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Abstract: Surfaces of soft solids can have significant surface stress, extensional modulus and bending stiffness. 

Previous theoretical studies have usually examined cases in which both the surface stress and bending stiffness 

are constant, assuming small deformation. In this work we consider a general formulation in which the surface 

can support large deformation and carry both surface stresses and surface bending moments.  We demonstrate 

that the large deformation theory can be reduced to the classical linear theory (Shuttleworth Equation).  We 

obtain exact solutions for problems of an inflated cylindrical shell and bending of a plate with a finite thickness.  

Our analysis illustrates the different manners in which surface stiffening and surface bending stabilize these 

structures. We discuss how the complex surface constitutive behaviors affect the stress field of the bulk. Our 

calculation provides insights into effects of strain-dependent surface stress and surface bending in the large 

deformation regime, and can be used as a model to implement surface finite elements to study large deformation 

of complex structures.

Keywords: large deformation; surface bending moment; strain-dependent surface stress.

1. Introduction

Molecular structures of materials near the surfaces are exposed to a local environment distinctly different 

from those inside the bulk, and this difference gives rise to the surface energy (a scalar) and surface stress (a 2D 

tensor) in liquids and in solids.1–3  For example, in simple liquids, the surface region of a few nanometers 

typically has a lower density and carries a net tensile surface stress. This stress tends to shrink the surface area 
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reducing the surface-to-volume ratio.  Because of the molecular mobility in liquids, the interior molecules can 

move freely and quickly to the surface during deformation, and this results in an isotropic, strain-independent 

surface stress at the macroscopic length and time scales.  By contrast, the molecular mobility in solids is limited; 

as a result, solids can have much more complex surface mechanical properties.  In most situations, the effects of 

surface stress are felt over a characteristic length scale, the elasto-capillary length, defined as , where  is / E 

the magnitude of the surface stress and  is the Young’s modulus of the solid.4,5  For conventional stiff E

materials, e.g. metals and ceramics, the value of elasto-capillary length is extremely small, on the order of 

angstroms.4 Thus, the effect of surface stress is insignificant and negligible for these stiff materials.  However, 

over the past decade, many studies have established the important and often dominant role of the surface of soft 

solids, such as gels and biomaterials, in their mechanical responses. For instance, surface stress can flatten sharp 

features by smoothing corners and undulations6–8; drive instabilities9; stiffen fluid-solid composites10; 

significantly affect the opening of cracks in a soft material11–13; invalidate the classical contact and adhesive 

mechanism by the Hertz and Johnson-Kendall-Roberts (JKR) theories14–19; violate the classical Young 

Equation4,8,20–30; and inhibit the flow field in porous media.31

The majority of these recent investigations on the role of surfaces in surface mechanical phenomena for 

soft solids consider the surface to possess a constant and isotropic surface stress, and much less attention has 

been paid to more complex surface properties such as surface elasticity (strain-dependent resistance to 

stretching) and surface bending (resistance to surface curvature change).  This is natural since typically many 

soft solids – such as gels, elastomers, and most biomaterials – either contain a significant solvent component or 

have molecular structures that comprise chain-like molecules that locally are fluid-like.  This leads to the 

expectation that the surface stress in such soft solids is isotropic and constant.  However, recent experiments32,33 

have shown that surfaces of certain polymers can have extensional surface elasticity.  Interestingly, there is little 

work on how the surfaces of soft solids respond to surface bending moments even though biophysicists and 

mechanicians have studied surfaces such as lipid bilayers and vesicles where resistance to stretching is high, 

deformations generally conserve area, and the surface strain energy density is dominated by bending.34,35  For 

example, Kusumaatmaja et al.36 have shown that the mechanics of the contact line between lipid bilayer 

membranes is governed by both surface bending and stress.  A different example of surface bending is where a 

new hard phase separates a soft solid from the air – e.g., a thin silica film that forms on the surface of an 

elastomer (e.g., polydimethylsiloxane) exposed to ultraviolet ozonolysis (UVO) or oxygen plasma.37,38  

Lapinski et al.39 recently demonstrated that, after UVO treatment, the surface of a commonly used PDMS has 

significant surface stress ( ~2.5 N/m), and strong extensional elasticity (B~21 N/m).  In addition, 0

experimental profiles could be matched by results of finite element analysis only when the surface also resisted 

bending, with bending stiffness of (kb~ Nm).  In general, surface bending would be important at a 131.6 10

Page 2 of 31Soft Matter



3

characteristic length scale of nm in this case.  We note that theories that include couple  1/3/ ~ 375bk E

stresses and micro-rotations have been developed some time ago both for bulk40,41 and surface behavior42–45, 

and we will build upon the latter.

Motivated by these examples, recent theoretical studies have explored how an elastic substrate with surface 

stress and bending stiffness responds to a line load by providing a closed form solution of stress and 

displacement fields near the line load.46,47  They find that surface bending further regularizes the concentrated 

elastic fields – the stress and strain field right underneath the line load become continuous.  In these works, the 

basic assumptions were: (1) small deformation based on the linearized theory of elasticity, (2) the surface stress 

is a constant in-plane and the surface bending moment is proportional to the in-plane curvature.  The small 

strain assumption allows the linearization of curvature as the second derivative of the displacement fields.  As a 

result, the mechanical responses of surface stress, surface bending and bulk can be decoupled and superimposed.  

Of course, these solutions will break down when the deformation is large as is often the case in soft solids.  The 

effect of large deformations can imply qualitative differences in interpretation.  For example, several authors48–

51 have conducted large-deformation analyses of elasto-wetting. Others have studied rounding and flattening of 

patterned soft solids including effects of large deformation6,7.  Thus, there is need for a general large 

deformation formulation coupled with strain-dependent surface stress and surface bending.  Here, we focus on 

studying a class of large deformation surface models.  Unlike the linearized version, the surface and bulk 

responses are nonlinear and cannot be decoupled.  Our result contributes to the limited library of analytical 

solutions for large deformations of soft materials including strain-dependent surface stress and surface bending 

moment. To illustrate the theory, we give two examples with direct connections to the mechanical behavior of 

soft materials.  The first is a small cavity inflated by internal pressure.  This example is motivated by recent 

interest in cavitation rheology to measure mechanical property of soft materials such as living tissues52.  In this 

technique, a cavity is inflated by injecting fluid (water or air) through a needle embedded in the solid.  The 

experiments indicate that surface stress plays an important role in cavity growth.  Our second example is 

motivated by the experiments of Mora et al.,7 who demonstrated that surface stresses can significantly affect the 

deformation of slender objects such as beams.

The outline of the paper is as follows.  In section 2, we summarize the general theory of elastic surface-

substrate interactions which incorporates the effect of elastic resistance to strain and flexural resistance of an 

effectively elastic sheet attached to the bounding surfaces of solids.  In section 3, we study the problem of 

inflation of a hollow cylindrical cavity in a solid with a surface that can carry strain-dependent surface stresses 

and surface bending moments. In section 4 we solve a plate bending problem with the same surface constitutive 

model. These solutions are in closed form.  Section 5 concludes with a short summary.
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2. A general theory of surface-substrate interactions

In this section, we review and summarize a general theory of surface-substrate interactions in which the 

surface can resist an arbitrary amount of bending, stretching and shearing.  For details, the readers are referred 

to Steigmann and Ogden,42 Gao et al.,43 Gurtin and Murdoch,44 and Green.45  We demonstrate that the large 

deformation theory can be reduced to the classical linear theory (Shuttleworth Equation53) within the small 

strain regime. We then specialize this formulation to study 2D plane strain large deformation problems.  

2.1 Kinematics of finite surface deformation

Consider an elastic solid occupying a region  with a surface  in the reference configuration. A 3
0  ¡ 0

material point in the bulk of the elastic body is identified by its position vector  with respect to a fixed X

original point . Assume that the deformation of the solid is defined by a continuously differentiable and O

invertible map . After deformation, the solid occupies a region  that has a surface denoted by , and the χ  

material point  moves to a new position  under the deformationX x

,   . (1) x χ X 0X

The bulk deformation gradient tensor  is defined byF

,   ,   , (2)ij i jF   F χ e e i
ij

j

xF
X





 , 1, 2, 3i j 

where  is the standard tensor product,  is a fixed orthonormal basis for , and ,  are the   1 2 3, ,e e e 3¡ ix iX

Cartesian coordinates of the material point in its reference and current configuration, respectively.  

Page 4 of 31Soft Matter



5

Fig. 1. A regular surface in the reference (before deformation) and current configurations (after deformation).

Consider a coordinate neighborhood of a point  in the reference configuration, which is defined as 0P 

the intersection of the neighborhood  of  (indicated by the red ball in Fig. 1) and surface , i.e., 3V  ¡ P 0

 (indicated by the shaded region in Fig. 1). Assume  is a regular surface,54 thus the coordinate 0V   0

neighborhood can be locally parametrized by curvilinear coordinates ( ). Here  where   1, 2   1 2, U  

 is an open set in .  We assume no decohesion, so the deformation of the surface is consistent with that of U 2¡

the bulk solid.  This implies that the material point’s position satisfies

,   where . (3a,b)    1 2 1 2, ,   r χ R         1 2 1 2 1 2 1 2
1 2 3, , , , , ,X X X       R

Using this parametrization, we introduce the local basis for the tangent planes in the reference and current 

configurations by

,   , (4a,b), PT  G R , pT  g r

respectively, where  and  are the tangent planes to the surfaces at point  and , respectively; PT pT P  p P χ

 denotes the usual partial derivative with respect to , i.e., . Let  and  denote the dual  , 
    

,  





G g

(contravariant) tangent vectors of  and , respectively, that is,G g

, (5a,b)  
     G G g g

where  is the Kronecker delta, and .
  , 1, 2  

The unit normal vectors to the tangent planes  and  are given byPT pT

,   . (6a,b)1 2

1 2





G GN
G G

1 2

1 2





g gn
g g

The first fundamental form (or the surface metric tensor) ,  in the reference and G  
 G G G g  

 g g g

current configurations, respectively, are given by

,   . (7a,b)G   G G g   g g

Geometrically, the first fundamental form determines lengths, angles and area on a surface. The contravariant 

components in the reference and current configurations are given by
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,   . (8a,b)G   G G g   g g

The second fundamental form (or curvature tensor) ,  in the reference and B  
 B G G b  

 b g g

current configurations, respectively, are given by

,   . (9a,b),B   G N ,b   g n

The mean and Gaussian curvature are one half of the trace and determinant of the second fundamental form. 

Using the chain rule, the local basis vectors in the reference and current configurations are related by

. (10)  g F G

A more useful way to describe the deformation of  that does not involve the deformation of the bulk 0P 

solid is to introduce the surface deformation gradient  bysF

, (11)s s


   F r g G

where the subscript ‘s’ indicates the corresponding quantity is surface associated, and  is defined as the s

surface gradient by . Here the quantity in  can be a scalar, surface vector or surface    ,s



  G  

tensor.  It can be readily checked that 

. (12)s     g F G F G

We introduce two commonly used surface tensors for measuring surface deformation: the right surface 

Cauchy-Green tensor  and the relative curvature tensor . The right surface Cauchy-Green tensor issC κ

, (13)T
s s s g  

   C F F G G

A surface tensor often used in the reference configuration is the relative curvature tensor ; it is defined by42κ

  (14)T
s s

 
     κ F b F G G

where .  However, it must be noted that in general  since they are associated with different b     κ b

bases. To gain physical insight, consider a curve C in the reference configuration (as shown in Fig. 2); it is 

mapped by  to the curve c in the current configuration. The unit tangent vectors to the curves at  and  are  P p

denoted as  and , respectively. Suppose the curve stretch ratio at  is , that is S s P 

. (15a)s s F S
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Since , 1s

. (15b)2 T
s s s s s      F S F S S F F S S C S

The normal curvature of the curve c in the current configuration is , it is also equal to  sinces bs 2

1


 S κS

(16)          T 2
s s s s                  S κ S S F b F S F S b F S s b s sbs

Therefore  scales the curvature by the square of its local stretch. In other words,  combines both the stretch κ κ

and curvature change on a surface.   In the following, we will illustrate this tensor using a simple example.

Fig. 2. A schematic of a curve (red line) in the reference and current configurations. 

2.2 Constitutive law and Equilibrium equations for Elastic Surfaces

Fig. 3. The components of surface stress and stress bending moment acting on a coordinate neighborhood of 

material point p (blue point).  and  are tangent vectors to the surface at p and they are not necessarily 1g 2g

perpendicular to each other;  and  are the curvilinear coordinates. The positive directions of surface 1 2
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stresses are indicated by simple arrows, and surface bending moments by two-headed arrows following the 

right-hand rule 

We assume that the surface Helmholtz free energy, A, is a function of the surface deformation gradient, i.e., 

that the surface is hyperelastic.  The Cauchy (true) surface stress  (with units of force per s s


  σ g g

length) and surface bending moment  (with units of moment per length) can be obtained s sm
  m g g

through Helmholtz surface energy  byA

, (17a)T T2 1
s s s s

s s s s

A A
J J

 
 

 
σ F F F

C F

, (17b)T1
s s s

s

A
J





m F F

κ

where  is the ratio of surface area of a material element in the current and reference  dets sJ  F

configurations.42 The convention of components’ directions is indicated in Fig. 3. Note due to the symmetry of 

 and , the Cauchy surface stress and surface bending moment are symmetric. If the surface is orientable sC κ

and isotropic55, the surface free energy density can be expressed in terms of the six invariants of the right 

surface Cauchy-Green tensor and the relative curvature tensor  assC κ

, (18a)   1 2 6, , , ,s s s
sA A I I IC κ L

where 

, , , , , , (18b-g) 1 trs
sI  C  2 dets

sI  C  3 trsI  κ  4 detsI  κ  5 trs
sI  C κ  6 trs

sI   C κ Ψ

and  is the anti-symmetric surface permutation tensor in the reference configuration satisfying 
   Ψ G G

, , . Also,  is often used in some literature instead of , since  det G e 
  12 21 1e e   11 22 0e e  sJ 2

sI

. By equations (17a,b) and (18a,b), the surface stress and moment are432
2
s

sI J

(19a) 
1 5 6

2
2 2

s s
s s s s s s ss s s

s s

J JA A A A
J I J I I

    
         

σ B 1 B bB ψbB B bψ

 (19b) 1 2
4

3 4 5 6

1
2

s
s s s s ss s s s

s

JA A A AI
J I I I I

    
         

m B b B ψB B ψ
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where  is the left surface Cauchy-Green tensor,  is the surface identity tensor, and  T
s s sB F F s1 

  ψ g g

is surface permutation tensor in the current configuration. In the following, we consider a special and simple 

case where A is independent of ,  and . Particularly,  is zero for surfaces with one principal curvature 4
sI 5

sI 6
sI 4

sI

being zero (e.g., in plane strain problems), while  and  represent more complicated surface behaviors 5
sI 6

sI

coupling  and .  For this case, (19a,b) reduces tosC κ

(19c)
1

2
s s ss

s s

A A
J I J

 
 

 
σ B 1

(19d)
3

1
s ss

s

A
J I





m B

2.3 Interpretation of material constants in a simple surface constitutive model 

To gain insight, consider a simple surface Helmholtz free energy which depends only on ,  (or  1
sI 2

sI sJ

equivalently) and . Specifically, 3
sI

, (20)          223 4
1 3 1 1 2 3 3, , 2 1 1 0

2 2
s s s s s

s s s
a aA I J I a I a J J I I         

where  is the trace of  in the reference configuration, and ’s (i =1-4) are material properties which we  3 0sI  ia

shall interpret below. The physical meaning of each  can be understood by virtual experiments. First, we ia

consider a simple surface shear experiment. The surface originally lies in the x-y plane with coordinates  and 1X

 associated with an orthonormal basis .  and  are the curvilinear coordinates in this case. The 2X  1 2,e e 1X 2X

position in the reference configuration is , and after deformation is  1 1 2 2X X R e e  1 2 1 2 2X X X  r e e

(Fig. 4). The surface deformation gradient is 

(21)1 1 2 2 1 2s      F e e e e e e

Using equation (19c) the Cauchy surface stress is 

(22a)1 22s s sa a σ B 1

where  and we have used . In component form,  2
1 1 1 2 2 1 2 21s           B e e e e e e e e  det 1s sJ  F

the surface tensor is
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(22b) 
2

1 2
1 1

1 2

2 0 0 0
2 2

0 2 0 0 1s

a a
a a

a a
 


     

            
σ

Here the notation  denotes the matrix of the components of a tensor. The surface stress contains a constant  

isotropic part . Thus, the sum  can be interpreted as a constant isotropic surface stress.   1 22 sa a 1 0 1 22a a  

We shall call  as the zero-strain or residual surface stress.  For  small but non-zero, the shear 0 1 22a a   

stress is proportional to  thus  is the small strain surface shear modulus.12a 12sG a

Fig. 4. Schematic of a simple shear test of a surface element.

Consider another example where the surface is subjected to a uniform biaxial stretch with stretch ratios  1

and  respectively.  The surface deformation gradient is2

(23)Stretch
1 1 1 2 2 2s     F e e e e

The surface stress computed using (19c) and (20) is, after some rearrangement:

(24)  1 2
0 3

2 1

1 0/ 1 01 0
0 10 / 10 1

s
s s

s

J
G a

J
 


 

    
            

σ

Consistent with the simple shear test, the first term is the residual isotropic surface stress.  The second non-

isotropic term vanishes if , that is, when the surface is subjected to a hydrostatic strain.   The third term 1 2 

indicates that  is related to surface compressibility, i.e., increases linearly with the change in surface 3a 11 22
s s 

area strain with slope .  In analogy with linear elasticity,  is the surface area modulus.  32a 3sK a

More connection with linear elasticity can be made by consider the special case of a uniaxial tension test.  

Here we prescribe  and is determined by the condition that .  Assuming small deformation so that 1 2 22 0s 
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 where .  Ignoring the residual stress term, the condition that  1 11 2 221 , 1       11 22, 1   22 0s 

implies that

, (25)     22
22 11 22 11

11

0 s s
s s

s s

K GG K
K G

   


 
        

where we have used that . In analogy with linear elasticity, we define the    2 1 22 11 22 11/ 1 / 1 1          

surface Poisson’s ratio  bys

, (26a) s s
s

s s

K G
K G


 

   

and accordingly,

 (26b)1
1

s
s s

s

K G
v





Further, still ignoring the residual term in (24), we find

. (27)        11
11 22 11 22 111 1s s s s s s sG K G v K v              

Equation (27) motivates us to define a surface tensile modulus  by .  Comparing this definition sE 11
11s sE 

with (27), the surface tensile modulus is related to the surface shear modulus and the surface Poisson’s ratio by

, (28)      1 1 2 1s s s s s s sE G v K v G v     

where we have used (26b) in the last step of (28).  It is interesting to note that the relation between surface shear 

and tensile modulus is the same as in linear elasticity.  A more formal approach (see Electronic supplementary 

information (ESI)) shows that, in the small strain limit, (19c) reduces to

(29a)   02 s s sG K G            

From (29a), the surface Lame’s constant is 

. (29b)s s sK G  

Here we note that Style et al.4 suggest that , which is the same as in bulk elasticity. However, 2 / 3s s sK G  

our approach shows that ; indeed, the factor of 3 in the denominator of  should be replaced s s sK G   2 / 3sG

by 2 as the surface is 2D.  
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Next we investigate the physical meaning of .  This constant does not appear in the analysis above since 4a

the surface remains flat during deformation.   To understand  we consider pure bending.  As shown in Fig. 5, 4a

the surface is initially flat (i.e., curvature tensor is zero) in the  and  directions, then it is bent to be part of a 1e 2e

circular cylinder with a radius a. The basis for the reference configuration is chosen to be .  During pure  1 2,e e

bending,  remains unchanged while  is mapped to  in the current configuration, where  is the unit 1e 2e s s

tangent vector to the surface and  (see Fig. 5). The basis for the current configuration is then  The 1 e s  1,e s

surface deformation gradient tensor for pure bending is

Fig. 5. Schematic of a surface to be stretched biaxially and bent to part of a cylinder surface.

(30) Bend
1 1 2s    F e e s e

The second fundamental form of the deformed cylinder surface is 

(31)
1
a

  b s s

Note, since the normal vector to the sphere is assumed to be outward, the curvature is negative. Using (19c,d) 

and (20), the surface stress and surface bending moment are

(32a)0s sσ 1

(32b)4
s s

a
a

m 1

where we have used  in (32a,b).   Recall that in pure bending of an elastic beam, the bending 1 1s    1 e e s s

moment is directly proportional to the curvature with the proportionality constant being the bending stiffness.  

Thus,  should be interpreted as the surface bending stiffness.  In this model pure bending has no effect 4 sa D
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on the surface stress, since it does not introduce surface strains.  Note also that the bending moment for pure 

bending is the same in both  and direction.   1e s

In summary, the true stress and moment associated with the surface free energy given by (20) is related to 

the left-Cauchy Green surface tensor  and the trace of the relative curvature tensor  by sB κ

(33a)  0 1s
s s s s s s s

s

G K J
J


 

     
 

Bσ 1 1 1

(33b)
  3 3 0s s

s
s s

s

D I I
J


m B

We end this section with an example motivating the relative curvature tensor. Recall this tensor takes into 

account that curves on the surface are stretched, i.e., arclengths change due to surface deformation.  To see how 

stretching is incorporated into this tensor, consider an initially flat surface subjected to a bi-axial stretch.  This 

biaxial stretching is followed by a pure bending resulting in a circular cylindrical surface of radius a.  The 

surface deformation gradient associated with this deformation sequence is simply .  Using (23) Bend stretch
s s sF F F

and (30), this is:

(34) Bend stretch
1 1 1 2 2s s s      F F F e e es

The curvature tensor is still given by (31).   The surface stress and moment are:

(35a) 1 2
0 1 1

2 1

1 1 1s s s s s sG K J 
 

    
            

    
σ 1 e e s s 1

(35b)
3
2

1 2 1 1
1

s
s

D
a

 


 
    

 
m e e s s

Equation (35b) states that bending is coupled to surface shear and stretch.  For example, the first term in (35b) 

shows that stretching increases bending moment in the  direction.   However, in the s direction, stretching in 1e

the  direction can cause the bending moment to decrease.  Further, bending becomes extremely difficult for 1e

large  since the moment increases as the third power of .  From (35b), it is seen that ratio of the bending 2 2

moment  increases quadratically with the ratio of the stretch ratios, i.e.,22 11/s sm m

(36)  222 11
2 1/ /s sm m  

2.4 Surface Equilibrium Equations or Balance Laws for Quasi-static or Static problems
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The external moments and force acting on a surface must be balanced.  In quasi-statics problems where 

inertia effects can be ignored, the surface equilibrium equation is43

, (37)      s s s s



          σ n σ b m n D m

where  is the surface divergence, and  is the covariant derivative which drops the normal    
s





   


g D

component of , i.e., .  The notation  represents the discontinuity of the  s       s     D 1 n n  


σ

true stress across the interface in the current configuration.  The symbols ‘+’ and ‘-’ are associated with the 

direction of n (Fig. 6).   For example, if the ‘+’ side of the surface is air (traction free) while the ‘-’ side is the 

bulk, then  is the negative of true stress tensor in the bulk at the point p. 


σ

Fig. 6. Stress jump across a surface. The ‘+’ and ‘-’ sides are determined by the direction of normal vector, , n
to the surface.

The indicial form of (37) is42,45 (see also ESI)

(38a)    33
| 0s s sm b b m   

    


   

(38b)    3
||

0s s sm b b m     
  

  


   

where , and a single stroke ‘|’ means covariant differentiations, and the superscript 3 indicates the b g b 
 

 direction.  For completeness, we include details on surface differentiation such as surface divergence and n
covariant derivatives in the ESI.

2.5 Special 2D plane strain problems
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The formulation presented above is quite general.  Here we specialize to 2D plane-strain problems where 

the surface in the reference and deformed configuration is cylindrical and the deformation out of plane (unit 

vector v direction, see Fig. 7) is zero.  Specifically, these surfaces are generated by translating a curve C 

(reference configuration) or its image c (deformed configuration) in the out of plane direction. and the 

deformation out of plane (unit vector v direction, see Fig. 7) is zero.  Specifically, the surface stretch ratio out-

of-plane is exactly one, so  is the same as the in-plane stretch ratio . The curve c will be parameterized by sJ s

its arc length s.  This parameterization introduces a unit tangent vector, i.e., .  The other basis vector  is 1 g s 2g

the bi-normal vector  where n is the unit normal to c. The surface deformation gradient tensor is 2  v n s g

, where S is the unit tangent vector in the reference configuration and we have used v = V 1s s   F s S v v

due to the plane strain assumption. Using  and , the true surface stress s    1 s s v v T 2
s s s   F F s s v v

and surface bending moment with the free energy given by (20) are

, (39a)     1
0 01 1 1s s s s s s sE G K                   σ s s v v

, (39b) 3 3
10s s

s s s
s

D I I 


 
       

 
m s s v v

where  is the plane strain tensile modulus.  2

2
1 1

s s
s s s

s s

G EE G K
v v

    
 

With respect to the orthonormal basis  the only non-trivial component of the second fundamental  , ,s v n

form is  (and ), and it is the in-plane curvature of the deformed curve c.  We denote it by h which 11b 1
11 1b b

can be positive or negative depends on the parameterization and normal vector direction.  A simple way to 

calculate the in-plane curvature h is

(40)h
s


 


s n

The trace of the relative curvature tensor in plane strain is

(41)2
3
s

sI h 

Due to the plane strain assumption and the arc length parameterization, the out of plane surface equilibrium 

equation is automatically satisfied, and we need only to enforce in-plane equilibrium (details of derivation are 

provided in the ESI).  Equations (38a,b) reduce to

(42a) 11 11 11 33
,11 0s s sm h h m 




     
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 (42b) 11 11 11 13
1 1, , 0s s sm h hm 




     

where 

(42c) 11
0 1s s sE    

 (42d) 11
3 3 0s s

s s sm D I I    

and ,1 denotes partial derivative with respect to arc length s.  Using (41), (42d) can be expressed as

(42e) 11 2
0s s s sm D h h   

where  is the initial in-plane curvature.0h

Fig. 7. Schematic shows the plane strain problem in which the surface is cylindrical, generated by translating 

the red curve c in the v direction (out of plane).  Here  is an orthonormal basis:  are unit tangent,  , ,s v n , ,s v n

binormal and normal vectors in the deformed configuration, respectively.  Not shown is the reference 

configuration. 

3. Inflation of a hyperelastic cylindrical shell 

3.1 Problem statement and solution

In the first example, we study the effects of surface stress and bending on the inflation of a cylindrical shell 

made of an incompressible isotropic hyperelastic material.  This class of problems has been well studied by 

many;52,56–63 here we focus on surface stress and bending effects.  In this problem, the undeformed 

configuration corresponds to a stress-free cylindrical shell without surface stress or surface bending moment. 

Let  identify a material point in the reference configuration, and  its current configuration.  The  ,R   ,r 

Page 16 of 31Soft Matter



17

inner surface is inflated by a uniform pressure  and no traction is applied on the outer surface.  We rT T e

consider cylindrically symmetric deformation where material points move radially, i.e.,

,   . (43) r r R   

The basis for the reference and deformed configuration can be chosen as  which is the standard basis  ,r e e

associated with a polar coordinate system with origin at the center of the shell.  Before deformation the inner 

and outer radii are denoted by  and ; and after deformation, by  and  (see Fig. 8). We use a parameter AR BR Ar Br

 to represent the shell’s thickness. Both the inner and outer surfaces carry a strain-dependent surface /A Bf R R

stress and bending moment given by (42c,d). The bulk of the cylindrical shell is modeled as an incompressible 

neo-Hookean solid with strain energy density function 

, (44) 1 3
2

W I
 

where  is the trace of the right Cauchy-Green tensor , and  is the small strain shear modulus. 1I
TC F F 

Because of symmetry, the only non-trivial stresses are the true radial and circumferential stresses and they are 

denoted by  and , respectively. rr 

Fig. 8 Current configuration of a cylindrical shell with finite thickness. Its bulk is modeled as neo-Hookean 

material. The inner surface at  is subject to a uniform pressure, and both surfaces at  and  Ar r Ar r Br r

(blue solid curves) carry surface stresses and surface bending moments. ,  are the canonical basis vectors in re e
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polar coordinates, and ,  are the unit tangent and normal vectors for the inner surface. In our system,  and s n s

 are the same, while  and  are equal and opposite.e n re

We normalize all positions by  and stresses by .  Specifically, , , , AR  / Ar r R /rr rr   /   

and . We define the elasto-capillary number by , elasto-bending number by /T T  0 0 / AR  

, and elasto-stiffening number by .  The stretch ratio of the inner surface 1/3/ /s s AD D R /s s AE E R 

 is related to the applied normalized pressure  by the nonlinear equation:/A A Ar R  T

. . (45)
     

  
 

  
 

022 22 2 2 2

2 2 2 2 3

3

2 2 2 2

1 1 1 12ln
2 1 11 1 1 1

1 1 1 1 1 11 1

1 1 1 1

A

A AAA A

A A
A A

s s
A AA A

fT
ff f

f f f f
E D

f f

 
  

  
  



   
       
          

                  
         

The normalized true stress  and  are rr 

(46a)
  32 2 2

0
2 2 2 2

111 1 1 1 1ln 2ln 1
2 2

s s AA A
rr

A A A A

E Dr T
r r r

 
   

       
            

    

. (46b)
  

2 2 2 2 2 2

2 2 2 2 2 2

3
0

2

1 11 1ln
2 1

1 1 1 12ln 1
2

A A A

A

s s A

A A A A

r r r
r r r r r

E D
T


  




   



     
          

   
      

 

Thus, once  is determined by solving (45), the stress distribution can be determined using (46a,b).  Details A

are given in the ESI.   In classical theory, , and the solution can be found in the textbook by 0 0s sE D   

Bower.64

3.2 Numerical results 

We first plot the normalized pressure  versus the inner surface stretch ratio  for different shell T A

thicknesses  without any surface effects ( ). Equation (45) shows that for this case the f 0 0s sE D   

normalized pressure approaches a finite limit  when the inner surface stretch ratio .  Notice lnT f   A  

 becomes infinite as .  This particular behavior is different from its 3D counterpart: it is well known T 0f 
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that a pressurized spherical cavity in an infinite neo-Hookean solid expands without bound when the pressure 

approaches 58.5 / 2

 

Fig. 9. Normalized pressure versus inner surface stretch ratio with different shell thicknesses.  0f 

corresponds to a pressurized cylindrical cavity in an infinite 2D space. No surface effects are considered in this 

plot.

In the following, we choose  to represent a thin cylindrical shell. We study the effect of residual 0.9f 

surface stress  first without considering surface stiffening or surface bending effects.  In Fig. 10, the filled  0

squares represent the constricted inner surface stretch ratio ( <1) when no pressure is applied ( ). As A 0T 

expected, the cylindrical shell shrinks more as  increases. With increasing pressure, the shell size (both inner 0

and outer radii) starts to grow. However, the pressure attains its maximum value  at a finite value of inner maxT

surface stretch ratio (filled circles in Fig. 10).  After this, the shell becomes unstable. The reason is that as the 

cylindrical shell is being inflated, the curvatures on both surfaces decrease. Therefore, the Laplace pressure (the 

product of residual surface stress and in plane curvature) which opposes the applied pressure decreases and 

eventually becomes insignificant.   Note that the pressure increases monotonically for if the surface residual 

stress is zero.   Thus, surface residue stress is responsible for this unstable behavior.58,59,61
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Fig. 10. Normalized pressure versus inner surface stretch ratio for different residual surface stress. The filled 

squares represent the constricted inner surface stretch ratio because of the residual surface stress provided there 

is no internal pressure ( ). The filled circles represent the maximal pressure attained during the inflation. 0T 

Next, we study surface stiffening and bending effects.  Equation (45) shows that the pressure approaches a 

constant value at , i.e., A  

, (47)     3 3ln 1 1s sT f f E f D
      

Fig. 11(a) and (b) demonstrate that for sufficient large surface tensile modulus and bending stiffness, the 

internal pressure increases monotonically with ; the system is stable (i.e., the maximum pressure  does A maxT

not exist).   

There exist a boundary determined by the combination of ,  and  classifying stable and unstable 0 sE 3
sD

systems.  Fig. 12 plots the boundaries at different . If the positions of  and  at some given  are 0 sE 3
sD 0

below the corresponding curves, the system then is unstable; otherwise, the system is stable. 
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Fig. 11. Normalized pressure versus inner surface stretch ratio for different (a) surface tensile moduli; (b) 

surface bending stiffnesses. The filled squares represent that there is no internal pressure ( ). The filled 0T 

circles represent the maximal pressure attained during the inflation. 

Fig. 12. Boundaries classifying stable and unstable systems at different .0

Fig. 13(a, b) and Fig. 14(a, b) plot the circumferential stress  and radial stress  in the bulk at the  rr

inner surface versus the inner surface stretch ratio . Two cases, , ,  and , , , A 0 0sE  0sD  0 0sE  0sD 
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are considered. Using (46b) and the fact that  is finite, the circumference stress on the inner surface becomes T

unbounded as .   Indeed, T T

(48)2lim
A

A
 




In a log-log plot, the stress versus stretch curve in this regime should be a straight line with slope 2 and this 

behavior is shown in Fig. 13(a) and Fig. 14(a).  It is interesting to note that for small  or , the sE
sD

circumferential stress increases monotonically with . However, for sufficiently large  or , the A sE
sD

circumferential stress undergoes an oscillation before increasing with the stretch ratio according to (48). 

Unlike the circumferential stress, the radial stress remains bounded as  (Fig. 13(b) and Fig. 14(b)).  A  

This asymptotic value of radial stresses is given by:

(49)3 3lim ln
A

rr s sf fE f D


 


  

Fig. 13. (a) Circumferential and (b) radial stress on the inner surface versus the inner surface stretch ratio with 

no surface bending stiffness.
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Fig. 14. (a) Circumferential and (b) radial stress on the inner surface versus the inner surface stretch ratio with 

no surface tensile modulus.

4. Bending of a plate with a finite thickness

4.1 Problem statement and solution

The undeformed configuration of a plate with a finite thickness is identified by a Cartesian coordinate 

system with an orthonormal basis . It occupies the region ,  and   1 2,E E 1A Bc X c  2L X L   3X  

This rectangular cross-section is shown in Fig. 15. Suppose that the plate is bent symmetrically with respect to 

the  axis resulting in a sector of a circular cylindrical shell. The deformed cross-section is defined by a polar 1X

coordinate system  with orthogonal basis , and it occupies the region , .  ,r   ,r e e A Br r r  0 0    

Green and Zerna65 have shown that for an incompressible elastic material, this deformation can be described by 

the following mapping

, (50) 1/2
1 2

12 ,r X X 


 

where  is an unknown parameter to be determined. Since the plate is not allowed to penetrate itself, 

. Let ,  denote the unit tangent and normal vectors for the curved surfaces (indicated by blue 00    s n

curves in Fig. 15) in the current configuration; , . The applied moment acting on the plate is s e r n e

denoted by , and the in-plane average curvature (the curvature of the middle line) is .M
 

1

B A

h
c c



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Fig. 15 Rectangular cross-section in the reference and current configurations of a finite thickness plate. This 

structure is modeled as neo-Hookean material. The surfaces (indicated by blue curves) carry surface stress and 

surface bending. 

We define elasto-capillary number , elasto-bending number , and elasto-
 

0
0

B Ac c






 1/3/s

s
B A

D
D

c c





stiffening number . We normalize all lengths by , and all stresses by , i.e., 
 

s
s

B A

EE
c c


 

 B Ac c 

, , , ,  and . The normalized radial A
A

B A

cc
c c




1B
B A

B A

cc c
c c

  
 B Ac c

 
 B A

rr
c c




rr
rr




 







and circumferential true stresses are (details of derivation are in ESI)

(51a)
2 2 2 2

2 22 2 2 2

3,
2 2 2 2rr

r rC C
r r

  
 

      

where 

(51b)
3

2 0 2

2 21 1
42

sB B B
s

BB
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The unknown parameter  is determined by 

(51c)
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The normalized applied moment and normalized average in-plane curvature are related to each other by
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(52a)
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4.2 Numerical results

We first consider the limiting cases in which the surface bending effect is negligible ( ). This 0sD 

problem was studied by Liu et al.66 In Fig. 16, we plot the applied moment versus average in-plane curvature 

using equations (52a,b), and Liu et al’s results are plotted as symbols for comparison. It is evident that the two 

solutions agree well. Before we dive into our analysis taking surface bending into account, we review some key 

findings: 

(i) The residual surface stress increases the structural bending resistance – for a given average in-plane 

curvature, a larger applied bending moment is needed in the presence of residual surface stress. 

(ii) The applied moment is approximately proportional to the average in-plane curvature for , despite 1h 

geometric and material nonlinearity.

(iii) For a sufficiently large residual surface stress, the plate becomes unstable at a critical applied moment, 

as indicated by the green dash-dot line in Fig. 16. 

(iv) The instability can be mitigated or even eliminated by increasing the surface tensile elasticity (red 

dotted line in Fig. 16).
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Fig. 16. Normalized applied moment versus normalized average in-plane curvature for different elasto-capillary 

and elasto-stiffening numbers. The symbols are Liu et al’s results.

These conclusions might not be true when surface bending effect comes into play. Intuition suggest that 

surface bending moment  is much more sensitive to curvature change compared to the surface stress ; so 11
sm 11

s

for the same amount of bending, one should expect a drastic increase in applied moment if the surface bending 

is introduced. 

First we consider the case  but . In Fig. 17(a) we plot the normalized applied moment 0 0sE   0sD 

versus the average in-plane curvature for different elasto-bending number . As Fig. 16 shows, the surface sD

bending increases the applied moment dramatically. More interestingly, this bending process is stable, 

contrasting (iii) where the plate becomes unstable at some critical average in-plane curvature.  Also, the linear 

relationship between applied moment and average in-plane curvature breaks down when  (Fig. 17(a)), 0.5sD 

i.e., (ii) is no longer valid. To gain physical insight, in Fig. 17(b) and (c) we plot the distribution of 

circumferential  and radial true stress , respectively, at a given average in-plane curvature . Fig.  rr 1.0h 

17(b) shows that the surface bending makes  more compressive and more severe near the inner surface, 

which in return requires an additional applied bending for a fixed  (see Fig. 16a). Fig. 17(c) implies the inner h

part of the plate is radially stretched ( ) and the outer is compressed ( ) due to the surface bending, 0rr  0rr 

hence the thickness will vary during the plate bending process.  To see this, we plot the variation of thickness 

against average in-plane curvature in Fig. 17(d) for different elasto-bending numbers.  For the case of no 

surface stress effects ( = 0), the plate thins as curvature increases; we name this the “thinning effect”.  This sD

thinning effect is inhibited by surface bending. Indeed, for , the thickness of the plate actually increases 1sD 

for small curvatures instead of decreasing, which provides an additional resistance to the plate bending.
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Fig. 17. (a) Normalized applied moment versus normalized average in-plane curvature for different elasto-

bending numbers while ; (b) distribution of circumferential  and (c) radial stress  at a given 0 0sE    rr

average in-plane curvature ; (d) normalized thickness versus normalized average in-plane curvature. 1.0h 

Finally, we consider the combined effects of surface bending and surface stress. As Fig. 18(a) shows, both 

surface stiffening and surface bending can stabilize bending. However, the increase in moment due to surface 

bending is much more significant than surface stiffening, especially at large curvatures. Fig. 18(b) plots the 

thickness change against the average in-plane curvature.  Here the situation is reversed.   Surface stiffening 
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makes the plate much thinner, while the surface bending stiffness makes the plate slightly thicker compared to 

the situation where .0s sE D  

Fig. 18. (a) Normalized applied moment versus normalized average in-plane curvature considering combined 

effect of surface stiffening and surface bending with a fixed ; (b) normalized thickness versus normalized 0 2 

average in-plane curvature.

5. Conclusion

We review the general theory of surface-substrate interactions in which the surface bending, stretching and 

shearing are considered under the framework of large deformation. We then propose a Helmholtz free energy 

function for the surfaces that contain terms representative of the residual surface stress, surface tensile modulus 

and surface bending stiffness.  We provide a detailed recipe to calculate the surface stress and surface bending 

and to formulate the in-plane equilibrium equations for 2D plane strain problems.  We apply our plane strain 

theory to study how surface effects change the solution of two classical elasticity problems: the inflation of a 

cylindrical shell and the bending of a plate.   The solution is obtained analytically in closed form. Previous 

studies 60,66 have shown that residual surface stress can increase the structural resistance to applied loads (for 

our two examples, the applied loads are inner pressure and applied moment, respectively).  However, if the 

residual surface stress is sufficiently large, it can also cause structural instability (e.g., Fig. 10 and Fig. 16), 

especially in a force controlled experiment. Our results show that surface stiffening and surface bending can 

mitigate and even eliminate this instability. We also explore the thickness change of the bending plate and find 

an interesting result that in the presence of surface bending stiffness, the plate can be fattened during bending. 
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In our model, we assume that the cylindrical shell or plate is neo-Hookean solid. It has been well known 

that the neo-Hookean constitutive model works well for moderately large deformation (stretch ratio < 4).  After 

this, the neo-Hookean model underestimates the stress due to strain hardening.67   It should be noted that most 

of the interesting phenomena occur before the neo-Hookean model breaks down.  To study the behavior at very 

large strains,  our model can be easily extended by considering more realistic constitutive models for bulk 

elasticity.67  Another limitation in our model is that we don’t take the structural buckling into consideration. 

However, the circumferential stress in our solution can be negative in the presence of residual surface stress 

(e.g., see Fig. 13(a)); in such case, the thin shell may buckle which potentially invalidates our above analysis. 

To determine whether a structure (e.g., an elastic ring) carrying both surface stress and bending moments 

buckles, more work is needed to explore the instability of a solid with those complex surface properties. Also, 

the solutions present above considered only simple geometries under specialized loading conditions.  In 

applications, numerical approach is necessary.  Our formulation can be readily incorporated in a finite element 

model to study large deformation problems with complex geometries. For example, by using the same surface 

stress and bending moment given by (42c,d), Lapinski et al.39 has successfully implemented a new 3-node 

surface finite element for nonlinear, implicit, static, 2D plane strain finite element simulations that incorporated 

surface stretching and bending, and their simulations and experimental observations match quite well. In 

addition, one can relax the plane strain assumption by extending the FEM formulation to 3D.

The constitutive model we proposed (equation (20)) embodies several assumptions that invite experimental 

validation or verification.  Probably, in decreasing degree of confidence, we can state that surface stress at zero 

strain exists and is important, surface elasticity likely is present in several cases, and surface bending may or 

may not be important.  We believe that an important next step would be to investigate experimentally for typical 

soft solids if and when these contributions to the constitutive response are necessary to include.  
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