
Effects of chain length and polydispersity on shear banding 
in simple shear flow of polymeric melts

Journal: Soft Matter

Manuscript ID SM-ART-04-2020-000669.R1

Article Type: Paper

Date Submitted by the 
Author: 26-May-2020

Complete List of Authors: Boudaghi-Khajehnobar, Mahdi; University of Tennessee Knoxville College 
of Engineering, Chemical and Biomolecular Engineering
Edwards, Brian; University of Tennessee Knoxville College of 
Engineering, Chemical and Biomolecular Engineering
Khomami, Bamin; University of Tennessee, Department of Chemical and 
Biomolecular Engineering

 

Soft Matter



1

Effects of chain length and polydispersity on shear banding in simple shear flow of 
polymeric melts

Mahdi Boudaghi-Khajehnobar1, Brian J. Edwards1,, and Bamin Khomami1,

Abstract:

The characteristics of shear banding were investigated in entangled, polydisperse, linear polymer melts 
under steady-state and startup conditions of simple shear flow. This virtual experimentation was 
conducted using course-grained nonequilibrium dissipative particle dynamics simulations expressed in 
terms of a force-field representation that faithfully models the atomistic system dynamics. We examined 
melts with two mean molecular bead numbers of   and polydispersity indexes of 1.025, 𝑁𝑛 = 250, 400
1.05. The wide range of relaxation timescales in the polydisperse melts decreased the nonmonotonic 
character of the steady-state shear stress vs. shear rate profile compared to a monodisperse linear melt. 
The polydispersity level required to observe a stress plateau in the shear stress profile at intermediate 
shear rates was correlated with the nominal entanglement density. Startup of shear flow simulations 
revealed the development of spatial inhomogeneities and dynamic instabilities in polydisperse fluids 
containing both monotonic and nonmonotonic shear stress flow curve. Although the shape and duration 
of instabilities were found to be correlated with the monotonicity of the shear stress profile, the onset 
and underlying mechanism leading to the formation of shear bands were generally universal. The 
simulations revealed that perturbations arose soon after the occurrence of a large stress overshoot under 
startup conditions, and that banded structures stemmed from local reorientation and subsequent 
deconstruction of the entanglement network. Furthermore, data indicated that the inception of strain 
localization occurred at shear rates near the reciprocal of the Rouse characteristic timescale, . 𝛾 > 𝜏𝑅

―1

Transient shear banding was observed in shorter chain melts undergoing startup of shear flow in which 
instabilities arose after the appearance of a stress overshoot. These instabilities eventually decayed, but 
only long after the stresses had attained their steady-state values. The longer chain melt exhibited a shear 
band structure that remained indefinitely, long after the stresses had attained steady state. 
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I. Introduction:

Industrial processing of polymeric solutions and melts is strongly impacted and limited by 
flow instabilities that occur at typical strain rates; indeed, final product characteristics are greatly 
influenced by the process flow history. Processed viscoelastic polymeric solutions and melts are 
prone to dynamic instabilities, metastable states, nonlinearities, and periodic chain tumbling. 
These nonlinear dynamics can manifest in a variety of ways, such as shear banding, stick-slip flow, 
sharkskin, extrudate distortion, polymer migration, flow hysteresis, etc. 1-3 These phenomena are 
rooted in the complex dynamic response of the system to process kinematics, which stimulate 
liquid response covering a vast range of time and lengths scales. The coupling of the inherent 
dynamic responses of individual relaxation modes over such large ranges can produce an 
inherently nonlinear and unstable response of the local fluid properties, which can translate into 
spatial inhomogeneities in the macroscopic response of the fluid to process flow history. Shear 
banding, in particularly, has been studied extensively in recent years, although its root causes 
and effects are still hotly debated 4-7. Nevertheless, there remain many potential factors 
impacting the manifestation of shear banding that have yet to be examined, such as the effect of 
polydispersity of the sample molecular weight.

Many viscoelastic fluids, including polymer solutions, melts, wormlike micelles, and liquid 
crystalline polymers, exhibit shear banding. It is manifested in a sheared fluid as a strain rate 
localization where distinct domains within the liquid exhibit different strains or strain rates. 
Occurrence of shear banding has been traditionally associated with the negative slope of the 

steady-state shear stress flow profile , where  is the steady-state shear stress [𝑑𝜎𝑥𝑦
𝑑𝛾] < 1 𝜎𝑥𝑦

and  is the shear rate. To this end, constitutive equations that can capture a non-monotonic 𝛾
flow curve, such as Johnson-Segalman 8, 9, are capable of capturing a banded velocity profile in 
simple shear flows. The original Doi and Edwards constitutive equation 10-12  gives rise to a 
nonmonotonic flow curve for a monodisperse entangled polymeric fluid with a stress maximum 
at , inverse of the disengagement time). However, new concepts have been introduced 𝛾 ∗ = 𝜏 ―1

𝑑

in advanced tube-based models 13-18 to eliminate the nonmonotonicity as they are not commonly 
observed in commercial, i.e., polydisperse, entangled polymeric fluids. 

Shear banding was first observed in wormlike micelles (WLM) in the early 1990’s 19, 20. The 
first observation of transient (banded structure disappears once the flow reaches steady sate)  
and steady shear banding in entangled polymeric liquids was made in  2006 by Tapadia and Wang 
in step-strain startup of shear flow via particle tracking velocimetry 21. These initial experiments 
were subsequently extended by Wang and coworkers to a host of polymeric fluids, including a 
well-entangled DNA solution (more than 40 entanglements per chain) in steady and oscillatory 
shear flows 22-25. Wang and co-workers ascribed the occurrence of shear banding to an “elastic 
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yielding” and an “entanglement−disentanglement transition” of the polymer network 26. The 
elastic yielding concept has been widely challenged in the polymer physics and rheology 
communities, as experimental studies have shown that banded velocity profiles can also be 
realized due to edge fracture. Moreover, Helgeson et al. have demonstrated flow-concentration 
coupling in a shear-banded fluid of wormlike micelles (WLM), and they have concluded that strain 
localization is associated with shear-induced de-mixing 27. Alternatively, Gurnon et al. have 
observed a shear-induced anisotropic pattern in linear polymer-like micelle (PLM) solutions as an 
indication of flow alignment. Unlike Helgeson et al., Gurnon et al. have not observed significant 
concentration differences; therefore, they ascribed the observed shear banding to the 
coexistence of an aligned and more-entangled PLM layer 28. 

Olmsted, Fielding, and coworkers have performed an extended series of linear stability 
analysis studies with a variety of constitutive equations to ascertain the conditions under which 
shear banding occurs in entangled polymeric fluids.4, 9, 29-39 Specifically, Fielding and Olmsted 
evaluated the effect of a demixing instability on shear banding, and they demonstrated that shear 
banding is a mechanical instability in the presence and absence of a nonmonotonic flow curve9, 

29, 33, 36-38. In a more general study, Moorcroft and Fielding proposed a fluid-universal criteria for 
the onset of shear banding, namely, the existence of significant stress overshoot in startup of 
shear flows 34, 35. The influence of concentration/stress coupling on formation or occurrence of 
shear banding has also been considered.  Cromer et al. have demonstrated that this coupling can 
lead to steady shear banded velocity profiles with monotonic flow curves, albeit in the presence 
of significant stress overshoot 40. 

A recent continuum flow simulation study by Hemingway and Fielding has linked strain 
banding to edge fracture. Specifically, they observed that existence of moderate edge 
disturbances could give rise to bulk shear banding 5. Although, these simulation results are 
consistent with a few earlier experimental studies cited above, occurrence of shear banding 
cannot be solely ascribed to edge fracture since shear banding has been observed in a number 
of experimental studies where the meniscus effect, i.e., edge fracture, has been eliminated 41. 
The above summary clearly points out that even in absence of concentration/stress coupling and 
demixing, entangled polymeric fluids can exhibit shear banding under a variety of conditions, 
namely, monotonic and nonmonotonic flow curves, with and without edge fracture. To this end, 
what is needed is a molecular picture that paves the way for a full mechanistic understanding of 
the occurrence of shear banding in entangled polymeric fluids; molecular-level simulations have 
been increasingly used to gain insight into molecular processing that lead to shear banding. 

The first molecular level simulation of shear banding was performed by Cao and Likhtman 42. 
They conducted coarse-grained molecular dynamics simulations of short linear monodisperse 
polymer melts with up to the estimated number of 10 entanglements per chain ( ; beads) 𝑁 = 150
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in a step-strain startup of shear flow using the Langevin and Dissipative particle dynamics 
thermostat. Transient and steady shear banding was observed after the stress overshoot for 
monotonic and nonmonotonic flow curves, respectively. Later, Mohageghi and Khomami in a 
series of papers 7, 43-45 investigated the molecular mechanism leading to shear banding utilizing 
hi-fidelity Dissipative Particle Dynamics (DPD) simulations in moderately-entangled 
monodisperse melts up to 26 average number of entanglements per chain in step-strain and 
finite-strain start-up of bulk shear flows. Their study indicated that shear banding occurs due to 
inhomogeneous chain segmental orientation and entanglement density of the fluid. The 
importance of local versus global dynamics of the entanglement network and the influence of 
deformation ramp rate in startup of shear flow, specifically the appearance of stress overshoot 
and occurrence of transient and steady shear banding, was also investigated. These 
comprehensive studies demonstrated that the entanglement network dynamics, i.e., 
homogenous versus inhomogeneous deformation, is governed by the ratio of chain vorticity 
excursion time 46, 47 to segmental stretch time. Specifically, they showed that a dimensionless 
number defined as the ratio of the time for the shear rate to reach its steady value to that of the 
average vorticity excursion time can be used to quantify the nature of the entanglement network 
dynamics. If this ratio is greater than unity, then the network disentangles homogenously; hence 
shear banding is obviated. This indicated that shear banding is not a unique response of 
entangled polymers 7, 44. 

In order to examine the validity of the aforementioned molecular picture as well as its 
applicability to commercially relevant entangled polymeric fluids, the effect of polydispersity on 
occurrence of transient and steady shear banding is herein examined via high fidelity DPD 
simulations 48. We also examine the effect of molecular weight on the transient and steady-state 
shear banding phenomenon in startup of shear flow covering a wide range of shear rates.

II. Simulation Methodology

To understand the effects of polydispersity on shear banding in entangled linear polymer 
melts, we performed equilibrium and nonequilibrium dissipative particle dynamics (DPD) 
simulations of three mildly polydisperse linear polymer melts using the method introduced by 
Hoogerbrugge and Koelman 49. This coarse-grained method integrates Newton’s equations of 
motion for each bead of every polymer chain comprising the melt where the total resultant force 
exerted on the i-th bead is expressed as the sum of the usual DPD force field, , and two 𝐅DPD

𝑖

additional forces accounting for the harmonic spring force between adjacent beads, , and a 𝐅S
𝑖𝑘

bending force between three adjacent beads,  45, 48. The DPD force field is itself comprised 𝐅𝑏𝑒𝑛𝑑
𝑖𝑙

of three distinct forces, namely, a conservative pairwise repulsive force, , a dissipative force, 𝐅c
𝑖𝑗 𝐅D

𝑖𝑗

, and a stochastic force, , each acting in direction , which is the unit vector 𝐅R
𝑖𝑗 𝐞ij = 𝐫𝑖𝑗 𝑟𝑖𝑗

quantifying the shortest path between the respective particles. The dissipative and random 
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forces represent the viscous forces acting within the nonequilibrium melt 50.  In equation form, 
the DPD simulation framework is described by the following forces acting on each particle . 𝐅total

𝑖

𝐅DPD
𝑖 = ∑

𝑗 ≠ 𝑖
(𝐅C

𝑖𝑗 + 𝐅D
𝑖𝑗 + 𝐅R

𝑖𝑗), (1)

,𝐅C
𝑖𝑗 = 𝑎𝑖𝑗(1 ―

𝑟𝑖𝑗
𝑟𝑐) 𝐞𝑖𝑗

(2)

,𝐅D
𝑖𝑗 = ― 𝛾𝐷𝜔𝐷(𝑟𝑖𝑗)[(∆𝐯𝑖𝑗).𝐞ij] 𝐞𝑖𝑗

(3)

,𝐅R
𝑖𝑗 = 𝜎𝜔𝑅(𝑟𝑖𝑗)𝜁 𝐞𝑖𝑗

(4)

,𝐅total
𝑖 = 𝐅DPD

𝑖 + 𝐅S
𝑖𝑘 + 𝐅𝑏𝑒𝑛𝑑

𝑖𝑙
(5)

,     for 𝐅S
𝑖𝑘 = 𝑘𝑠(𝑏𝑒𝑞 ― 𝑏𝑖𝑘) 𝑘 = 𝑖 ± 1 (6)

,   for 𝐅𝑏𝑒𝑛𝑑
𝑖𝑙 = ― 𝑘𝑏𝑒𝑛𝑑sin 𝜃 𝑙 = 𝑖 ± 2 (7)

In these equations, , , and  are the base units for mass, length, and energy, 𝑚 𝑟𝑐 𝑘𝐵𝑇
respectively. This allows other parameters to be expressed in DPD units, such as time 𝜏 =

. In Eq. (2),  is the repulsion constant acting between particles  and . This (𝑚𝑟2
𝑐 𝑘𝐵𝑇)

0.5
𝑎𝑖𝑗 = 200 𝑖 𝑗

force linearly declines by the ratio  (the distance between particles and the cutoff (𝑟𝑖𝑗/𝑟𝑐)
distance), where  in DPD units. The dissipative force of Eq. (3) is expressed in terms of the 𝑟𝑐 = 1
velocity differences of the particles, , a friction coefficient, , and a (∆𝐯𝑖𝑗 = 𝐯𝑖 ― 𝐯𝑗) 𝛾𝐷 = 4.5

weighting factor that is related to the weighting factor of the stochastic force as . 𝜔𝐷 = (𝜔𝑅)2

Finally, the stochastic (random) force, Eq. (4), is modelled using the random variable  of a 𝜁

standard normal distribution, where the weighting factor is defined as . 𝜔𝑅 = (1 ―
𝑟𝑖𝑗

𝑟𝑐)
Moreover, the amplitude parameter, , is also linked to the dissipation friction coefficient, ,  𝜎 𝛾𝐷

through the fluctuation-dissipation theorem as   49-52. The intramolecular force 𝜎2 = 2𝛾𝐷𝑘𝐵𝑇
parameters of the harmonic bond potential appearing in Eqs. (6) and (7) are the spring constant,

, equilibrium bond length, , and the bending constant of our stiffening bend- 𝑘𝑠 = 400  𝑏𝑒𝑞 = 0.95
angle potential  ,  7, 43-45. The application of soft bending potential is to obtain the 𝑘𝑏𝑒𝑛𝑑 = 2.0
correct properties of the polymer chains in a specific course-graining level. It is evident that in 
highly course-grained models, the bending potential is featureless. To satisfy the topological 
constraints in the simulations of entangled melts, chain crossing has been prevented by tuning 
the conservative force developed by Nikunen et al. 53 using a computationally efficient strategy. 
These simulations are similar to those of recent studies involving a coarse-grained model for 
linear polyethylene melts 48 and are strictly exact with the coarse-grained monodisperse DPD 
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model used recently by Mohagheghi and Khomami to study shear banding in linear monodisperse 
melts 7, 43, 44.

The equilibrium and nonequilibrium DPD simulations were performed in the canonical  𝑁𝑉𝑇
ensemble with a reduced particle density of  and reduced temperature  (all in DPD 𝜌 = 1  𝑘𝐵𝑇 = 1
units). The LAMMPS platform was used to integrate the Newton’s equations of motion using the 
velocity-Verlet algorithm with a reduced time step of , along with the Lagrangian  ∆𝑡 = 0.012𝜏
rhomboid periodic boundary conditions 54. The components of the stress tensor were calculated 
using the Irving-Kirkwood formula 55 implemented within LAMMPS. More details regarding the 
DPD model for entangled polymers can be found elsewhere 7, 45. 

In a recent article 48, we compared DPD simulation data with those derived from the classical 
equilibrium and nonequilibrium molecular dynamics simulations of entangled polyethylene melts 
and extracted direct scaling factors for length, time, and viscosity to calculate rheological and 
structural properties in physical units from DPD simulations that could be compared directly with 
experimental data (specifically, for entangled polyethylene melts). This allowed us to determine 
the optimum values of the DPD parameters for polyethylene melts, and a general guideline for 
establishing optimum parameters for other similar flexible entangled polymer melts. In this 
article, however, we assume the same DPD parameters as used previously by Mohagheghi and 
Khomami to study shear banding in linear monodisperse melts 7, 43, 44 in order to facilitate 
comparisons with that work.

We examined shear banding in three entangled polydisperse polymer melts with 
polydispersity indices larger than unity  undergoing startup shear flow at (𝑃𝐷𝐼 = 𝑁𝑤 𝑁𝑛 > 1)
intermediate and high shear rates in the dimensionless Weissenberg number ( , where 𝑊𝑖 ≡ 𝛾𝜏𝑑𝑒𝑞

 is the disengagement time of the melt at equilibrium) range . Note that the 𝜏𝑑𝑒𝑞 10 < 𝑊𝑖 < 5000
longest decorrelation time of the melt, , decreases as  increases, and is only equivalent to 𝜏𝑑 𝑊𝑖
the disengagement time ( ) at low deformation rates ( ) 46, 56-58. As discussed above, 𝜏𝑑𝑒𝑞 𝑊𝑖 ≤ 1
each particle is assigned a unit mass, , at the DPD scale. Thus the mass-average bead 𝑚𝑏𝑒𝑎𝑑 = 1
number per chain ( ) and number-average bead number per chain ( ) are calculated as 𝑁𝑤 𝑁𝑛 𝑁𝑤 =

 and , where  denotes the number of 𝑚𝑏𝑒𝑎𝑑
∑

𝑖(𝑛𝑖𝑁𝑐,𝑖
2) ∑

𝑖(𝑛𝑖𝑁𝑐,𝑖) 𝑁𝑛 = 𝑚𝑏𝑒𝑎𝑑
∑

𝑖(𝑛𝑖𝑁𝑐,𝑖) ∑
𝑖𝑛𝑖 𝑛𝑖

molecules with  beads and the total number of molecules is . Two of the melts were 𝑁𝑐,𝑖 ∑
𝑖𝑛𝑖

defined with mean bead number of  and were narrowly dispersed with 𝑁𝑛 = 250
, such that the constituent chains possessed bead numbers within the range 𝑃𝐷𝐼 = 1.025, 1.05

of  and , respectively. The third melt was defined by ,𝑁𝑐,𝑖 ∈ [140, 360]  𝑁𝑐,𝑖 ∈ [120, 500] 𝑁𝑛 = 400
, with the individual chains ranging in bead number over the range  𝑃𝐷𝐼 = 1.025 𝑁𝑐,𝑖 ∈ [260, 540]

. All melts consisted of chain lengths ranging from the low to high value in increments of ∆𝑁𝑐
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, which was chosen to be larger than the average number of beads per kink segment (= 20 𝑁𝑛/
 for all melts) at equilibrium. The number of entanglements per chain, , was 〈𝒁𝒌𝒆𝒒〉 ≈ 15 𝑍𝑘

extracted  based on topological analysis using the Z1-code 59-62 by Kröger; this ensured that the 
polydisperse systems covered a wide range of chain entanglements. Note that ensemble 
averaged number of kinks, , is approximately twice the value of the number of theoretical 〈𝒁𝒌𝒆𝒒〉
entanglements , , ( based on the tube model at equilibrium), , 𝑍𝑐𝑜𝑖𝑙 〈𝒁𝒌𝒆𝒒〉 ≈ 2𝑍𝑐𝑜𝑖𝑙 ≡ 2〈𝐿𝑝𝑝〉2 〈𝑅2〉
where the numerator is the ensemble average of the primitive chain path squared and the 
denominator is the ensemble average of the magnitude of the chain end-to-end vector. Herein, 
we use  as an estimate of the entanglement network since we are not certain that the 〈𝑍𝑘〉
theoretical relationship for  is valid far from equilibrium. These three melts allowed us to 𝑍𝑐𝑜𝑖𝑙

examine the effects of both polydispersity at constant chain length and molecular weight at 
constant  on the shear banding phenomenon. Figure 1 displays the distribution function of 𝑃𝐷𝐼
chain length for all the melts. Note that the ,  and ,  𝑁𝑛 = 250 𝑃𝐷𝐼 = 1.025 𝑁𝑛 = 400 𝑃𝐷𝐼 = 1.025
melts possess Gaussian distributions, whereas the ,  melt displays a log-𝑁𝑛 = 250 𝑃𝐷𝐼 = 1.05
normal distribution.

The first melt (N250/1.025) consisted of 960 chains within a cell of dimensions 
 (corresponding to the flow, , shear, , and vorticity, , directions), whereas 98.6 × 49 × 49 𝑟3

𝑐 𝑥 𝑦 𝑧
the second melt (N250/1.05) contained 1249 chains in a simulation box with dimensions of 

. The third melt (N400/1.025) was constituted of 720 chains in a cell with 108 × 54 × 54 𝑟3
𝑐

dimensions of . The box sizes were chosen to be large compared to the 198 × 38 × 38 𝑟3
𝑐

equilibrium average radius of gyration of the chains to prevent individual chain periodicity 
interactions under flow conditions where the chains stretch and align in the flow ( ) direction. 𝑥
To ensure the homogeneity of the polydisperse melt with respect to chains of differing length, 
the bead number distribution of chains, , was inspected for the N250/1.05 melt within 𝑃(𝑁𝑐,𝑖)
several layered sub-cells within the simulation box over a wide range of . The layer 𝑊𝑖
distributions were practically identical with those of the overall simulation cell, such as those 
depicted in Figure 1.

FIGURE1 Here (Fig1)

Figure 1. The Probability distribution function of chain length in each of the polydisperse melts. 
The inset shows the number of chains of each polymer length. 

We calculated the longest relaxation time ( ) by fitting an exponential function to the 𝜏𝑑

autocorrelation function of the normalized end-to-end unit vector, : 𝑢 = 𝐑 ‖𝐑‖ 𝐴𝐶(𝑡) =
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, using expressions with both two and three exponential 〈𝑢𝑖(𝑡𝑜) ∙ 𝑢𝑖(𝑡𝑜 + 𝑡)〉 = ∑𝑛
𝑖 = 1𝑎𝑖𝑒 ―𝑡/𝜏𝑖

terms; the results were statistically equivalent in all cases. Similarly, the longest relaxation time 
under flow (i.e., the decorrelation time, , which is equivalent to the disengagement time under 𝜏𝑑

quiescent conditions 63) and chain tumbling period ( ) were estimated by the addition of a 𝜏𝑟𝑜𝑡

cosine term to the normalized end-to-end autocorrelation function,  63. 𝐴𝐶(𝑡) = 𝑎𝑒 ―𝑡/𝜏𝑑𝑐𝑜𝑠(
2𝜋𝑡
𝜏𝑟𝑜𝑡

)

This function adequately captures the damped periodic character of the autocorrelation function 
associated with the tumbling dynamics of the individual molecular chains 56, 57, 63.

III. Results and discussion

Some key physical properties of the polymer liquids under quiescent conditions as derived 
from the simulation data are summarized in 

Table 1. The ensemble average of squared end-to-end distance, , average number of 〈R2
𝑒𝑞〉

1
2

kinks, , as well as the theoretical entanglement density,  for the 〈𝑍𝑘𝑒𝑞〉 𝑍𝑐𝑜𝑖𝑙𝑒𝑞 = 〈𝐿𝑃𝑃𝑒𝑞〉2 〈R2
𝑒𝑞〉

melts of , have been calculated as  , , and , respectively. Similarly, the same 𝑁𝑛 = 250 28 𝑟 
𝑐 16 9.2

parameters for the melt  are determined as  , , and  𝑁𝑛 = 400  〈R2
𝑒𝑞〉

1
2 =  35.7 𝑟 

𝑐  〈𝑍𝑘𝑒𝑞〉 = 25
. The number of kinks per chain, , , and the length of primitive path, 𝑍𝑐𝑜𝑖𝑙𝑒𝑞 = 14  〈𝑍𝑘〉 𝑍𝑐𝑜𝑖𝑙𝑒𝑞 〈𝐿𝑃𝑃〉, 

were evaluated using Z1-code 59-62. Note that the above parameters for the first two melts sharing 
 are invariant of polydispersity index. However, the disengagement time, , strongly 𝑁𝑛 = 250 𝜏𝑑𝑒𝑞

varies between the cases with  of 1.025 and 1.05. The disengagement time was calculated as 𝑃𝐷𝐼
, and  in reduced time units for the N250 liquids with 𝜏𝑑𝑒𝑞 = 1.3 × 106 𝜏𝑑𝑒𝑞 = 2.33 × 106

polydispersity index of 1.025 and 1.05, respectively, and similarly as  for the 𝜏𝑑𝑒𝑞 = 6.1 × 106

N400 melt. The Rouse and entanglement times were then calculated from the theoretical 

expressions  and  arising from reptation theory at 𝜏𝑅 = 𝜏𝑑𝑒𝑞 3𝑍𝑐𝑜𝑖𝑙𝑒𝑞 𝜏𝑒 = 𝜏𝑅𝜋3
4𝑍2

𝑐𝑜𝑖𝑙𝑒𝑞

equilibrium conditions12 . Note that these expressions are based on the assumption that the 
Rouse and disengagement times scale as  and , respectively, whereas atomistic 𝜏𝑅~𝑁2

𝑐 𝜏𝑑𝑒𝑞~𝑁3
𝑐

simulations of polyethylene melts follow more closely the experimentally observed scaling of 𝜏𝑅~
 and  57. The Mcleish-Likhtman model, incorporating the effect of contour length 𝑁2.3

𝑐 𝜏𝑑𝑒𝑞~𝑁3.3
𝑐

fluctuations, suggests a correction factor to estimating characteristic times.64 The Rouse and 
entanglement relaxation times can be estimated by   and , 𝜏𝑅,𝑐𝑙𝑓 ≡ 𝜏𝑑𝑒𝑞 3𝑓(𝑍)𝑍 𝜏𝑒,𝑐𝑙𝑓 ≡ 𝜏𝑅,𝑐𝑙𝑓 𝑍2

where is the correction function and  is effectively 𝑓(𝑍) = 1 ― 3.38 𝑍 + 4.17 𝑍 ― 1.55 𝑍1.5 𝑍
. The numerators of correction function are fitting parameters.65 Table 1 summarizes all 𝒁𝑪𝒐𝒊𝒍𝒆𝒒
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the important parameters. Note that to maintain consistency with prior work, the pertinent 
parameters in this paper are based on   and  as the Rouse and entanglement relaxation times, 𝜏𝑅 𝜏𝑒

respectively.

Table 1. Equilibrium properties for each melt. 
/PDI𝑵𝒏 250/1 250/1.025 250/1.05 400/1 400/1.025

 𝝉𝒅𝒆𝒒 (𝒎𝒓 
𝒄

𝟐 𝒌𝑩𝑻)𝟏/𝟐
1.1 × 106 1.3 × 106 2.33 × 106 5.3 × 106 6.1 × 106

𝝉𝑹 38,950 47,060 84,420 126,200 145,300
𝜏𝑅,𝑐𝑙𝑓 135,530 166,060 297,880 339,340 398,190

𝝉𝒆 3567 *4301/3662 *7786/3596 4426 5738

〈R𝟐
𝒆𝒒〉

𝟏
𝟐 27.8 𝑟 

𝑐 28 𝑟 
𝑐 28 𝑟 

𝑐 35.2 𝑟 
𝑐 35.7 𝑟 

𝑐

〈𝒁𝒌𝒆𝒒〉 16 16 16 26 25
𝒁𝑪𝒐𝒊𝒍𝒆𝒒 9.4 9.2 9.2 14.5 14

*These values are based on the mean value of the local  of chains in narrow sections of 𝝉𝒆

the overall chain length distribution.

The steady-state behavior of the simulated polydisperse linear melts under shear flow, 
including viscosity, shear stress, and normal stress differences, were extracted by performing 
simulations up to 7  (longest relaxation time under flow at any particular ). The steady-state 𝜏𝑑 𝑊𝑖
shear stress  and shear viscosity (  flow curves of these liquids as functions of   (𝜎𝑥𝑦) 𝜂 ≡ 𝜎𝑥𝑦/𝛾) 𝑊𝑖
are displayed in Figure 2. [Note that  is expressed in this figure using DPD units, so the relative 𝜎𝑥𝑦

magnitudes of the stress in Figure 2(a) should not be compared directly.] The shear stress of 
Figure 2(a) for the monodisperse N250 and N400 melts (taken from Ref. 45) display the same non-
monotonic behavior at intermediate  as noted previously for atomistic simulations of 𝑊𝑖
entangled linear monodisperse polyethylene liquids 46, 47, 56, 57; i.e., a rapid rise in  in the linear 𝜎𝑥𝑦

viscoelastic regime up to , corresponding roughly to , where  is the Rouse 𝑊𝑖 ≈ 10 𝛾 ≈ 𝑂(𝜏 ―1
𝑅 ) 𝜏𝑅

time, followed by a decrease to a local minimum and then a rapid increase again as , 𝑊𝑖→𝑂(100)
or , where  is the entanglement time of the liquid. [Keep in mind that the N250/1, 𝛾 ≈ 𝜏 ―1

𝑒 𝜏𝑒

N250/1.025, N250/1.05, N400/1, and N400/1.025 flow curves are expressed in terms of 𝑊𝑖 ≡ 𝛾
, where  is different for each of the five liquids—see Table 1. Then inset of Figure 2(a) 𝜏𝑑𝑒𝑞 𝜏𝑑𝑒𝑞

shows the stress profiles in terms of shear rate, , expressed in DPD units.] Critical values of  𝛾 𝑊𝑖
for each of the three liquids are presented in Table 2.
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Table 2. Critical values of Weissenberg number for each melt.
/PDI𝑵𝒏 250/1 250/1.025 250/1.05 400/1 400/1.025

𝑊𝑖 ≡ 𝜏𝑑𝑒𝑞𝝉 ―𝟏
𝒅𝒆𝒒 1 1 1 1 1

𝑊𝑖 ≡ 𝜏𝑑𝑒𝑞𝝉 ―𝟏
𝑹 28.2 27.6 27.5 43.7 42

𝑊𝑖 ≡ 𝜏𝑑𝑒𝑞𝝉 ―𝟏
𝒆 322.8 *302/357 *299/669 1197 1092

*These values are estimated based the mean value of local  of chains in narrow sections 𝜏𝑒

of the overall chain length distribution.

Atomistic nonequilibrium molecular dynamics simulations of linear, monodisperse, 
entangled polyethylene liquids46, 56, 57 have revealed that the non-monotonic nature of the shear 
stress profile is caused by the reduction in entanglement density caused by the alignment and 
stretching of the individual polymer chains under flow—see Figure 2(b), to be discussed below. 
This reduction in the average number of entanglements per chain degrades the overall tube 
network, allowing individual chains to undergo semi-periodic tumbling cycles, which effectively 
relieve elastic tension within the fluid, thereby resulting in a reduction in the shear stress with 
increasing . Once the tube network has been sufficiently degraded, the individual chains 𝑊𝑖
behave similarly to those in a dilute solution, tumbling in periodic cycles of chain compression 
and extension, effectively scaling shear stress similarly to dilute solution theory 46, 56, 57, 66-69; 
ultimately, this leads to the subsequent increase in  beginning at about , which 𝜎𝑥𝑦 𝛾 ≈ 𝜏 ―1

𝑒

continues to exceedingly high values of .𝑊𝑖

The effect of polydispersity on the shear stress profile is illustrated in Figure 2(a) for both the 
N250 and N400 melts. As the PDI increases, the magnitude of the decreasing shear stress  (i.e., 
the local maximum followed by a decrease in the shear stress) is lessened with increasing PDI 
until a stress plateau is attained at intermediate shear rates rather than an inverse response, as 
is commonly observed in experiment of polydisperse linear polymer solutions and melts. 
Furthermore, the increase in polydispersity index from 1.025 to 1.05 for the N250 fluid has the 
effect of widening the plateau region of the stress profile. The effect of polydispersity is to 
broaden the relaxation spectrum of the polymer melt, which effectively implies that chains of 
differing length, with inherently separate values of , experience a range of apparent  𝜏𝑑𝑒𝑞 𝑊𝑖
values at the same shear rate, . Hence these chains attain critical shear rates, such as  𝛾 𝛾 = 𝜏 ―1

𝑅

and , at different points on the stress profile. Since these critical points are associated 𝛾 = 𝜏 ―1
𝑒

with inception points of dramatic changes in key physical properties, such as entanglement 
density and the associated onset of tumbling dynamics, the non-monotonic character of the 
shear stress profile is diluted as it is spread out over a wider range of  45-47, 68. In other words, 𝑊𝑖
by the time shorter chains have attained the critical Weissenberg number to reach the shear 
stress maximum, longer chains have already attained the  at which their minimum is observed, 𝑊𝑖
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such that the subsequent increase in shear stress due to the longer chains mitigates the decrease 
in shear rate induced by the shorter ones.

It is also apparent from Figure 2(a) that increasing the average molecular weight (i.e., average 
chain length) of a melt requires a greater degree of polydispersity to flatten the profile into a 
stress plateau at intermediate shear rates. This is possibly because the longer chains possess 
longer relaxation times and larger average entanglement numbers, which apparently results (see 
Table 2) in a widening of the effective  range over the distribution of chains lengths. (Recall 𝑊𝑖
that the nonmonotonic stress profile is most severe in the case where all chains possess the same 
effective  when .) Hence the smoothing into the stress plateau is likewise distributed 𝑊𝑖 𝑃𝐷𝐼 = 1
over a wider range of for the polydisperse melts of higher average molecular weight.𝑊𝑖 

The steady-state average number of “kinks” per chain , is displayed as a function of  〈𝑍𝑘〉 𝑊𝑖
in Figure 2(b). The monodisperse N250 and N400 melts exhibit qualitatively similar behavior: an 
approximately constant value in the range , and then a steady decrease for  𝛾 ∈ [0, 𝜏 ―1

𝑅 ] 𝛾 > 𝜏 ―1
𝑅

in which the entanglement network is practically destroyed at very high O(10,000). The 𝑊𝑖 ≈
dramatic decline in the average number of kinks per chain begins roughly as , where the 𝛾 ≈ 𝜏 ―1

𝑅

individual chains begin to stretch markedly from their quiescent configurations. This results in a 
net extension and orientation of the tube network along the direction of flow, which relieves 
some of the associated constraints on the individual chains, thus allowing them more freedom 
of movement, which ultimately results in the semi-periodic tumbling orbits of the individual 
chains (as described above) within the extended and enlarged tubes formed by the neighboring 
chains. Indeed, atomistic simulations of monodisperse, linear polyethylene melts indicate a 
direct, inverse correlation between chain stretch and entanglement number 47. As , the 𝛾→𝜏 ―1

𝑅

entanglement network begins to disintegrate to a degree where the concept of reptation no 
longer applies, and the inherent dynamics of the melts resemble those of dilute solutions of 
polymers rather than dense entangled liquids 47, 56, 57.

The effect of polydispersity on the behavior of  as a function of  is also shown in Figure 〈𝑍𝑘〉 𝑊𝑖
2(b). In all cases, increasing  acts to diminish and broaden the decrease in , effectively 𝑃𝐷𝐼 〈𝑍𝑘〉
ameliorating the drop in the number of kinks per chain. This broadening is again associated with 
the range of  over which individual chains enter into the shear rate region where , 𝑊𝑖 𝛾 > 𝜏 ―1

𝑅

with longer chains being impacted sooner than shorter ones on the overall flow profile. 
Increasing the average chain length has the obvious effect of increasing the average number of 
chain kinks at any . In the flow regime of , the average kink number,  , 𝑊𝑖 𝛾 ∈ [𝜏 ―1

𝑅  ,  𝜏 ―1
𝑒 ]  〈𝑍𝑘〉

scales with shear rate as  and  for the N250/1.025 and N250/1.05 melts, 𝑊𝑖 ―0.1  𝑊𝑖 ―0.08

respectively, whereas for the melt N400/1.025,  scaled as . At high shear rates  〈𝑍𝑘〉 𝑊𝑖 ―0.12 𝛾 >
 (where chain rotation dynamics is the dominant dynamical mechanism), the power-law 𝜏 ―1

𝑒

Page 11 of 41 Soft Matter



12

exponent decreases to , , and  for the N250/1.025, N250/1.05, and ―0.21 ―0.28 ―0.21
N400/1.025 melts, respectively. Atomistic simulations of linear monodisperse entangled 
polyethylene melts within   exhibited power-law exponents of  (  for 𝛾 ∈ [𝜏 ―1

𝑅  ,  𝜏 ―1
𝑒 ] ―0.27 ―0.32

) ,  (  for ), and  (  for ) for melts of C400H802, 𝛾 > 𝜏 ―1
𝑒 ―0.23 ―0.35 𝛾 > 𝜏 ―1

𝑒 ―0.07 ―0.35 𝛾 > 500
C700H1402, and C1000H2002, respectively 46, 47, 56, 57. Hence the DPD data are not unreasonable 
compared to those of the atomistic liquids.

Figure 2(c) displays the steady-state shear viscosity as a function of Weissenberg number, 
which exhibits a power-law behavior ( ). The viscosity within the shear rate range η ∝  𝑊𝑖 ∝ 𝛾 ∈ [

 scales with power-law exponents of , , and  for the N250/1.025, 𝜏 ―1
𝑑𝑒𝑞  ,  𝜏 ―1

𝑒 ] ―0.97  ― 0.98 ―0.99
N250/1.05, and N400/1.025 melts, respectively; similarly, the power-law exponents at  𝛾 > 𝜏 ―1

𝑒

were found to be , , and . These values are reasonably consistent with ―0.72  ― 0.80 ―0.88
previous DPD simulations of Mohaghegi and Khomami 7, which reported values of  and ―1.028

 for the power-law exponents of monodisperse melts N400 and N250 respectively, as ―1.042
well as the atomistic simulation studies of linear, monodisperse polyethylene melts, such as that 
of Nafar Sefiddashti et al. 57 which found a power-law exponent of  for a C700H1402 melt ―0.88
under steady shear flow within the shear rate range  and  for . 𝛾 ∈ [𝜏 ―1

𝑑𝑒𝑞  ,  𝜏 ―1
𝑒 ] ―0.59 𝛾 > 𝜏 ―1

𝑒

Furthermore, the power-law exponent in similar flow regimes for a C400H802 linear, monodisperse 
polyethylene melt were reported as  and  70 and for a C1000H2002 melt were  ―0.89 ―0.44 ―1.1
and  46. ―0.79

From Figure 2(c), it is apparent that the effect of chain length on viscosity is to increase its 
value regardless of . Of course, this is not a new observation and aligns with all available 𝑊𝑖
experimental data71-73 ; as chain length increases, the entropic elastic effect becomes more 
pronounced as the longer chains extend and orient with respect to the direction of shear. For the 
same reason, the effect of polydispersity evident in Figure 2(c) is exactly the same: increasing 

 increases the viscosity since the higher PDI liquid is composed of longer chains on the high 𝑃𝐷𝐼
end of the chain number distribution (i.e.,  and  for the 𝑁𝑐,𝑖 ∈ [140, 360]  𝑁𝑐,𝑖 ∈ [120, 500]
N250/1.025 and N250/1.05 melts, respectively), and these longer chains have a more 
pronounced elastic effect on the system response. Again, these observations are in accord with 
available experimental data 73, 74. 
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FIGURE 2 Here (Fig2)

Figure 2. (a) Steady-state shear profile  in DPD units for melts with  and 400 with (𝜎𝑥𝑦 𝑣𝑠.  𝑊𝑖) 𝑁𝑛 = 250
varying . The inset shows the same data expressed in terms of shear rate in DPD units. Data for the 𝑃𝐷𝐼
monodisperse melts ( ) N250 and N400 were taken from Ref. 45. (b) the average number of 𝑃𝐷𝐼 = 1
entanglement (Kinks) density, , versus  number.  (c) Steady-state viscosity, , versus  number in 〈𝑍𝑘〉 𝑊𝑖 𝜂 𝑊𝑖
DPD units. The viscosity shear-thinning exponents for the two shear rate regions of  and 𝛾 ∈ [𝜏 ―1

𝑑𝑒𝑞  ,  𝜏 ―1
𝑒 ] 𝛾

 are noted in the plot. > 𝜏 ―1
𝑒

Figure 3(a)-(c) show the steady-state probability distribution functions of the normalized end-
to-end distance (with respect to the maximum chain extension based on ), , of the 𝑁𝑐,𝑖

‖𝐑‖ 𝐑𝑚𝑎𝑥

three polydisperse melts at several  ranging from equilibrium up to . For all three 𝑊𝑖 𝛾 > 𝜏 ―1
𝑒

melts, the normalized end-to-end distance distribution function in the quiescent state is 
essentially Gaussian. (Note that the N250 melts have almost identical distributions at 
equilibrium.) Under steady shear flow, the distributions widen and shift toward higher extensions 
as shear rate increases within the range of   (  for N250 and  0 < 𝛾 < 𝜏 ―1

𝑅 0 < 𝑊𝑖 < 28 0 < 𝑊𝑖 < 42
for N400). At shear rates with a Rouse time-based Weissenberg number larger than 𝑊𝑖 

𝑅 ≡ 𝛾𝜏𝑅

, the distributions flatten and become excessively wide, indicating a very wide distribution of > 1
end-to-end chains lengths occupied by the chains at any instant in time. As noted from previous 
atomistic simulations 45-47, 57, 63, these wide distributions are the ensemble-averaged result of 
chain tumbling cycles where individual chains rotate and flip in a semi-periodic fashion as induced 
by the vorticity of the shear field. The frequency and amplitude of these tumbling cycles increase 
with shear rate, and for , the distributions shown in Figure 3 can develop bimodal 𝛾 > 𝜏 ―1

𝑒

character (although much less distinct than for the corresponding monodisperse melts; data not 
shown), with a peak at low values of extension (even lower than the quiescent value) associated 
with the nadir in the cycle where the individual chain ends pass by each other as the end-to-end 
vector flips sign, and another peak at very high extensions corresponding to individual chains at 
their maximum values of extension during the apex of the tumbling cycle. As average chain length 
increases from 250 to 400 beads, the second peak to disappear or be pushed to higher . All of 𝑊𝑖
these observations are consistent with prior atomistic simulations of monodisperse linear 
polyethylene melts 45-47, 58, 63, 69, 70.

Figure 4 presents the temporal evolution of the shear stress of the polydisperse linear 
polymer melts undergoing startup of shear flow at different  as a function of strain. In 𝑊𝑖
accordance with reptation theory, the maximum stress of the overshoot occurs at about two 
strain units ( ) for each of the three melts within the range . As shear rate is 𝛾𝑝≅2 0 < 𝛾 < 𝜏 ―1

𝑅

increased above , the position of the maximum increases steadily, approaching 5 strain units 𝜏 ―1
𝑅

for . In all cases, the shear stress attains its steady-state value within about one longest 𝛾 > 𝜏 ―1
𝑒

relaxation time ( ) at the corresponding shear rate—see the atomistic simulations of Refs. 45-47, 𝜏𝑑
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58, 63, 69, 70 for a discussion of the relationship between  and . At , the effect of 𝜏𝑑 𝑊𝑖 𝛾 > 𝜏 ―1
𝑅

increasing  (seen in Figure 4(a)) is to decrease the magnitude of the overshoot significantly 𝑃𝐷𝐼
and the maximum position slightly to smaller strains. This is consistent with the distribution 
functions of Figure 3, which indicate that the effect of polydispersity is to increase the breadth 
of the chain length distributions. Evidently, sharp, tall overshoots are characteristics of melts with 
very narrow chain length distributions, in which all chains are affected similarly by the imposed 
flow field. For polydisperse melts, the variations in chain length induce different responses to the 
changing imposed shear rate under startup conditions. As shown in Figure 4(b), the effect of 
increasing average chain length is also to decrease the magnitude of the overshoot and shift its 
position to lower strains; this is once again due to the increase in breadth of the chain-length 
distributions of the N400 melt over the N250 melt presented in Figure 3.

 

FIGURE3 Here (Fig3)

Figure 3. Probability distribution of chain end-to-end length normalized by chain maximum extension (a). 
Panel (b) illustrates the effect of polydispersity on the chain distributions, expressed in terms of the 
magnitude of the end-to-end vector in DPD units. Panel (c) illustrates the effect of average chain length 
on the distributions. 

 

FIGURE4 Here (Fig4)

Figure 4. Startup shear stress evolution as a function of shear strain. Panel (a) illustrates the effect of 
polydispersity for the N250 melt, whereas Panel (b) shows the impact of average chain length.

Shear banding in polydisperse melts

Prior theoretical studies have attributed strain localization to the shear stress overshoot  34, 

35; i.e., the elastic and viscous instabilities that induce shear banding are associated with 
overshoot in a finite step-strain or startup of shear flow. Shear banding, which has been shown 
to initiate just after the occurrence of the overshoot is the result of elastic-like instabilities at the 
shear rates of  . This has been validated by molecular-level simulations of monodisperse 𝛾 ≫ 𝜏 ―1

𝑑𝑒𝑞

polymeric fluids 7, 42-44. The introduction of polydispersity makes the nonlinear dynamics of 
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polymers more complex. As discussed above, the level of nominal entanglement density and 
polydispersity have a significant effect on the shape of the constitutive stress profile and the 
occurrence of expected instabilities. In this section, the macroscopic flow characteristics of 
polydisperse melts are presented and discussed in detail. We track the evolution of the system 
velocity profile in simulations of startup of shear flow at various  spanning shear rate ranges 𝑊𝑖 𝛾

. The simulation box was subdivided into 20 layers along the shear gradient direction ( -> 𝜏 ―1
𝑑𝑒𝑞 𝑦

axis), and the velocity profiles were extracted by temporal averaging over time increments of 0.1
. Both N250 melts displayed monotonic shear stress flow curves in this flow regime—see Figure 𝜏𝑑

2(a). Simulation results revealed the existence of transient shear banding in both cases, as shown 
below, which ultimately decayed to a linear profile spanning the simulation cell once steady state 
had been attained. 

Figure 5(a) illustrates the temporal evolution of shear bands in the N250/1.025 melt at 𝑊𝑖
, which persist up to - , where  is the longest relaxation (decorrelation) time of = 30 𝑡 = (6 7) 𝜏𝑑 𝜏𝑑

the melt at the stated . The main plot displays the shear stress versus normalized time, with a 𝑊𝑖
tall overshoot appearing close to the theoretical strain of 2 units (at ), followed by a 𝑡 = 0.15𝜏𝑑

slow decay to the steady-state value after about 21 strain units, corresponding to about . 𝑡 = 𝜏𝑑

At the time when the maximum occurs, the velocity profile across the simulation cell is linear, 
and the distributions of the chains are as would be expected from classical rheological theory: a 
residual Gaussian shape that is stretching toward higher chain extensions, with all three chain-
length regimes (orange curve: , green curve: , and red curve: 𝑁𝑐,𝑖 ∈ [140, 220] 𝑁𝑐,𝑖 ∈ [240, 260]

) showing essentially identical behavior. Once past the maximum, however, by 𝑁𝑐,𝑖 ∈ [280, 360]
 ( ), an evident transient shear band has appeared in the simulation cell, as 𝑡 = 0.4𝜏𝑑 𝛾 ≈ 6

indicated by a scaled velocity profile ( ) that manifests two linear regions of different slope 𝑉 𝑉𝑚𝑎𝑥

(shear rate) spanning the scaled simulation cell dimension in the -direction ( ). At the same 𝑦 𝑌 𝐻
time, the distributions, although still identical, have significantly broadened, indicating the onset 
of chain tumbling and entanglement disintegration. Although the shear stress appears to have 
attained steady state by  ( ), the transient shear bands are still readily observed, and 𝑡 = 𝜏𝑑 𝛾 ≈ 21
the distributions of chain length have broadened significantly and become individually distinct, 
as indicated in Figure 3above. It is not until -   (  when the shear bands merge 𝑡 = (6 7) 𝜏𝑑 𝛾 ≈ 100)
into a single linear velocity profile spanning the entire simulation cell and the chain length 
distributions settle into their steady-state flow curves, exhibited in Figure 3. So although the 
shear stress attains its steady-state value within about one , it is not until much later that other 𝜏𝑑

critical physical characteristics of the polydisperse melt settle into a steady state and the short-
lived instabilities giving rise to the distinct shear bands disappear. At later times, it is still possible 
that random thermal perturbations or edge effects might disturb the linear velocity profile for 
short periods of time.
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FIGURE 5(a) Here (Fig5(a))

FIGURE 5(b) Here (Fig5(b))

Figure 5. The temporal evolution of shear stress vs. normalized time for melt N250/1.025 undergoing 
startup shear flow at (a)   and (b) . Figures include the evolution of the velocity profile 𝑊𝑖 = 30 𝑊𝑖 = 60
and the probability distribution function of the end-to-end vector magnitude normalized by maximum 
chain length. Distributions are color-coded based on chain length as follows: orange for , 𝑁𝑐,𝑖 ∈ [140, 220]
green for , and red for .𝑁𝑐,𝑖 ∈ [240, 260] 𝑁𝑐,𝑖 ∈ [280, 360]

The effect of increasing the shear rate on transient shear banding during startup flows is 
illustrated in 

Figure 5(b) for the N250/1.025 melt at . In this case, the height of the stress 𝑊𝑖 = 60
overshoot has grown although its width has narrowed appreciably. The maximum occurs at  𝛾 = 3
(although still occurring at ; recall that  decreases with increasing  56-58), where 𝑡 = 0.15𝜏𝑑 𝜏𝑑 𝑊𝑖
the velocity profile is observed to be linear. The stress attains steady state at approximately 𝑡 =

, similarly to the case of startup at —see 𝜏𝑑 𝑊𝑖 = 30

Figure 5(a). Shear banding is initiated after the stress passes through its maximum and 
remains present until well after the shear stress has attained its steady-state value, up until dying 
out at roughly -  ( . The distributions of the various chain-length regimes are 𝑡 = (5 6) 𝜏𝑑 𝛾 ≈ 115)
very similar to those observed in the  simulation. Hence the primary effect of increasing 𝑊𝑖 = 30
the  of the startup flow is to shift the position of the maximum beyond the theoretical 𝑊𝑖
prediction of  and to increase the magnitude of the overshoot while narrowing its width. 𝛾 = 2
The dynamics of the transient shear-banding phenomenon, however, remain largely unchanged.

The effect of polydispersity on the startup shear-banding dynamics at constant shear rate can 
be examined by comparing the N250/1.025 melt of 

Figure 5(b) with the N250/1.05 melt of Figure 6(a) at . The first significant difference 𝑊𝑖 ≈ 60
is that the N250/1.05 melt maintains the theoretical position of the maximum at  at a far 𝛾 = 2
higher  than the N250/1.025 melt. Furthermore, any shear banding present in the N250/1.05 𝑊𝑖
melt lags behind (in time) slightly that of the less polydisperse melt, and the velocity profiles in 
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the shear bands are much less distinct; indeed, they are almost linear and cannot readily be 
identified as transient shear banding structures. At higher , most dynamical characteristics of 𝑊𝑖
the N250/1.05 melt are very similar to those of the less polydisperse N250/1.025 melt, as 
discussed above: transient shear bands form for times past the occurrence of the maximum (at 

), the shear stress attains steady state at about , and the shear bands decay after 𝑡 = 0.2𝜏𝑑 𝑡 = 𝜏𝑑

about . Both melts experience a decrease in the lifetime of the instabilities at flow rates 𝑡 = 6𝜏𝑑

of . The N250/1.05 melt shows strain localization within range of  over 𝑊𝑖 > 100  𝑊𝑖 ∈ [52,  500]
a time period of . Further increase in flow rate to  results in short-lived 𝑡 ∈ [0.4, 7) 𝜏𝑑 𝑊𝑖 > 500
instabilities similarly to those which occur N250/1.025 melt, to the extent that for a very high 
shear rate of , a linear velocity profile is established as early as .   𝑊𝑖 = 862 𝑡 = 2𝜏𝑑

FIGURE 6(a) Here (Fig6(a))

FIGURE 6(b) Here (Fig6(b))

FIGURE 6(c) Here (Fig6(c))

Figure 6. The temporal evolution of shear stress vs. normalized time for the N250/1.05 melt undergoing 
startup of shear flow at (a) , (b) , and (c) . Figures include the evolution of the 𝑊𝑖 = 52 𝑊𝑖 = 86 𝑊𝑖 = 216
velocity profile and the probability distribution functions of the end-to-end vector magnitude normalized 
by maximum chain length. Distributions are color-coded based on chain length as follows: yellow for 𝑁𝑐,𝑖

, green for , red for , and red for .∈ [120, 220] 𝑁𝑐,𝑖 ∈ [240, 260] 𝑁𝑐,𝑖 ∈ [280, 360] 𝑁𝑐,𝑖 ∈ [380, 500]

The development of shear banding relies on the topological relaxation of macromolecular 
chain and chain segments within an entangled network. Considering the distinction among the 
dynamics of components, we have investigated the response of different chains to the imposed 
flow rate. 

Figure 5and 6 depict the instantaneous probability distributions of the normalized end-to-
end distance and the corresponding velocity profiles at different times ranging from , 𝑡 = 0.15𝜏𝑑

, , and at the time a linear profile is fully developed - . To this end, individual 0.4𝜏𝑑  1𝜏𝑑 𝑡 = (5 7) 𝜏𝑑

chains of the N250/1.025 melt have been divided into three, and for the N250/1.05 melt, four 
ensembles, based on chain length, . As observed in 𝑁𝑐,𝑖
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Figure 5 and 6, chain normalized end-to-end vector distributions are almost identical in terms 
of their stretching behavior at the overshoot time, and later at the onset of shear banding, 

. However, as the flow develops, the high population of short chains ( ) 𝑡 =  0.4 𝜏𝑑 𝑁𝑐,𝑖 ≤ 220
retreat to a less-stretched distribution with a wide peak and a long tail toward stretched 
configurations. We can attribute this behavior to the low level of entanglements of this portion 
of the fluid and its fast dynamics. On the contrary, longer chains ( ) show a semi-flat 𝑁𝑐,𝑖 ≥ 240
distribution with a higher peak for the stretched configuration at . Later, as shear banding 𝑡 = 𝜏𝑑

disappears ( - ), the chains retract in favor of more coiled configurations, and hence more 𝑡 = 5 7 𝜏𝑑

entanglements (see Figure 8 below) resulting in a semi-flat distribution with a higher peak around 
the equilibrium peak position. 

The different dynamics of the chains are due to the wide spectrum of relaxation timescales 
of the disparate chains within the polydisperse melts. As discussed earlier, by increasing the flow 
rate to , chains experience greater tube stretching and more frequent rotation cycles. 𝛾 ≥ 𝜏 ―1

𝑅

Unlike monodisperse melts, components in a multicomponent fluid undergo different flow 
regimes based on their characteristic timescales. Although, separate chains follow different 
dynamics, the more populated chains dominate the system dynamics, especially in regard to 
chain tumbling mechanism. In general, the simulations indicate that polydisperse melts exhibit 
an inhomogeneous state while the imposed shear rate is  for a substantial portion of  𝛾 ≥ 𝜏 ―1

𝑅𝑐ℎ𝑎𝑖𝑛𝑠

the chains. The result of any further increase in deformation rate to  , where the stress  𝛾 ≥ 𝜏 ―1
𝑒

profile again becomes an increasing function of strain over the plateau, is a faster reorientation 
and stretching dynamics.  Thus, a quasi-periodic vorticity excursion dominates the dynamical 
behavior, which boosts the mixing effect and shortens the lifetime of the shear bands down to 2

 (not shown in the figures). The shear rates  and  of the N250/1.025 melt (𝜏𝑑 𝑊𝑖 = 30 𝑊𝑖 = 60  

Figure 5(a),(b)) satisfy the condition is  and consequently shear-banded structures  𝛾 ≥  𝜏 ―1
𝑅𝑐ℎ𝑎𝑖𝑛𝑠

are observed. At , the condition holds as  𝑊𝑖 = 60 𝜏 ―1
𝑅280~360 < 𝜏 ―1

𝑅240~260 < 𝜏 ―1
𝑅140~220 ≤ 𝛾𝑓𝑙𝑜𝑤 <  𝜏 ―1

𝑒

(approximately , respectively). Interestingly,  26 < 32 < 43 ≤ 𝑊𝑖 < 318

Figure 5 exhibits a two-layered velocity profile for  and a four-layered velocity profile 𝑊𝑖 = 30
at  at . This can be explained by the flat distribution of chains representing more  𝑊𝑖 = 60 𝑡 = 𝜏𝑑

frequent rotation/retraction cycles at  relative to . Similarly, at  for   𝑊𝑖 = 60   𝑊𝑖 = 30 𝑊𝑖 = 216
the N250/1.05 melt shown in Figure 6(c), the shear rate satisfies the condition  𝜏 ―1

𝑅240~260 < 𝜏 ―1
𝑅120~180

 (approximately ), and the banded structure appears within the time ≤ 𝛾𝑓𝑙𝑜𝑤 65 < 124 ≤ 𝑊𝑖
period of - . At the shear rate of , shown in Figure 6(a), only a few 𝑡 = 0.4 7𝜏𝑑 𝑊𝑖 = 52
perturbations can be observed. Increasing the shear rate to , the perturbations grow 𝑊𝑖 = 86
and two layers with different local strain rates develop. The large range of relaxation times of the 
chains of various lengths apparently leads to an unstable interface between the bands due to the 
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different dynamics of the individual chains despite the overall network effect of the surrounding 
macromolecules. The velocity profiles embedded in 

Figure 5 and 6 exhibit adjacent fast and slow bands separated by distinct interfaces. The width 
of the bands in the simulation cell is a strong function of shear rate. At low shear rates, only two 

equal bands were observed, while under stronger flow conditions (mostly for ), the fast  𝛾 ≥ 𝜏 ―1
𝑒

region is dominant within the cell.

Figure 7 illustrates the effect of average molecular weight (i.e., average chain length) on the 
temporal stress evolution of the more entangled N400/1.025 melt undergoing startup of shear 
at a deformation rate of . Similarly, to the N250 melts, the perturbations in the velocity 𝑊𝑖 = 100
profile initiate after the stress overshoot (at  and continue to develop into fully structured 𝛾≅2)
bands at . Unlike the less entangled melts, however, we observe a long-lasting (i.e., a steady  𝑡 ≈ 𝜏𝑑

state) shear banding phenomenon. Moreover, the distributions of the different chain ensembles 
indicate similar dynamics of the chains throughout the evolution of the flow. The net result is 
that the longer chain system, although still polydisperse, behaves more like a monodisperse melt 
than a shorter chain liquid of the same . [Note that the N400/1.025 melt displays a 𝑃𝐷𝐼
nonmonotonic stress profile—see Figure 2(a).] 

FIGURE 7 Here (Fig7)

Figure 7. The evolution of shear stress vs. normalized time for steady shear flow at  of the 𝑊𝑖 = 100
N400/1.025 melt, including the evolution of the velocity profile and the probability distribution functions 
of the end-to-end vector magnitude by normalized by maximum chain length. Distributions are color-
coded based on chain length as follows: yellow for , green for , and red 𝑁𝑐,𝑖 ∈ [260, 360] 𝑁𝑐,𝑖 ∈ [380, 420]
for . 𝑁𝑐,𝑖 ∈ [440, 540]

Previous studies linked the cause of shear banding to the local orientation and 
disentanglement of the constituent polymer chains 26, 43, 44. Therefore, we have extracted the 
chain entanglement densities and primitive path lengths for a subset of the simulations discussed 
above using the Z1-Code. Figure 8 illustrates the evolution of the chain normalized entanglement 

density distribution,  where  is per chain entanglement normalized by  𝑍𝑛 ≡ 𝑍𝑘,𝑖 〈𝑍𝑘,𝑖𝑒𝑞〉 𝑍𝑘,𝑖 〈𝑍𝑘,𝑖𝑒𝑞
〉

as the average number of kinks for chain  at equilibrium, of two distinct shear rate zones, one 𝑁𝑐,𝑖

associated with a relatively high shear rate (fast band) and the other with a low shear rate (slow 
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band) for the N250/1.05 melt at . It is evident that the linear velocity profiles only exist 𝑊𝑖 = 216
at the times ( ), where the layers have similar entanglement distributions. The fast 𝑡 = 0.15𝜏𝑑,  7𝜏𝑑

layer starts to disentangle with higher rate as early as , which causes a strain localization 𝑡 = 0.4𝜏𝑑

and chain length demixing phenomenon to develop and thereby induce a flow composed of two 
distinct shear rate regions. As the slow band experiences a lower imposed shear rate, there is 
lower driving force to disentangle the chains within this flow regime relative to the high shear 
rate zone. As flow continues, however, it is likely that the rotational tumbling cycles of extension 
and retraction dynamics lead an unstable interface which induces a remixing of the chains. 
Eventually, the difference between the entanglement distributions declines and flow continues 
with a linear velocity profile spanning the simulation cell possessing a single shear rate.

FIGURE 8 Here (Fig8)

Figure 8. The evolution of the normalized entanglement density distribution, , for the 𝑍𝑛 ≡ 𝑍𝑘,𝑖 〈𝑍𝑘,𝑖𝑒𝑞〉
N250/1.05 melt at  within the high shear rate layer (fast band) and low shear rate layer (slow 𝑊𝑖 = 216
band) during the course of startup shear flow at various critical values of elapsed time: (a) linear velocity 
profile at the overshoot time, ; (b) perturbation in velocity profile is observed at ; (c) 𝑡 = 0.15𝜏𝑑 𝑡 = 0.4𝜏𝑑

fully developed shear-banded structure is observed at ; (d) transient shear banding decays and 𝑡 = 𝜏𝑑

linear velocity profile reemerges at . 𝑡 = 7𝜏𝑑

To characterize the flow in different layers, Error! Reference source not found. presents the 
evolution of the shear stress and the first normal stress differences ( for two 𝑁1 =  𝜎𝑥𝑥 ― 𝜎𝑦𝑦) 
adjacent shear bands with different local shear rates for the N250/1.05 melt undergoing startup 
flow at . The shear stress evolution is essentially identical in both the fast and slow 𝑊𝑖 = 215
bands, whereas the band exhibits a greater  for times greater than the instant of the overshoot 𝑁1

maximum. The  maximum ( ) occurs later than the shear stress maximum (𝑁1 𝑡 ≈ 0.3𝜏𝑑 𝑡 = 0.15𝜏𝑑

); indeed, the maximum in the first normal stress difference occurs at approximately the same 
instant in which the shear bands first appear—see Figure 6(c)—indicating that the elastic stress 
is essentially responsible for the development of the shear instability. Both  and  attain 𝜎𝑥𝑦 𝑁1

approximate steady-state values at , and the difference between the  values at this time 𝑡 = 𝜏𝑑 𝑁1

is roughly 25%. As the bands gradually decay for , the  layer values converge to a 𝑡 > 5𝜏𝑑 𝑁1

common value as the linear velocity profile emerges. Consequently, it appears that the transient 
shear banding initiated in this system is a direct result of an elastic instability, rather than a 
viscous one.

Data show different characteristics of the  end-to-end distance for chains within the fast and 
slow bands. At the stress overshoot time, identical chain end-to-end distance distribution profiles 
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are observed; however, as perturbations increase, the end-to-end distance of chains in a fast 
band obtain a broad distribution with a long tail, whereas chains located within  a slow region 
obtain a single peak distribution with a shorter tail. The differences of the distributions remains 
as long as spatial strain localization is maintained. As flow attains a spatially homogenous state, 
the distributions of end-to-end distance converge. Also, our results (not shown here) indicate 
that the end-to-end distances of chains within low shear rate bands may not experience an 
elevated overshoot, whereas chains within fast bands always experience a notable overshoot in 
transient shear flow. The overshoot of the ensemble mean end-to-end distance coincided with 
the tail of transient stress relaxation. These observations are consistent with the argument of 
initiation of instabilities based on  results discussed above.𝑁1

FIGURE 9 Here (Fig9)

Figure 9. Shear stress and first normal stress differences for steady shear flow at  of the 𝑊𝑖 = 215
N250/1.05 melt within the fast and slow bands. 

Figure 10 displays the average number of kinks per chain located in different layers along the 
velocity gradient direction scaled as  at  (the approximate time of shear band 𝑌 𝐻  𝑡 = 0.4𝜏𝑑

initiation in each case) for the three melts at various . Notably, in comparison with the slow 𝑊𝑖
bands, the fast bands obtain a lower average number of kinks per chain. Moreover, to measure 
the alignment of the chains the orientation angle has been estimated by measuring the angle 
between the flow direction and the largest eigenvalue corresponding to the eigenvector of the 
order tensor, , where  denotes the unit vector of the chain primitive path (PP)  𝑺 ≡ 〈3𝐮𝐮 ― 𝐈〉 2 u
segments, as computed via the Z1 code. Figure 11 shows the probability distribution of the 
orientation angle corresponding to PP segments in adjacent fast and slow bands of the N250/1.05 
melt undergoing startup shear flow at . (This result is typical of the other melts at 𝑊𝑖 = 215
various  as well.) The data indicates that segments in the fast bands obtain a more narrow 𝑊𝑖
distribution centered at a lower orientation angle, whereas segments in the slow zones obtain a 
relatively wide distribution at moderately higher values of the orientation angle, . This 𝜃𝑥𝑦

observation is consistent with the previously proposed molecular mechanism for the onset and 
development of shear banding instabilities.
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FIGURE 10 Here (Fig10)

Figure 10. Mean kink number per chain placed in each band at . The tall peaks in each profile  𝑡 = 0.4𝜏𝑑

indicate the normalized locations of the slow bands with greater kink density. 

FIGURE 11 Here (Fig11)

Figure 11. The probability distribution function of the orientation angle (with respect to the flow direction) 
of chain primitive path segments in the -  plane for the fast and slow layers at  of  of the 𝑥 𝑦  𝑡 = 𝜏𝑑 𝑊𝑖 = 215
N250/1.05 melt.

As discussed in Ref. 43, based on a hydrodynamic interfacial stability analysis, three factors  
influence the interfacial stability in stratified shear-banded flow; namely depth ratio, 𝜀 =

, band elasticity ratio, , and viscosity ratio, [𝑑𝑠𝑙𝑜𝑤
𝑑𝑓𝑎𝑠𝑡] ≤ 1 𝐸 = [𝑁𝑓𝑎𝑠𝑡

1
𝑁𝑠𝑙𝑜𝑤

1 ]≅𝒪(1) 𝑅 =

. The simulation data presented above is consistent with these quantifications. [𝜂𝑠𝑙𝑜𝑤
𝜂𝑓𝑎𝑠𝑡] > 6

In particular, the  melts have, , whereas the  melt has a viscosity ratio 𝑁𝑛 = 250 𝑅 < 6 𝑁𝑛 = 400
estimated to be , far beyond the critical limit where steady-state shear banding could 𝑅 ≈ 17
manifest. Hence the observations of transient and steady-state strain bands as described above 
are entirely consistent with the stability analysis.

In addition, the shear stress overshoot under startup flow conditions hints at the possibility 
of stress localization as a mechanical instability, in which case, based on theoretical analysis, 
overall stress can be reduced by the formation of higher strain rate zones. Comparing the onset 
of shear banding in polydisperse systems with previous studies 43, 44 of monodisperse systems, 
we can suggest a critical measure in formation of inhomogeneity. As observed in the simulated 
polymer melts, strain localization is expected as long as . The  (𝜎𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡

𝑥𝑦 ― 𝜎𝑆𝑡𝑒𝑎𝑑𝑦
𝑥𝑦 ) 𝜎𝑆𝑡𝑒𝑎𝑑𝑦

𝑥𝑦 > 1
former expression is a measure of both orientation and affine stretching, whereas the same 
expression for  mostly represents the stretching of the chains. Data above indicate that the 𝑁1

precise location in time of the first normal stress difference is a strong predictor of the onset of 
shear band formation. 

Some experiments and analysis using the Roly-Polie model predict shear banding in a specific 
gap size or geometry curvature and perturbation levels 34, 37; however, our simulations indicate 
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the possibility of shear banding in a simple step-strain Couette flow. We examined the bead 
number distribution in fast and slow zones during the flow, but the results do not indicate any 
phase separation or chain migration (although, chain migration in an entangled melt is a relatively 
slow process).

IV. Conclusions 

The effects of polydispersity, chain length and in turn entanglement density on the 
development of shear banding instabilities in three well-entangled polydisperse linear polymer 
melts undergoing steady shear flow and startup of shear flow were investigated over a wide 
range of shear rates via dissipative particle dynamics simulations. It was demonstrated that the 
degree of polydispersity is correlated with the decline in nonmonotonicity of the shear stress 
profile due to a wide spectrum of relaxation timescales inherent to polydisperse melts. The 
presence of longer molecules in the chain length distribution also broadened the stress plateau, 
an effect that increased with increasing polydispersity index. Evidently, melts possessing longer 
mean chain lengths ( ) require greater polydispersity to produce a monotonic stress plateau 𝑁𝑛

profile. Transient shear banding was observed in shorter chain melts undergoing startup of shear 
flow in which instabilities arose after the appearance of a stress overshoot, almost concurrently 
with the overshoot in the time evolution of the first normal stress difference. These instabilities 
eventually decayed, but only long after the stresses had attained their steady-state values. The 
longer chain melt exhibited a shear band structure that remained indefinitely, long after the 
stresses had attained steady state. The development of strain localization in the startup of shear 
simulations was realized for shear rates higher than inverse of rouse relaxation time scale, 𝜏 ―1

𝑅𝑐ℎ𝑎𝑖𝑛𝑠

. ≤ 𝛾𝑖𝑚𝑝𝑜𝑠𝑒𝑑
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