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11 ABSTRACT

12 The non-linear viscoelastic response under interrupted shear flows is one of the interesting 

13 characteristics of entangled polymers. In particular, the stress overshoot in the resumed shear has 

14 been discussed concerning the recovery of the entanglement network in some studies. In this study, 

15 we performed multi-chain slip-link simulations to observe the molecular structure of an entangled 

16 polymer melt. After confirming the reasonable reproducibility of our simulation with the literature 

17 data, we analyzed the molecular characteristics following the decoupling approximation. We 

18 reasonably found that the segment orientation dominates the stress overshoot even under the 

19 resumed shear with minor contributions from the segment stretch and entanglement density. We 

20 defined the mitigation function for the recovery of stress overshoot as a function of the rest time and 

21 compared it with the relaxation of the molecular quantities after the initial shear. As a result, we 

22 have found that the mitigation of stress overshoot coincides with the relaxation of entanglement 

23 density.

24  
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28 INTRODUCTION

29 Stress growth under interrupted shear flows is one of the interesting non-linear viscoelastic 

30 behaviors of entangled polymers1,2. In this rheological test, an equilibrated polymeric liquid is 

31 subjected to fast, steady shear. After a certain amount of applied shear, the flow is interrupted to 

32 relax the material. During the relaxation, before reaching equilibrium, the material is exposed to the 

33 second shear. The material response under the second shear depends on the interval between initial 

34 and resumed flows-the so-called rest time. With a sufficiently long rest time, the material 

35 equilibrates, and the stress growth under resumed flow is identical to that under the initial flow. 

36 More specifically, the stress increases up to a strain of approximately 2 to 3 and shows an overshoot 
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37 before reaching a steady value. The maximum stress at the overshoot monotonically decreases with 

38 decreasing rest time. Because no overshoot occurs in the absence of a rest, the decline of the 

39 overshoot is intuitive in a qualitative sense. However, no quantitative explanation has been 

40 established. 

41

42 In some studies, the mitigation of stress overshoot has been attributed to a structural change of the 

43 entanglement network. To our knowledge, network modification under deformation was firstly 

44 mentioned by Tobolsky et al.3,4 according to the transient network idea. Graessley5 described the 

45 shear thinning of polymeric liquids by considering the rates of creation and destruction of 

46 entanglements. Doi and Edwards6 derived the universal damping function under large step shear 

47 deformations from the loss of entanglements induced by chain contraction. Similar discussions have 

48 been made for interrupted shear7–11.

49

50 The non-linear response under interrupted shear is not necessarily solely due to modification of the 

51 entanglement network. For example, Santangelo and Roland12 showed that an unentangled 

52 polystyrene melt exhibits similar rest time dependence of stress overshoot. They mentioned that the 

53 suppression of overshoot is due to the unrelaxed segmental orientation. Even for entangled 

54 polymers, orientation contributes to stress, as discussed for the stress overshoot during the initial 

55 shear13–16 on the basis of the stress-optical law. Indeed, Ianniruberto and Marrucci17 demonstrated 

56 that the integral constitutive equation proposed by Doi and Edwards18 qualitatively reproduces the 

57 interrupted shear results reported by Wang et al.11, even though the model incorporates neither chain 

58 stretch nor loss of entanglement. In addition, Graham et al.19 semi-quantitatively reproduced the data 

59 of Wang et al. 11 using a tube model, in which chain stretch is incorporated but the entanglement 

60 density is unchanged. Nevertheless, as noted by Ianniruberto and Marrucci17, further studies are 

61 required to discriminate the contributions from orientation, stretch and entanglement density in the 

62 stress response under interrupted shear.

63

64 In this study, through the multi-chain slip-link simulation (the so-called primitive chain network 

65 (PCN) simulation20–23), we investigated the stress response of an entangled polymer melt under 

66 interrupted shear flows. The observed stress response was in reasonable agreement with the 

67 experimental results of Roy and Roland24. We obtained the time development of segmental 

68 orientation, stretch, and entanglement density separately. The results demonstrate that, for the stress 

69 overshoot, the contribution from the orientation is dominant, whereas the contribution from the 

70 entanglement density is minor. Meanwhile, the mitigation of overshoot coincides with the relaxation 

71 of entanglement density. 

72
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73 MODEL AND SIMULATIONS

74 Because the model and code used in this study are the same as those used for previous studies25–29, 

75 only a brief description is given here. A melt of entangled polymer was replaced by a network 

76 consisting of network nodes, strands and dangling ends. Each polymer chain was represented by a 

77 path connecting two dangling ends through the nodes and strands. At each node, a slip-link was 

78 positioned to bundle two chains according to the binary assumption of entanglement. The slip-link 

79 allows sliding of the bundled chains, and it is destroyed if one of the chains slides off. By contrast, 

80 when a chain end protrudes from the connected slip-link by a critical amount, a new slip-link is 

81 created on the dangling segment by hooking another strand within a cut-off distance equal to the 

82 average strand length at equilibrium. The position of the slip-link obeys a Langevin-type equation of 

83 motion, in which the force balance is considered among the drag force, osmotic force, tension acting 

84 on diverging strands, and the random force. The chain sliding is described by a rate equation for the 

85 number of Kuhn segments on each strand. The transport rate of the Kuhn segments between 

86 consecutive strands is calculated along the chain according to the force balance considered for the 

87 slip-link position. 

88

89 As summarized earlier21–23, the PCN model is located in a niche between the tube30–32 and the 

90 bead-spring33 models; namely, the unit of calculation is the entanglement segment, which is also 

91 used in single-chain slip-link models34–37. Meanwhile, the multi-chain dynamics is calculated as 

92 performed for the bead-spring simulations and the other coarse-grained models that prohibits chain 

93 crossing33,38–40. The multi-chain nature of the model excludes the mean-field type assumptions for 

94 thermal41–43 and convective44 constraint release. The disturbance from the affine deformation owing 

95 to the force balance around the entanglement45 is also considered. The multi-chain construction was 

96 followed by multi-chain slip-spring models46–49, in which many Rouse chains dispersed in a 

97 simulation box are connected by virtual springs. Except for the level of coarse-graining, these 

98 multi-chain models exhibit similar features to reproduce entangled polymer dynamics50. 

99

100 In this study, we examined the experiment reported by Roy and Roland24 for a polyisobutylene (PIB) 

101 melt ( ). From this value of , we determined the number of 𝑀𝑤 = 46,000 and 𝑀𝑤/𝑀𝑛 = 3.2 𝑀𝑤

102 strands per chain was . This value of  means that the molecular weight carried by a 𝑍0 = 12 𝑍0

103 single network strand is . We note that  is much smaller than the 𝑀0 = 𝑀𝑤/𝑍0~3800 𝑀0

104 entanglement molecular weight 24. This difference is due to the additional fluctuations 𝑀e = 9400

105 implemented in the PCN model51,52. We also note that the value of  determines the unit of 𝑀0

106 modulus, by the dimensional analysis as , where  is the density. Although this 𝐺0, 𝐺0 = 𝜌𝑅𝑇/𝑀0 𝜌

107 relation works well for monodisperse systems, in this specific study,  was determined 𝐺0

108 independently of  to accommodate for the effect of the molecular weight distribution (MWD) in 𝑀0
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109 the experiment24, as shown later. Nevertheless, for simplicity in the molecular analysis, we simulated 

110 the monodisperse system. The simulations were performed with non-dimensional units, where the 

111 units of length, energy, and time were chosen as the average strand length, , thermal energy, , 𝑎 𝑘B𝑇

112 and the diffusion time for a node, . Here,  is the friction of the single node. The 𝜏0 = 𝜁𝑎2 6𝑘B𝑇 𝜁

113 simulation box dimension was 163, which is sufficiently larger than the chain dimension even under 

114 fast shear. The end-to-end distance  was  at equilibrium, and  under the fastest shear 〈𝐑2〉 3.7 8.2

115 among all examined shear rates. The strand number density under equilibrium was 10. For this 

116 system, the Rouse time is given as  according to a previous study53. The 𝜏R = 𝑍0
2 2𝜋2 = 7.3𝜏0

117 longest relaxation time for the viscoelastic relaxation was obtained from the equilibrium 

118 simulation50,54 as . To resolve the slight changes in stress, we performed 24 independent 𝜏𝑑 = 77𝜏0

119 simulation runs for each condition for different initial equilibrated configurations. 

120

121 RESULTS AND DISCUSSION

122 Comparison with the experimental results

123 Figure 1 shows the linear viscoelasticity of the sample. Comparison between the experimental data 

124 (symbols) and the simulation results (curves) gives the model parameters as  = 0.174 MPa, and 𝐺0

125 = 0.021 s. As we mentioned in the previous section,  must generally be determined from . 𝜏0 𝐺0 𝑀0

126 However, in this specific study, we optimized  separately from  to accommodate for the 𝐺0 𝑀0

127 effects of the MWD on the compliance (i.e., the crossover between G' and G"). The value of  was 𝜏0

128 determined to reproduce the longest relaxation mode.   

129
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130 Figure 1 Linear viscoelasticity. The filled and unfilled circles are the experimental data taken from 

131 the literature24. The solid and broken curves are the simulation results. 

132

133 Figure 2 shows the viscosity growth under start-up shear from equilibrium. The experimental data24 

134 are shown for comparison. The simulation reproduces the viscosity overshoot and shear thinning 

135 only qualitatively. In particular, the steady state viscosity is overestimated in the simulation. Similar 
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136 discrepancies have been reported even for monodisperse systems25–29. The tube model also has a 

137 similar feature, and the mechanism of this discrepancy is unknown. Nevertheless, hereafter, we 

138 discuss the response under 1 sec-1 in detail. 

139
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141 Figure 2 Viscosity growth under start-up shear at shear rates of 1, 2, 5 and 10 sec-1 from top to 

142 bottom. The solid curves and symbols represent the simulation and experimental results24, 

143 respectively. 

144

145 Figure 3 shows the viscosity growth under resumed shear at a shear rate of 1s-1. The prediction for 

146 the first start-up run (black curve) exhibits a discrepancy from the experimental data (black symbols) 

147 in this comparison. Indeed, the stress fluctuations in the simulation are concealed in the double-log 

148 plot in Figure 2, whereas they are visible in Figure 3 even after ensemble averaging for 24 

149 independent simulation runs, as shown by the red thin curve for a rest time of 2 s. To extract the 

150 peak, we smoothed the simulation results using the second-order Savitzky-Golay method55. For the 

151 smoothed curves, the simulation qualitatively captures the experiment; namely, the magnitude of the 

152 viscosity overshoot increases with increasing rest time to recover the behavior exhibited under initial 

153 shear. Possibly owing to the MWD, the simulated viscosity decreases to a steady value faster than 

154 the experimental one. 
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156 Figure 3 Viscosity growth under resumed shear at a shear rate of 1s-1 for various rest times after the 

157 initial shear. The data for the initial startup run are shown as an infinite rest time. The bold curves 

158 are the smoothed simulation results. The thin curve is the result for a rest time of 2s without 

159 smoothing. The symbols indicate the experimental results from the literature24. 

160

161 Figure 4 shows the peak value of the viscosity plotted as a function of the rest time, . The 𝑡𝑟

162 viscoelastic relaxation time ( s) and the Rouse time (  s) for the 𝜏𝑑 = 77𝜏0 = 1.6 𝜏R = 7.3𝜏0 = 0.15

163 simulation are indicated for comparison. The experimental data are not available for short  𝑡𝑟

164 possibly due to experimental limitations. Consequently, direct comparison can only be made within 

165 a limited range of . Nevertheless, the simulation reproduces the experiment reasonably well when 𝑡𝑟

166 , where the peak value increases with increasing  to reach the same value as under the 𝑡𝑟 ~ 𝜏R 𝑡𝑟

167 initial shear. However, for , the viscosity overshoot is insensitive to  in the simulation, 𝑡𝑟 > 𝜏d 𝑡𝑟

168 whereas it increases with  in the experiment. This difference is probably due to the MWD, which 𝑡𝑟

169 is neglected in the simulation. 

170

171
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173 Figure 4 Peak value of the viscocity overshoot under resumed shear as a function of rest time at a 

174 shear rate of 1sec-1. The filled and unfilled symbols are the experimental24 and simulation results, 

175 respectively. The viscoelastic relaxation time and the Rouse time for the simulation are indicated for 

176 comparison. 

177

178 Decoupling analysis

179 We carried out molecular analysis based on the decoupling approximation13, which is widely used 

180 for molecular constitutive equations;

181 𝜎 =
3
𝑉∑𝑟𝑥𝑟𝑦 ≈ 3𝜈𝜆2𝑆                           (1)

182 Here,  is the shear stress, and the sum is taken for all the strands in the simulation box with 𝜎

183 volume .  is the strand vector,  is the strand number density,  is the 𝑉 𝐫 ≡ (𝑟𝑥, 𝑟𝑦,𝑟𝑧) 𝜈 𝜆2( ≡ 〈𝐫𝟐〉)

184 average strand stretch, and  is the average strand orientation. 𝑆( ≡ 〈(𝑟𝑥𝑟𝑦)/𝐫𝟐〉)

185

186 Figure 5 shows the transient behavior of the aforementioned molecular quantities under the resumed 

187 shear for various  values at shear rates of 10sec-1 and 1sec-1. Note that we hereafter discuss the 𝑡𝑟/𝜏0

188 segment number per chain, Z, instead of  hereafter. As shown in Fig 3, the magnitude of stress 𝜈

189 overshoot decreases with an increase of . Being consistent with the stress-optical rule, the 𝑡𝑟

190 orientation exhibits a similar behavior. For a shear rate of 10 s-1 ( ) (Figure 5; left panels), 𝑊𝑖d = 16

191 the stretch contributes to the stress to delay the peak position from that of the orientation. The 

192 segment number develops similarly to the stretch, but the magnitude of change is much smaller than 
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193 that for the stretch. Specifically,  increased by about 100% (Fig 5, purple line in the second panel 𝜆2

194 from the bottom on the left), whereas the change for  is less than 20%. The situation is similar for 𝑍

195 lower strain rates. We note that  does not start from unity even when the rest time is sufficiently 𝜆2

196 long. Indeed, in our code,  is slightly (~10%) larger than unity at equilibrium because of the 𝜆2

197 artificial stiffness induced by a numerical cut-off for the monomer number on each strand. 

198

199 Figure 5 (right panels) shows the case of =1 s-1 ( ), where the stress is dominated by the 𝛾 𝑊𝑖d = 1.6

200 orientation, and the changes for  and  are less pronounced. Consequently, the stress overshoot 𝜆2 𝑍

201 is dominated by the orientation, and the strand density plays a secondary role. This result is 

202 consistent with that of Ianniruberto and Marrucci17, who qualitatively reproduced the interrupted 

203 shear response using a tube model without chain stretch and variable entanglement density. 
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206 Figure 5 Time development of stress, orientation, stretch, and segment number per chain (from top 

207 to bottom) under resumed shear. The shear rates are 10 s-1 (left panel) and 1s-1 (right panel). The 

208 normalized rest time ( ) is indicated in the figure. Note that the curves for rest times longer than 𝑡𝑟/𝜏0

209 400  overlap.( ≫ 𝜏d)

210

211 Structural relaxation during the rest
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212 We now discuss whether the recovery of stress overshoot under resumed shear reflects structural 

213 relaxation during the rest after the initial shear. Although the stress overshoot is dominated by the 

214 orientation under resumed shear, as seen in Figure 5, the magnitude of overshoot may correlate with 

215 the relaxation of other molecular characteristics. 

216

217 Figure 6 shows the relaxation of stress and molecular characteristics after the initial shear. The 

218 orientational relaxation is similar to the stress relaxation, which decays to zero during . The 𝜏d

219 stretch decreases to an equilibrium value reflecting the chain contraction, and the longest relaxation 

220 time is comparable to  rather than . The number of entanglements per chain recovers from a 𝜏d 𝜏R

221 reduced value, and the recovery time is close to . We note that in the original CCR theory44,56, the 𝜏d

222 entanglement density is assumed to be constant, whereas the entanglement renewal is accelerated 

223 under shear. However, molecular simulations27,57–59 have revealed that the entanglement density 

224 decreases under fast flows as a consequence of CCR. 

225

226 One may argue that the relaxation time of stretch would be  rather than . However, we note 𝜏R 𝜏d

227 that the contraction with  is considered for the contour length in the tube theory30, and not for 𝜏R

228 each segment. Indeed, even for our model, the relaxation time of the contour length is , as 𝜏R

229 reported previously18. Meanwhile, for the segment stretch, a retarded contraction has been 

230 reported60,61. This retardation is due to the reduced number of entanglements as a result of CCR, as 

231 mentioned above. When a fast and large deformation results in disentanglements, the number of 

232 Kuhn steps on each strand becomes larger than the equilibrium value. In such a configuration, the 

233 tension acting on each strand becomes weaker, thereby slowing contraction. Because the 

234 entanglement density recovers its equilibrium state via reptation, the relaxation time of segment 

235 stretch is close to  rather than 60,61. 𝜏d 𝜏R
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236

237 Figure 6 Relaxation from the steady state under a shear rate of 10 s-1 for stress, segment orientation, 

238 segment stretch, and segment number per chain from top to bottom. 

239

240 To compare the relaxation behaviors in Figure 6 with each other, we define the relaxation functions 

241 as follows: 

242

𝜑𝜎(𝑡) = 𝐴𝜎𝜎(𝑡)                                             (2)
𝜑𝑆(𝑡) = 𝐴𝑆𝑆(𝑡)                                              (3)

𝜑𝜆(𝑡) = 𝐴𝜆(𝜆2(𝑡) ― 1)                                 (4)
𝜑𝑍(𝑡) = 𝐴𝑍(1 ― 𝑍(𝑡)/𝑍0)                            (5) 

243 Figure 7 shows the relaxation functions plotted with the normalized linear relaxation modulus 𝐺(𝑡)/

244 . The parameters in Eqs 2-5, , ,  and , were chosen to match the functions with 𝐺0 𝐴𝜎 𝐴𝑆 𝐴𝜆 𝐴𝑍 𝐺(𝑡)/

245  for ; these parameters depend on the shear rate. In this regime, all relaxation functions 𝐺0 𝑡 ≥ 𝜏𝑑

246 overlap with  (broken curve) showing the identical relaxation time of . In the short-time 𝐺(𝑡)/𝐺0 𝜏𝑑

247 range ( ), most of the relaxation functions depend on the shear rate. Because of the 𝑡 < 𝜏𝑑

248 non-linearity imposed by the shear, the stress relaxation,  (red curve), does not coincide with 𝜑𝜎(𝑡)

249 , and the intensity of the fast relaxation modes increases with an increase of shear rate. Similar 𝐺(𝑡)

250 behavior is seen for the orientational relaxation,  (yellow curve), which overlaps with  𝜑𝑆(𝑡) 𝜑𝜎(𝑡)

251 for low shear rates; this similarity is consistent with the stress-optical rule. Meanwhile, for high 

252 shear rates, the orientational relaxation becomes much lower than  owing to the contribution 𝜑𝜎(𝑡)
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253 of stretch. The stretch relaxation  (green curve) shows a growth of the intensity for fast 𝜑𝜆(𝑡)

254 relaxation modes for fast shear rates due to the chain stretch.  (blue curve) is almost 𝜑𝑍(𝑡)

255 insensitive to the shear rate. Interestingly, only for this relaxation function, fast modes do not appear, 

256 even for high shear rates. This behavior can be rationalized if the recovery of Z is dominated by 

257 reptation motion as assumed in the tube theory30. Furuichi et al.60 have reported such behavior for 

258 PCN simulations under large step shear deformations. 

259

260 We now compare the relaxation function and the recovery of stress overshoot under resumed shear. 

261 From the recovery behavior shown in Figure 4, we define the mitigation function, , for the 𝛭𝜂

262 recovery of viscosity overshoot as a function of  as𝑡𝑟

263 𝛭𝜂(𝑡𝑟) = 𝐵𝜂(1 ― 𝜂peak(𝑡𝑟)/𝜂peak(∞))              (6)

264 Here,  is a numerical constant that depends on the shear rate. Assuming that  and the 𝐵𝜂 𝑡𝑟

265 relaxation period in Figure 5 are compatible, we plot  (unfilled circles in Figure 7) with a value 𝛭𝜂

266 of  that attains reasonable comparison between  and the relaxation functions. Note that the 𝐵𝜂 𝛭𝜂

267 value of  is not available for the lowest shear rate, because we did not observe any overshoot for 𝛭𝜂

268 this case. For the other shear rates,  is close to , and these two functions are almost 𝛭𝜂 𝜑𝑍

269 insensitive to the shear rate, exhibiting no growth of the intensity for fast relaxation modes. To be 

270 fair, we note that there is considerable uncertainty for  under low shear rates. 𝛭𝜂

271

272 One may argue that similar mitigation functions could be defined for the molecular quantities as 

273 well. However, such an analysis is not straightforward. For example, as seen in Figure 4, there is no 

274 peak for Z. For , although a faint peak is observed, it is not located at the same position as that for 𝜆2

275 . As mentioned above,  behaves similarly to . However, the peak positions do not coincide at 𝜂 𝑆 𝜂

276 high shear rates owing to the contributions of Z and  to the stress.𝜆2

277
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278

279 Figure 7 Relaxation functions for stress (red), orientation (yellow), stretch (green), and 

280 entanglement density (blue), as defined in Eqs. 2-5. The linear relaxation modulus is shown by the 

281 broken curve. The mitigation function for the viscosity overshoot defined by Eq. 6 is marked with 

282 open circles. The shear rates are 0.5, 1, 2, 5, and 10 s-1 from top to bottom. The Rouse time and the 

283 longest relaxation time are indicated by the arrows. 

284

285 Figure 8 shows the numerical constants A and B in Eqs. 2-6 plotted as functions of the shear rate.   𝐴𝜎

286 (red) and  (yellow) are almost insensitive to the shear rate, whereas  (green) and  (blue) 𝐴𝑆 𝐴𝜆 𝐴𝑍

287 decrease with an increase of the shear rate in a power-law manner, for which the exponent is 

288 approximately -1. For the mitigation function, ,  (black) exhibits a similar decay to  and 𝛭𝜂 𝐵𝜂 𝐴𝜆

289 . These shear rate dependence of   and  suggest a linear response for the longest 𝐴𝑍 𝐴𝜆, 𝐴𝑍 𝐵𝜂

290 relaxation mode of ,  and .𝜑𝜆(𝑡) 𝜑𝑍(𝑡) 𝛭𝜂(𝑡𝑟)
291

292
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294 Figure 8 Numerical constants defined for Eqs. 2-6 plotted as functions of the normalized shear rate. 

295  and  are represented by unfilled triangles in red and yellow, and  and  are indicated by 𝐴𝜎 𝐴𝑆 𝐴𝜆 𝐴𝑍

296 filled circles in green and blue, respectively.  is represented by black unfilled circles. 𝐵𝜂

297

298

299 The similarities between  and  seen in Figures 7 and 8 are unexpected, and we are unable to 𝜑𝑍 𝛭𝜂

300 provide a reasonable explanation for this behavior. We emphasize that the magnitude of the 

301 overshoot is not measured for the system during the relaxation. Rather, the overshoot reflects a 

302 transient state between a partly relaxed state and a non-equilibrium state under steady shear. Because 

303 of this fundamental difference between the relaxation functions and the mitigation function, the 

304 results in Figures 7 and 8 cannot be explained by conventional molecular pictures.  

305

306 We note that the presented results may be related to the model settings and the algorithm used in the 

307 conducted simulation, and that other models may give different results. Indeed, because the 

308 definition of entanglement is model dependent, the entanglement density and its response to 

309 deformations are also model dependent. For example, as mentioned in the Introduction, Ianniruberto 

310 and Marrucci17 argued that the response to interrupted shear can be qualitatively described using a 

311 the tube model, whereby the entanglement density is insensitive to deformations. Even among 

312 models that assume the entanglement density is reduced under fast and large deformations, the 

313 magnitude of entanglement reduction is not universal59,61. Meanwhile, we note the network statistics 

314 assumed in the PCN model is consistent with the topological network extracted from atomistic 

315 molecular simulations62,63. In this respect, the presented results would reflect the dynamics of the 

316 topological network in some extent.  

317

318 We also note that some experimental studies suggest flaws in the conventional modeling of 

319 entanglement. For exapmle, for the dielectric measurement of polyisoprene under steady shear, 
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320 Watanabe et al. 64,65 have reported that the relaxation time and the relaxation intensity measured in 

321 the shear gradient direction do not depend on the shear rate. This result means that the end-to-end 

322 dimension and its fluctuations along the shear gradient direction do not change, even under fast 

323 shear, even when the viscosity shows the shear thinning. To the best of our knowledge, conventional 

324 molecular theories cannot reproduce this behavior25,27. Teixeira et al. 66 have conducted a direct 

325 observation of single DNA molecules under start-up shear. They compared the observed 

326 conformational change with that predicted by the tube theory, and found that the observed DNA 

327 response is much slower than the theoretical one. PCN simulations failed to reproduce this result as 

328 well, even though the viscosity growth was in quantitative agreement67. These flaws mean that the 

329 conventional molecular theories may not be compatible with the conformational dynamics of 

330 polymers, even though they have achieved remarkable success for describing the rheological 

331 response of polymers. In this respect, molecular modeling of entanglement is still a challenge, and 

332 further improvement is necessary for the conventional models, including PCN. The commonly 

333 applied assumptions, such as the homogeneous deformation and the binary contact at the 

334 entanglement point, might be problems that should be addressed in future investigations.

335

336 CONCLUSIONS

337 We performed multi-chain slip-link simulations for an entangled polymer under interrupted shear. 

338 The simulation reproduced the experimental data for the recovery of viscosity overshoot as a 

339 function of rest time. Owing to this agreement, we analyzed the molecular behavior following the 

340 decoupling approximation. From the results, we reasonably confirmed that the overshoot is mainly 

341 due to segment orientation. To determine if the recovery of the overshoot is related to structural 

342 relaxation during the rest after the initial shear, we observed the relaxation of segment orientation, 

343 segment stretch, and entanglement density. We compared these relaxation functions with the 

344 mitigation of the viscosity overshoot, assuming that the waiting time before the resumed flow is 

345 compatible to the relaxation period. The comparison revealed that the mitigation of viscosity 

346 overshoot is similar to the relaxation of entanglement density. The similarity between the mitigation 

347 of overshoot and the relaxation of entanglement is nontrivial, and might be model-dependent. The 

348 effects of the molecular weight distribution would be worth investigating as well. We are currently 

349 conducting researches in these directions and the results will be reported elsewhere. 

350
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