φE(θ0), all systems’ pressures and potential energies re-
main at zero to within the accuracy of our minimization algo-
rithm. For φE(θ0) < φ < φJ(θ0), pressures become finite, but re-
main extremely small. The onset of solidification is marked by
continuous increases in the bulk moduli B(φ) = φ

dP
dφ

from zero.
The initial stages of these increases have B ∝ P, indicating that
θ0 > 0 FR polymers, like their θ0 = 0 counterparts,20,22–24 solidify
via rigidity percolation.39 Jamming of semiflexible polymers and
fibers must therefore be regarded as a continuous transition.

As discussed above (Sec. 2), we defined φJ using the criterion
Pthres = P(φJ) = 10−6ε/σ3. Figure 5 shows all systems’ stress-
strain curves for φ > φJ(θ0). While B(φJ) depends rather strongly
on θ0, all systems’ B(φJ) are approximately proportional to their
φJ; B(φJ)/φJ is nearly constant for θ0 ≤ 60◦, then increases by a
factor of less than two as θ0 increases from 60◦ to 90◦. The scal-
ings of B with (φ−φJ) are similar to those previously reported for
θ0 = 0 systems.20,22
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Fig. 5 Pressure P(φ) for all FR polymers (colored curves) compared to
P(φ) for FJ polymers (black dashed curve). The legend indicates θ0.

The small-but-noticeable jumps in the P(φ) curves correspond
to stress-relieving plastic avalanches that are much like those dis-
cussed in Ref.23; these jumps are more prominent when results
for single samples rather than averages over independently pre-
pared samples are plotted. Such plastic avalanches are more fre-
quent and begin at lower pressures in the small-θ0 (large-αeff)
systems; this is expected since they are less dense and chains have
more room to rearrange at fixed (φ −φJ).

More insight can be gained by breaking down the mechani-
cal response into contributions from pair, bonded, and angular
terms. Since the contribution of 3-body angular interactions to
any system’s virial (and hence its pressure) is identically zero,40

we analyze them in terms of their associated energies rather than
directly in terms of the stress-strain curves. Figure 6 shows how
selected systems’ per-monomer total, pair, bond, and angle ener-
gies εtot(φ), εpair(φ), εbond(φ), and εangle(φ) vary with φ .
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Fig. 6 Energies as a function of system density for FR polymers with
(from left to right) θ0 = 6◦, 15◦, 27◦, 45◦, and 90◦. Solid, dotted and dashed
curves respectively show εpair(φ), εbond(φ), and εangle(φ). For θ0 = 27◦,
εbond(φ) and εangle(φ) are nearly equal and the curves overlap.

All systems have εpair(φ) > εbond(φ) and εpair(φ) > εangle(φ);
this is expected since intermonomer overlap is the ultimate
origin of both entanglement and jamming. The variation of
εangle(φ)/εbond(φ), however, is far less trivial. For our N and prepa-
ration protocol, εangle(φ) > εbond(φ) for θ0 ≤ 27◦. This bending-
dominated jamming20,21 defines our small-θ0/large-αJ regime.
In these systems, jamming is caused by chains’ resistance to large-
scale bending, and specifically by the torques transmitted along
entangled chain segments. For θ0 > 27◦, εbond(φ)> εangle(φ). Thus
both our intermediate-θ0 and large-θ0 systems exhibit stretching-
dominated jamming, where the dominant factor promoting jam-
ming is chains’ resistance to axial compression. We find that all
systems’ per-monomer εtot, εpair, εbond, and εangle each scale ap-
proximately as P2 immediately above φJ . These scalings are the
same as they are for rodlike θ0 = 0 FR polymers.20 However,
as illustrated in Fig. 6, the associated prefactors in the scalings
εtot ∼ t̃(θ0)P2, εpair ∼ p̃(θ0)P2, εbond ∼ b̃(θ0)P2, and εangle ∼ ã(θ0)P2

vary strongly with θ0. The ratios ã(θ)/t̃(θ0), b̃(θ)/t̃(θ0), and
ã(θ)/b̃(θ0) all increase monotonically with decreasing θ0.

We emphasize that the results presented above are sensitive to
the ratio ka/kc. Broederz et al.21 showed that varying the ratio of
angular and axial stiffnesses over a wide range can qualitatively
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change the nature of systems’ mechanics, e.g. from bending-
dominated to stretch-bend coupled to stretching-dominated as
ka/kc increases. This dependence is complicated and nonmono-
tonic; for example, stretching dominates bending both for ka = 0
and in the ka/kc→ ∞ limit. Limited computational resources pre-
vent us from exploring this issue in greater detail here, but it
would be an interesting topic for future studies.

3.4 Jamming’s precursor: Entanglement
As mentioned above, we find that FR polymers’ athermal so-
lidification under quasistatic compression occurs in two distinct
stages: entanglement at φ = φE(θ0) followed by jamming at φ =

φJ(θ0) ' (4/3± 1/12)φE(θ0). Figure 7 shows that these transi-
tions can be clearly identified in terms of the average coordina-
tion numbers for monomers and chains. Znc(φ) is the coordina-
tion number discussed in the preceding sections, i.e. the average
number of noncovalent contacts per monomer. Zchain(φ) is the
average number of other chains that contact a given chain. For
all θ0, both stages of athermal solidification are marked by first-
order-like jumps in both Zchain(φ) and Znc(φ).
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Fig. 7 φ -dependence of chain and monomer coordination. Panel (a):
Znc(φ), the average number of noncovalent contacts per monomer. Panel
(b): Zchain(φ), the average number of other chains contacted by a given
chain. Data for flexible chains follows similar trends: entanglement at
φE ' .515 followed by jamming at φJ ' .60.

The nearly-linear increases in Znc(φ) and Zchain for φE < φ < φJ

and φ > φJ can be simply explained using a binary-contact model.
If one assumes the probability of interchain contacts can be un-
derstood at the two-chain level (i.e. higher-order correlations be-

tween chain configurations are unimportant), the total number
of contacts should scale as φ 2, and thus the number of contacts
per chain should scale as φ . This assumption is equivalent to as-
suming that an entangled segment corresponds to a fixed number
of interchain contacts, and correctly predicts the entanglement
densities of concentrated polymer solutions.41,42 The first-order-
transition-like jumps of Znc(φ) and Zchain(φ) indicate that the as-
sumption breaks down at φE(θ0) and φJ(θ0).

Below φE(θ0), Znc(φ) and Zchain(φ) are zero because chains are
free to relax away from one another via rigid-body-like rotations
and translations with no energy cost. These relaxation mecha-
nisms become increasingly less viable as density increases. Previ-
ous studies of large-α particulate systems have shown that if no
locally nematic alignment occurs, the available particle rotations
become severely blocked as φ increases, and entanglement occurs
when they vanish.9,10 A similar process occurs in our systems,
with larger-αeff chains entangling at lower φ . Entanglement at
φ = φE is a contact percolation transition;5 percolation of the in-
terchain contact network is what prevents chains from fully relax-
ing away from each other as they did for φ < φE . Such contact per-
colation is an intrinsically ∼ Nch-body phenomenon. As discussed
above, FR polymers’ jamming at φJ is a rigidity-percolation-like
transition. When a percolating network of load-bearing contacts
is formed, the system’s energy can no longer relax to zero. This
is an intrinsically ∼ NchN-body phenomenon. The many-body na-
ture of contact and rigidity percolation explains why the binary-
contact model breaks down at φE and φJ .‡

The θ0-dependence of the height of the jumps in Znc at φ = φE

appear to indicate that binary-contact scaling “switches on” at
φ = φE . For φE(θ0) < φ ≤ φJ(θ0), the data nearly collapse onto
a common line Znc(φ) ' 3φ − .4, indicating that the three-body
θ = θ0 constraints play a minimal role in this regime. These
“switching events” are nearly instantaneous for our lowest-θ0 sys-
tems. They become more gradual as θ0 increases, but remain
present even for our largest-θ0 systems. The height ∆Zchain(θ0)

of the jumps in Zchain at φ = φE is also θ0-dependent, but in a
manner that can be qualitatively understood as a tradeoff be-
tween φ -dependent and αeff-dependent effects. For θ0 <∼ 24◦,
∆Zchain increases with θ0 because the total number of monomer-
monomer contacts formed at entanglement increases with φE . For
θ0 >∼ 24◦, ∆Zchain decreases with θ0. In this regime, the total
number of monomer-monomer contacts formed at entanglement
remains nearly θ0-independent over a broad range of θ0, but since
chains become less spatially extended as αeff decreases, these con-
tacts are distributed between fewer distinct pairs of chains, and
thus ∆Zc becomes smaller.

Figure 8 shows snapshots of our θ0 = 6◦ systems at φE and φJ .
At φE , it is clear that chains are entangled and cannot move in
a rigid-body-like fashion, but it is also clear that many interior
chain segments remain free. At φJ , there are clearly far fewer of
these free interior segments, and hence fewer available relaxation

‡This two-stage mechanism appears to be specific to quasistatic compression; FR
polymers under dynamic compression exhibit increases in Zchain(φ) that are grad-
ual rather than sharp, and viscous (ε̇-dependent) stresses within the liquid phase. 13
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Fig. 8 Snapshots of θ0 = 6◦ FR-polymer configurations at φe (left panels)
and φJ (right panels). The top panels show all chains, while the bottom
panels show cross-sections of thickness 4.25σ . Different colors indicate
different chains.

mechanisms. These qualitative observations can be made quan-
titative by plotting the flipper fraction Fflip(φ), i.e. the probabil-
ity that interior monomers have zero interchain contacts.§ Each
flipper corresponds to an unconstrained dihedral DOF. Flippers
do not prevent systems from being mechanically stable; forces
and torques can be transmitted through flippers along chain back-
bones. An example of a mechanically stable material with a high
flipper fraction is rubber, which is clearly a solid despite the fact
that its constituent chains fluctuate freely on the microscopic, sub-
crosslink scale.

Results for all systems’ Fflip(φ) are shown in Figure 9. For
φ < φE , all systems have Fflip = 1, as expected. Fflip drops sharply
at both φE and φJ; these drops’ qualitative trends with θ0 reflect
the trends in Znc discussed above. All systems retain a substantial
fraction of flippers even above φJ , indicating that (as expected)
these systems’ mechanical integrity is maintained by forces and
torques transmitted along chain backbones. More noteworthy,
however, is the behavior for φE(θ0) < φ < φJ(θ0). All systems’
Fflip(φ) drop approximately as φ−1, which indicates that chains’
interior segments are continuously becoming more constrained
as compression proceeds. This process corresponds to chains re-
arranging (with negligible energy cost) via dihedral rotations.

3.5 Mechanisms of chain collapse
As discussed above, for φE ≤ φ ≤ φJ , systems are in a liquid-
like phase wherein chains cannot rearrange on large scales due

§ Our previous study 13 defined flippers as interior monomers with less than two non-
covalent contacts. We find that the more restrictive definition employed here clarifies
the relevant physics.
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Fig. 9 φ -dependence of the flipper fraction: Fflip(φ) is the fraction of flip-
pers (interior monomers with zero noncovalent contacts).

to entanglement, yet they can still fully relax via dihedral rota-
tions. Here we will show that examining the evolution of systems’
dihedral-angle distributions between φE and φJ reveals critical dif-
ferences between our small-, intermediate, and large-θ0 systems’
solidification mechanisms, and also clarifies the reasons for their
different mechanics above φJ .

The dihedral angle ψ is the angle between the planes defined
by two consecutive trimers along a chain. Specifically, if ~bi j =

~r j−~ri is the covalent bond vector connecting monomers i and j,
and {i, j,k, l}= {i, i+1, i+2, i+3} are four consecutive monomers
along a given chain:

|Ψ|= cos−1

(
(~bi j×~b jk) · (~b jk×~bkl)

|~bi j×~b jk||~b jk×~bkl |

)
. (3)

Figure 10 shows all systems’ dihedral-angle distributions P(|ψ|) at
φE and φJ . Here P(ψ) is normalized so that completely disordered
systems have P(ψ) = 1; our systems satisfy this condition at φ =

φinit . Thus P(ψ) > 1 (P(ψ) < 1) indicates that dihedrals with the
angle Ψ become more (less) likely during compression.

Small-θ0 systems develop an excess of cis (Ψ ' 0) conformers
even below φE . These excess cis conformers tend to be grouped
consecutively along chains, forming increasingly large-scale arcs
like those shown in Fig. 1.¶ Between φE and φJ , entanglement
prevents these large-scale circular arcs from disappearing or loos-
ening. Instead they slowly tighten, and jamming occurs when
they lock. Above φJ , further compression of these arcs requires
work. For θ0 < 27◦ this process dominates systems’ mechanical
properties as shown in Fig. 6.

For intermediate θ0, P(|Ψ|) remains relatively flat as compres-
sion proceeds. A slight excess of cis conformers is balanced by a
slight deficit of trans (|Ψ ' 180◦|) conformers. This is consistent
with a gradual collapse into disorded, globule-like structures that
jam when chains are no longer able to collapse into more compact
configurations without incurring an energy cost.

In contrast, large-θ0 systems’ athermal solidification is dom-
inated by local collapse and ordering of chains at the few-

¶ nθ = 360◦/θ0 consecutive Ψ = 0 conformers form a circle; smaller numbers of con-
secutive Ψ = 0 conformers form a planar circular arc.
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Fig. 10 Dihedral angle distributions at φE (panel a) and φJ (panel b).
These are normalized so that totally disordered systems have P(Ψ) = 1.
The black dashed curve indicates results for FJ chains. For clarity, results
are shown only for every other θ0, i.e. θ0 = 6◦, 12◦, ..., 90◦. The angle
labels in panel (b) indicate which θ0 the respective peaks correspond
to. The bottom panel shows snapshots of the most probable dihedral
arrangement for θ0 = 78◦, 84◦, 90◦, and flexible chains, from left to right.

monomer scale. Previous studies have shown that flexible chains
develop a peak at |Ψ| = 70.53◦ that corresponds to formation of
locally polytetradral order.16,43 FR polymers with θ0 6= 120◦ can-
not form such tetrahedra due to their θ = θ0 constraints. How-
ever, their dihedrals do tend to collapse into the maximally com-
pact structures consistent with both the θ = θ0 constraints and
polytetrahedral-like order, as indicated by the different peaks in
P(|Ψ|).‖ As compression continues, the number of these compact
dihedrals increases as indicated by the increase in the height of
these peaks. Jamming occurs when the dihedral DOF available
for further chain collapse without energy cost become exhausted.
As illustrated in the snapshots, the most likely dihedral arrange-

‖This collapse mechanism appears to be specific to quasistatic compression; large-θ0

FR polymers under dynamic compression do not develop sharp peaks in P(|Ψ|). 13

ments become increasingly compact as θ0 increases. This directly
explains the increase in φJ with θ0 for θ0 >∼ 75◦.

3.6 Stress transmission in marginally jammed states

We conclude our analyses by examining how the local stresses
on individual monomers are distributed. The Cauchy stress in-
variants I1, I2 and I3 are defined in terms of the elements of the
Cauchy stress tensor σ̄ as

I1 = σii , I2 =
1
2 (σiiσ j j−σi jσ ji) , I3 = det(σ̄), (4)

where repeated indices indicate summation over {i, j,k} =

{1,2,3}. These quantities remain well-defined when σ̄ ≡ σ̄ i is
the atomic-level stress tensor for atom i. Since the macroscopic
pressure P is given by

P =− 1
3Natom

Natom

∑
i=1

Ii
1, (5)

examining how the atomic-level {Ii
1} are distributed is useful for

characterizing stress inhomogeneities in jammed systems.44
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Fig. 11 Probability distributions for the atomic-level principal stress I1
at φ = φJ(θ0). For clarity, results are shown only for every other θ0, i.e.
θ0 = 6◦, 12◦, ..., 90◦. The black dashed curve shows data for FJ chains.

The probability distributions P(I1) for all marginally jammed
systems are shown in Figure 11. All systems’ P(I1) are maximal at
I1 = 0 due to their hypostaticity; note that the peak sharpens with
decreasing θ0 as φJ decreases and H(θ0) increases. The monomers
with I1 = 0 are either chain ends or flippers. Another distinctive
feature is the very broad peak in P(I1) at I1/〈I1〉 ' 3/5. Other
marginally jammed systems, both particulate and polymeric,44,45

tend to have P(I1) that decay nearly perfectly exponentially away
from their peaks. Since a comparably broad peak is not found
in dense polymer glasses,45 the one observed here probably also
results from our systems’ hypostaticity and lower φJ .

Unlike model particulate granular systems, which typi-
cally have purely repulsive interactions and hence single-sided
P(I1),32,44 polymers have a double-sided P(I1) that indicates
some monomers in these states are under tension. These tensile
forces can only come from the covalent backbone bonds; angular
forces do not directly contribute.40 Such double-sided distribu-
tions have been previously observed in fully developed glassy-
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polymer crazes.45 The presence of significant tensile forces in
these marginally jammed states is a major difference between
granular polymers/fibers and their particulate counterparts such
as spheres, rods, and ellipsoids.

Our data show that angular interactions significantly broaden
FR polymers’ P(I1) distributions relative to those found in FJ poly-
mers for all θ0, but increasingly so as θ0 increases. The greater
stress inhomogeneities within FR polymers’ marginally jammed
states probably arises from an interplay between their lower φJ

and greater ability to transmit stress. For I1 >∼ 2〈I1〉, the P(I1)

distributions depend rather strongly on θ0. Higher-aspect-ratio
chains’ P(I1) decay faster, indicating these systems possess fewer
highly stressed monomers, i.e. that the compressive stresses giv-
ing rise to systems’ finite P are less localized. One plausible expla-
nation for this observation is that the larger-α chains are better
at transmitting forces along their backbones.

To test this hypothesis, we examined whether and how our sys-
tems’ monomer-level stresses are topologically correlated. The
most compressive principle stress on a given monomer, σ3, is
given by the minimum eigenvalue of σ̄ and is often used to an-
alyze force-chain networks in particulate systems.46 We calcu-
lated σ3 for all monomers, and labeled monomers with above-
average compressive stress (i.e. a monomer with σ3 < 〈σ3〉) as
“overcompressed.” Then we calculated P(n), the probability that
a monomer i lying a chemical distance n away from an overcom-
pressed monomer j is also overcompressed. Topologically uncor-
related stresses would give P(n) = 1/2 for all n > 0.

Results for P(n) for all systems are shown in Figure 12(a). For
small- and intermediate-θ0 systems, these correlations are min-
imal. FR polymers with θ0 >∼ 30◦ exhibit slightly longer-range
correlations than their FJ counterparts, but their P(n) still decay
to 1/2 by n' 5. This suggests that these systems’ slightly longer-
range stress correlations arise from their restricted dihedral-level
structure. For small-θ0 systems with bending-dominated jam-
ming, however, the correlations are significantly longer-ranged.
These systems’ stress-transmission mechanisms can be better un-
derstood if one first examines the distribution of overcompressed
monomers along chain backbones.

Fig. 12(b) shows P(k), the probability that the kth monomer
along a chain is overcompressed. For intermediate- and large-
θ0 systems, all monomers are approximately equally likely to be
overcompressed except those very near to chains’ free ends. As
θ0 decreases into the bending-dominated regime, however, over-
compressed monomers become more and more concentrated to-
wards the middle of chains. The simplest explanation for this
result is that the large-scale arcs that low-θ0 chains form as φ

increases13 are stabilized by overcompression of their interiors.
This stretch-bend coupling may be the single mechanism most
responsible for jamming in our small-θ0 systems. Comparable
stretch-bend-coupling-dominated mechanics are observed in a
wide variety of fibrous materials.5,7,21

The increasing concentration of overcompressed monomers to-
wards the center of chains directly explains the longer-range cor-
relations in P(n) for large-aspect-ratio polymers/fibers. P(n)−1/2
decays slower than exponentially because overcompressed sec-
tions of chains are more likely to be arranged consecutively as
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Fig. 12 Stress transmission along chain backbones and its relation to
chain-end effects. Panel (a): P(n), the probability that a monomer i lying
a chemical distance n away from an overcompressed monomer j is also
overcompressed (i.e. has σ i

3 < 〈σ3〉). Panel (b): P(k), the probability the
kth monomer in a chain is overcompressed.

opposed to randomly along chains. It also explains the anticor-
relation in P(n) for n > 50. Since overcompressed monomers are
less likely to appear near chain ends, it becomes especially un-
likely that two monomers a chemical distance n > N/2 will both
be overcompressed – increasingly so as θ0 decreases.

4 Discussion
In this paper, we examined how model semiflexible polymers
athermally solidify under quasistatic compression. Our findings
show a number of universal features, but also indicate that these
systems’ solidification mechanisms are highly sensitive to chains’
local and large-scale structure, i.e. their bond angle θ0 and their
effective aspect ratio αeff. They also show that larger-aspect ratio
polymers’ athermal solidification exhibits many features found in
previous studies of semiflexible fibers.5,6

All of our systems soldify in two distinct, sharply defined and
well-separated stages. For φ < φE(θ0), systems are in a gas-like
phase wherein chains are able to avoid contact and can thus move
in rigid-body-like fashion. For φE(θ0)≤ φ < φJ(θ0), systems are in
an liquid-like phase wherein chain entanglement prevents rigid-
body-like motion but chains can accommodate further compres-
sion via local rearrangements of their internal degrees of freedom,
i.e. dihedral rotations. In this phase, the entanglement density
scales as φ 2, as predicted by binary-contact models and found in
concentrated polymer solutions.41,42 When the abovementioned
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dihedral relaxation mechanisms can no longer accormmodate fur-
ther compression, systems rigidity-percolate and jam at φJ(θ0).
The large separation between the entanglement and jamming
densities of our N = 100 polymers, φJ(θ0)/φE(θ0) = 4/3± 1/12,
indicates a critical distinction between semiflexible polymers and
their more rigid counterparts such as rods, ellipsoids, and θ0 = 0
FR polymers, all of which jam when they entangle.8,9,20,33 Note
that the ratio φJ(θ0)/φE(θ0) depends on N. It is equal to 1 for rigid
trimers (N = 3 FR polymers) since these systems have no internal
degrees of freedom,14 and we expect that it will saturate at its
maximum value at some yet-to-be-determined Nsat(θ0).

Higher-aspect-ratio chains entangle and jam at lower densities
because they are more spatially extended. They are also far more
hypostatic at jamming, presumably because they are better able to
transmit forces and torques along their backbones. One interpre-
tation of these results is that higher-aspect-ratio chains’ effective
number of DOF is well below N−3 and decreases with decreasing
θ0; after all, axisymmetric rigid rods have ndo f = 5. This interpre-
tation is consistent with previous results for both thermal and
athermal bent-core trimers, where the minimization of configura-
tional freedom coincides with the minimization of φJ

14 and max-
imization of both the glass transition temperature Tg

47 and the
crystallization temperature Tx

48 as θ0→ 0. It may be more useful
to regard these chains as being composed of N/ncorr segments,
where ncorr is the chemical length over which stresses are topo-
logically correlated. These segments may correspond to the large
circular arcs (of ∼ ncorr consecutive cis-conformers) they form un-
der compression. Testing these ideas requires further study.

Higher-aspect-ratio chains also exhibit different mechanics
above jamming than their lower-aspect ratio counterparts. As
αJ increases, systems’ resistance to compression is increasingly
dominated by resistance to large-scale chain bending. This trend
is analogous to that of elastic-rod-like fibers, whose mechan-
ics become increasingly bending-dominated as their length in-
creases.5,20 As aspect ratio decreases, bending is less important
because large circular arcs no longer form. Instead, systems’ re-
sistance to compression becomes increasingly dominated by their
axial stiffness, i.e. the stiffness of their covalent bonds. A com-
parable switch from bending-dominated to stretching-dominated
jamming occurs in model lattice-based networks as their coordi-
nation number increases21 (as is the case in our systems; ZJ in-
creases with decreasing αJ). Finally, for polymers with θ0 >∼ 75◦,
chains’ dihedrals tend to collapse into the most compact struc-
tures consistent with both their θ = θ0 constraints and locally
polytetrahedral-like order, even below φJ . These compact chain
segments likely play a critical role in these systems’ mechanics.

We emphasize that the “entanglement” discussed in this paper
is rather different than the entanglement of microscopic synthetic
polymers. Individual entanglements in polymer solutions, melts
and glasses are rather ethereal, delocalized objects and hence are
not directly experimentally observable. They are best understood
at the mean-field level, as constraints on polymers’ transverse dif-
fusive motion imposed by the other chains.49,50 The onset of this
type of entanglement with increasing φ is gradual and continu-
ous. In contrast, in athermal polymeric and fibrous systems, indi-
vidual entanglements are clearly identifiable; they are interchain

contacts that remain after systems’ energy is minimized. Thermal
motion is by definition absent in these systems, and the onset of
entanglement in these systems (in the absence of gravity) is dis-
continuous as shown above. Nevertheless, both types of entangle-
ment are similar in the sense that both are constraints on chains’
transverse motion imposed by the other chains, and the scalings
of athermal systems’ entanglement density with φ for φE < φ < φJ

is the same as that found in their microscopic counterparts.41,42

Here we have considered only homogeneous, monotonically
compressed systems. One natural extension of our work would be
to examine inhomogeneous fibrous systems such as those found
in bird nests, synthetic nonwoven materials, and novel meta-
materials inspired by these.5,6 The results presented above sug-
gest that these can be modeled using large-aspect-ratio (small-
θ0) chains. In contrast, lower-aspect-ratio (larger-θ0) chains
are a useful model for colloidal and granular polymers, which
are also inhomogeneously structured in typical experiments.51–55

Another natural extension of our work would be to examine
systems that were mechanically preconditioned by successive
compression-decompression cycles. While it is known that com-
parable systems exhibit substantial mechanical hysteresis,5,6,22,23

the degree to which this hysteresis varies with fiber aspect ratio
or “waviness” remains largely unexplored.

Finally, it would be interesting to quantitatively compare the
athermal mechanics of jammed low-θ0 FR polymers to those of
jammed semiflexible nonpolymeric frictional fibers12,56 with the
same αeff. Although these systems share many common fea-
tures,5,6 there are also potentially-critical differences between
them. For example, FR polymers have local angular interactions
Ua(θ) that give rise to increasing large-scale bending rigidity as
compression proceeds and large circular arcs form, whereas con-
tinuous fibers typically possess a constant elastic bending mod-
ulus, and FR polymers are very “rough” (locally concave, with
a tendency to interlock) whereas continuous fibers are typically
much smoother. Comparing how these systems’ mechanics vary
with αeff and semiflexibility might provide guidance for the de-
velopment of novel fibrous metamaterials.6
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