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Abstract

Fibrous protein networks provide structural integrity to different biological materials such as soft 

tissues. These networks display an unusual exponential strain-stiffening behavior when subjected 

to mechanical loads. This nonlinear strain-stiffening behavior has so far been explained in terms 

of the network microstructure and the flexibility of constituting fibers. Here, we conduct a 

comprehensive computational study to characterize the importance of material properties of 

individual fibers in the overall nonlinear mechanical response of random fiber networks. To this 

end, we consider three nonlinear material models, ranging from an almost linear form to a highly 

nonlinear one, for the fibers of subisostatic disordered networks. We characterize the amount of 

strain-stiffening as a function of bending rigidity of the fibers, the amount of nonlinearity of the 

fibers, and the connectivity of random networks. We find that networks composed of highly 

nonlinear fibers exhibit much more strain-stiffening than networks made up of linear fibers. 

Furthermore, the local strain distribution becomes more homogenous as the amount of nonlinearity 

in material models increases. Increasing the network connectivity signifies the importance of the 

nonlinear material response of fibers in the overall mechanical behavior of networks. The 

constitutive behavior of fibers plays an important role in defining the failure response of networks 

particularly in the damage initiation and evolution. The findings of this work show how the 

mechanical response of individual fibers affects the overall mechanical properties of random 

networks and could find applications in designing new biomimetic materials and better 

understanding of the mechanical properties of biological materials.

Page 2 of 31Soft Matter



3

Introduction

The mechanical properties of the cytoskeleton and extracellular matrix play a crucial role in the 

cellular shape and function 1. The extracellular matrix is a network of different macromolecules 

such as collagen fibers and proteoglycans. The collagen, the primary load-bearing constituent 

within the extracellular matrix, is the most abundant fibrous protein and is commonly found in 

tissues such as articular cartilage, ligaments, cornea, and tendons 2, 3. Similarly, cytoskeleton is a 

composite network of protein fibers that gives structural integrity to cells 4, 5. This fibrous network 

participates in numerous vital processes such as cell motility, apoptosis, and division 6. It is 

challenging to develop a complete understanding of the nonlinear mechanics of fibrous networks. 

Previous experimental studies reveal that biopolymer networks exhibit nonlinear elasticity and can 

undergo large deformation 7-10. The distinct feature of biopolymers such as those found in the cell 

cytoskeleton and extracellular matrix of tissues is their finite bending rigidity. There are many 

numerical and theoretical efforts in the literature to explain the mechanics of these semiflexible 

fiber networks in terms of elastic properties of their individual fibers and network architecture 10-

12. In affine models, fiber segments are assumed to deform according to the applied far-field strain; 

thus, the macroscopic mechanical response of networks can be expressed in terms of a number of 

microstructural parameters such as the fiber orientation and crosslinking density 7, 8. However, the 

mechanical response of fiber networks, especially those that are found in biological world, is 

nonaffine 13-17. 

Affine and nonaffine numerical models using both lattice-based and off-lattice network structures 

have been used to investigate the origins of the nonlinear elasticity of fibrous networks 10-12, 18-24. 

It is concluded that random networks display soft mechanical response at small strains, primarily 
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governed by soft bending deformation of the fibers. However, they show strong nonlinear strain-

stiffening behavior with more affine deformation at large strains 7, 8, 22, 25, 26.  The importance of 

hierarchical and complex microstructure of these networks in their remarkable mechanical 

properties under finite deformation has well been recognized 7, 22, 27-34. In particular, considerable 

attention has been given to the network connectivity, network architecture, and type of disorders. 

However, lesser attention has been directed towards the potential role that the nonlinear 

mechanical response of constituting fibers could play in controlling the elasticity of random 

networks.

The primary objective of the present study is to elaborate on the influence of material nonlinearity 

of individual fibers on the mechanical behavior of random networks. This investigation uses an 

exponential function to express the stress-strain response of the fibers. The amount of nonlinearity 

is varied from low to high and the numerical findings are compared with previous studies that 

utilized the linear elastic model for fibers. The microstructure of networks in numerical simulations 

is represented by diluted triangular lattices with different connectivity. The mechanical response 

of fibrous networks is only studied under shear but similar response is expected in other modes of 

deformation. The effect of bending rigidity of fibers and its relation to the nonlinearity of the 

network mechanical response are also characterized. The maximum strain in fiber segments is 

calculated as a function of applied deformation in order to determine the local strain distribution 

throughout the networks. The influence of constitutive models of fibers on the failure response is 

also studied by considering a strain-based failure criterion. Both the onset and the evolution of 

damage in the networks are characterized. The numerical results show that the mechanical 

response of constituting fibers has important effects on the mechanical properties of random 

polymer networks.
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Numerical Model:

Biopolymers usually form crosslinked network structures with an average connectivity z between 

3 and 4 at crosslinks 20, 35. Thus, the bending of fibers, in addition to their axial elasticity, is required 

for stabilizing these subisostatic and unstable networks 12, 31. Herein, we only consider subisostatic 

networks made up of athermal fibers that are modelled as beam elements, i.e. the mechanical 

behavior is only studied under pure enthalpic contributions and possible effects of thermal bending 

fluctuations are not considered. 

We only consider two-dimensional (2D) random diluted triangular networks. The fibers are first 

arranged into triangular lattice of size WxW and fiber segments of equal length l are assumed to 

be permanently crosslinked at the vertices36. The resulting networks have a connectivity of z = 6; 

thus, we randomly remove fiber segments with a probability of 1 – p until the connectivity becomes 

less than the 2D isostatic threshold, z = 4, Figure 1 20. Any remaining dangling ends are removed 

and the average coordination number of lattice-based networks is calculated. Unless otherwise 

stated, the average connectivity is kept between 3 and 4 in order to obtain networks compatible 

with what typically seen in biological materials 31. All simulations are performed using networks 

of size W = 50l in order to minimize the possible effects of the size of networks 21.  The 

representative data is shown; however, it is confirmed that no significant variation exists in the 

data obtained from at least five network realizations.

The fiber stands are modeled as nonlinear Timoshenko beams taking into account their stretching, 

shear, and bending deformations. For networks composed of linear elastic fibers, the beam 

segments are assumed to have cross-sectional area A, second moment of inertia I, Young’s 

modulus E, stretching modulus  = EA, and bending rigidity  = EI, and thus, dimensionless 
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bending rigidity . The dimensionless bending rigidity quantifies the flexibility of the 2/ l   

fibers and is varied from 0.00001 to 0.1 in the present study. In order to investigate the effect of 

nonlinear constitutive behavior of fibers on the mechanical response of random networks, we also 

consider fibers whose constitutive law is nonlinear. To this end, we assume that fibers have an 

initial linear elastic response followed by an exponential hardening response 37, i.e.

                      (1)  / 1Y

Y
f B

Y Y

E

EB e E

           

where Y denotes the strain at which the linear elastic behavior switches to an exponential form, 

and B is a material constant that controls the amount of nonlinearity. B is varied between 1 (Model 

I: slightly nonlinear), 0.2 (Model II: nonlinear), and 0.1 (Model III: highly nonlinear) in this work, 

Figure 1b. The commercial software ABAQUS is used to conduct the numerical simulations using 

both static and implicit finite element methods. The fiber segments are divided into smaller 

elements in order to capture their nonlinear bending accurately.  A user-defined material (UMAT) 

is written to represent the nonlinear stress-strain response of nonlinear fibers in ABAQUS. A high-

performance computing cluster is used to solve for the mechanical response of diluted triangular 

lattice networks subjected to large shear deformation. 

In order to apply the shear strain , all fibers intersecting the lower horizontal boundary are only 

fixed in the horizontal and vertical directions, and those attaching to the upper horizontal boundary 

are constrained to translate horizontally. The finite shear strain  is applied incrementally and no 

constraint is defined for the fibers intersecting the vertical boundaries of the domain. The shear 

strain is applied incrementally in 100 steps from 0 to 100%. Static analysis is used for shear strains 

upto 30% - 40% and implicit static method is used for finding the deformation at larger strains. It 
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is ensured that the ratio of kinetic energy and elastic energy to be very small in the implicit analysis.  

Once the finite element simulation results are obtained, we calculate the shear stress by dividing 

the summation of forces in the fibers intersecting the upper lattice boundary by W 38. The 

differential shear modulus of the networks, also referred to as stiffness herein, at each increment 

is defined as the slope of the stress-strain response, i.e. , where  and  are the applied K   

shear strain and calculated shear stress, respectively. In the following, the stress and stiffness are 

given in units of /l. 

Fig. 1 a) The microstructure of disordered fiber networks is represented by diluted triangular lattices b) 
The normalized stress-strain response of fibers; the parameter B determines the amount of nonlinearity 
and the constitutive relation, eq. (1), is defined such that the fibers show an initial linear elastic response 
in all models.

Results and Discussion

It has been shown that random fibrous networks exhibit remarkable strain-stiffening when 

subjected to large shear deformation 22, 27. This means that the shear stiffness of these networks 

significantly increases with the strain. This stiffening behavior mainly depends on the fiber 

bending rigidity and the connectivity of random networks. Previous studies examined the role of 

connectivity on the mechanism of deformation (bending versus stretching dominated behavior) 15, 

31, 34, 39. The disordered fiber networks with connectivity above the central-force isostatic point are 

more likely to show stretching dominated behavior. In contrast, subisostatic networks, typically 

seen in the biological world, are floppy and often depict bending dominated response (note that 

Figure 1
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fibers with large bending rigidity cause stretching dominated response even in subisostatic 

networks10, 14, 15).  

The mechanical response of networks composed of linear elastic fibers can be divided into three 

regimes depending on the applied strain (Figure S1). When the applied shear strain is smaller than 

the critical value , an almost constant shear rigidity K, i.e.  ∝  is seen independent of  . In 𝜅

this regime, the dominant deformation mechanism is fiber bending and K ∝ . The critical strain 𝜅

 denotes the onset of nonlinearity in the overall mechanical response. Similar to previous studies 

20, 22, we observe that  is almost independent of  for networks composed of linear elastic fibers. 𝜅

With increasing the applied shear strain (  ), the strain-stiffening response proceeds in two 

consecutive steps. During the first stage, the shear stress and differential shear modulus increase 

nonlinearly upto the point when the applied shear strain reaches a second critical value c, denoted 

by star symbols in Figure S1. At this critical strain, the stretching deformation of the fibers 

becomes the dominant mode of deformation and the network rigidity becomes independent of . 𝜅

The critical shear strain c is defined as the strain at which an inflection point appears in log(K) 

versus log() 20, 21. Figure S1 shows that c ~ 45-55% and is weakly dependent on the bending 

rigidity of the fibers. The critical strain can also be estimated from the ratio of relative contributions 

of bending and stretching energy to the total elastic energy. For strains larger than c, the total 

energy is dominated by fiber stretching, Figure S2. The fibers of biological materials behave 

nonlinearly especially if the mechanical response under large deformation is of interest. Thus, it is 

important to investigate whether the above observations hold when random networks composed 

of nonlinear fibers, eq. (1), are considered. 
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Effect of nonlinear stress-strain behavior of fibers on the network shear modulus:

 Figures 2 a-b plot the normalized shear stiffness of networks composed of nonlinear fibers with   𝜅

= 0.01 and   = 0.00001 as a function of normalized shear strain. In these plots, the shear stiffness 𝜅

K is normalized with the stiffness of similar networks composed of linear elastic fibers, Figure S1. 

Furthermore, the applied shear strain is normalized by d, which is the far-field shear strain at 

which the strain in at least one of the fiber segments reaches the yielding strain Y, eq. (1).  The 

plots shown as the insets of Figures 2a-b confirm that the variation of network stiffness with the 

applied shear strain upto d is similar to what is observed for networks of linear elastic fibers 

(Figure S1); this is because all fibers (even nonlinear ones) are assumed to have the same linear 

elastic material response, eq. (1), initially. Figure 2c plots the variation of critical shear strain d as 

a function of ; this plot shows that this parameter has an inverse relation with the bending rigidity 𝜅

of fibers. In particular, d ∝ -0.5. The variation of the initial shear modulus at  ~ 1%, denoted by 𝜅

G, as a function of  is also shown in the inset of Figure 2c. It is seen that G ∝ , i.e. a bending 𝜅   𝜅

dominated regime exists and the initial modulus is proportional to  14. The flexibility of fibers, 𝜅

characterized by , determines their local strain, as discussed later in this work. 𝜅

Figure 2a shows the mechanical response of networks composed of fibers with relatively large 

bending rigidity (  = 0.01). These fibers could not accommodate the applied deformation by rigid 𝜅

rotations and their internal energy increases due to the applied shear strain such that their local 

strain reaches the yielding point Y defined in the constitutive relation (1). Thus, they exhibit 

nonlinear mechanical response and the mechanical properties of their respective disordered 

networks become distinct from those of networks composed of only linear elastic fibers. It is 
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interesting to note that d for networks composed of stiff fibers (large  ~ 0.01) is close to and 𝜅

might even be less than 0 (the linear regime shown in Figure S1).  When   d in these networks, 

the role of material properties of individual fibers is insignificant and bending deformation 

dominates their overall shear response. With increasing the applied shear strain, a nonlinear 

stiffening regime followed by a linear stiffening regime is observed. 

The critical strain d for networks composed of flexible fibers (small  ~ 10-5) is significantly larger 𝜅

than 0 and occurs at strains closer to the critical shear strain c, see the inset of Figure 2b which is 

plotted for networks with  = 0.00001. Note that d ~ 35% and c ~ 47% for these networks, Figure 𝜅

2c and Figure 2f. Thus, the effect of the material nonlinearity of fibers is only observed after their 

complete reorientation in the loading direction, where the networks enter the stretching dominated 

regime. This can be easily seen by plotting the relative contributions of bending and stretching 

energy, Figure 2f. 

For applied shear strains larger than d (i.e. d > 1) and independent of , networks of nonlinear 𝜅

fibers exhibit a significant higher stiffening when compared to networks with linear elastic fibers, 

Figures 2a-b; this stiffening is a function of both the applied strain and the intensity of nonlinear 

response of individual fibers. For example, the stiffness of networks composed of Model III fibers 

with  = 0.00001 at  = 100% >> d becomes seven-fold larger than that of similar networks made 𝜅

up of linear elastic fibers. Figure 2d plots the variation of stiffness as a function of  at  = 60% 𝜅

and 100% for networks composed linear and nonlinear fibers (note that d < 60% for all models). 

Although the difference between various material models at  = 1000% is significant and almost 

independent of the bending rigidity of fibers, the difference between various material models is 
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relatively small at  = 60% and slightly varies with . This is because the stretching of fibers is 𝜅

dominant at large applied shear strains ~ 100%. At smaller strains ~ 60%, the influence of material 

models becomes slightly more marked with increasing the bending rigidity of fibers. This is 

because increasing  enhances the role of fiber stretching in the deformation mechanism resisting 𝜅

the external deformation15, 16, 20, 39. Figures 2e-f show that the interrelation between  and the 𝜅

nonlinearity of fibers determines the bending- versus stretching-dominated behavior in random 

networks. 

The results so far suggest that networks with nonlinear fibers exhibit distinctly different response 

when compared to the behavior of those composed of linear fibers when the applied strain becomes 

large. The bending rigidity of constituting fibers, defined by , is a fundamental factor determining 𝜅

the value of applied strain, d, at which the nonlinearity of individual fibers shows its effect on the 

overall network mechanical properties. Furthermore, the nonlinear intensity of constitutive 

response of fibers is another important factor affecting the rate of strain stiffening.   

Fig. 2 The effect of nonlinear elastic properties of individual fibers on the mechanical response of fibrous 
networks. The normalized network stiffness, K/Klinear, as a function of the normalized applied shear strain 


d 
> 1 for a)  = 10-2 and b)   = 10-5. The insets show the variation of the network stiffness K versus  𝜅 𝜅

the applied shear strain c) The variation of 
d
 versus the dimensionless bending rigidity ; the linear 𝜅

modulus G0 at  = 1% is plotted as a function of  in the inset. d) The network stiffness K is plotted as a 𝜅
function of   at shear strains  = 60% and  = 100%. The effect of material nonlinearity of fibers is more 𝜅
pronounced when the applied shear strain increases and when the bending rigidity of fibers increases. 
The relative contributions of stretching energy Hs and bending energy Hb versus the applied shear strain 
for e)  = 10-2 and f)   = 10-5; H = Hs + Hb. The critical shear strain 

c
 is a function of bending rigidity  𝜅 𝜅

of the fibers and a significant difference between the linear and nonlinear network especially for  > 
c
.

Figure 2
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Another interesting feature of fibrous networks is the nonlinear increasing of their differential 

shear modulus K as a function of the shear stress . The networks of linear elastic fibers stiffen as 

K ∝  where  depends on the bending rigidity of fibers and varies from about 1.5 (  = 0.00001) 𝜅

to 0.6 (  = 0.1), see Figure S3. These findings agree with previous numerical, experimental, and 𝜅

theoretical reports that show that the exponent increases from 0.5 to 1.5 with decreasing  for 𝜅

networks composed of linear elastic fibers 20, 22, 40.  However, we do not observe a unique exponent 

of 1.5 in the initial stiffening regime that has been reported from computer simulations of a random 

network comprised of cross-linked biopolymer-like fibers 11, 24. We also observe that the range of 

the initial stiffening becomes smaller with increasing , Figure S3. Finally, at very large shear 𝜅

stresses (and in agreement to what has been previously reported 20, 22, 40), the stress-stiffening 

response of linear elastic fiber networks vanishes, which disagrees with experimental 

measurements where the network stiffness increases until failure 22. With increasing the shear 

stress, the deformation of networks becomes stretching dominated (Figure 2e-f) and the 

nonlinearity of fibers causes the overall response of the networks to be nonlinear; numerical 

models using linear elastic fibers could not capture this important phenomenon. 

The material nonlinearity of fibers does not significantly affect the initial stress-stiffening behavior 

of networks especially when  is very small. However, with increasing the bending rigidity of 𝜅

fibers, the difference between numerical models composed of linear and nonlinear fibers becomes 

more pronounced, Figure 3 and Figure S3. It is interesting to note that numerical models with 

linear elastic fibers may introduce errors in the estimates of  at large stress values (shown 

pictorially by dashed lines in Figure S3). The present results, that are obtained using fibers with 

different levels of nonlinearity, suggest that the stiffening exponent at large shear stresses is a 

function of nonlinear behavior of the fibers. 
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Figure 3 shows that the stress-stiffening, K ∝ , proceeds in three regimes. Initially  ~ 0 for all 

’s ( < 0),  then varies from about 0.6 to 1.5 depending on  as the applied load increases ( > 𝜅 𝜅

0), and  finally becomes about 1.0 for all ’s at large shear stresses ( >> 0). It is observed that 𝜅

increasing the nonlinearity of fibers makes the stress-stiffening curve depicts a single exponent, 

i.e. the shape of the stiffness-stress curve becomes similar to mechanical response of collagenous 

tissues.

Fig. 3 The variation of the differential shear modulus of nonlinear fiber networks versus the shear stress. 
The results are shown for Model III fibers and  0.00001-0.1. Three different regions are observed. 𝜅 =
Initially, the network stiffness is independent of the stress. With increasing the stress, the stiffness 
increases as K ~  where  varies from 0.6 to 1.5 as  decreases from 10-1 to 10-5 (the inset). With 𝜅
further increase of the stress, the stiffness increases as K ~  where  ~ 1. The shear modulus and stress 
are plotted in units of .𝜇/𝑙

Effect of nonlinear stress-strain behavior of fibers on local strain distribution:

Next, we investigate the local strain distribution as a function of the applied shear strain in both 

linear and nonlinear fiber network models, Figure 4. No significant difference is observed between 

different numerical models when the applied shear strain  is less than d. However, a distinct 

response is found for each model as  > d. There is an almost linear relation between the 

macroscopic shear strain  and the maximum local strain max for networks composed of linear 

elastic fibers. On the other hand, increasing the nonlinearity in fibers reduces the maximum local 

strain. As shown in Figure 4a, max has its lowest value for networks composed of fibers with 

Figure 3
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material Model III. It is also noted that increasing the applied shear strain causes the difference 

between maximum local strains for different models becomes more significant. Compared to 

models with linear fibers, the maximum local strain, at   , in those with fibers with material 

Models II and III decreases nearly 40% and 60%, respectively. 

In order to have a better understanding of local strain distribution, we characterize the distribution 

of the local strain l in all fiber segments when the applied shear strain  is 100%. The strain l in 

different simulations are normalized by the respective maximum local strain max and are reported 

as R = | l / max| where the symbol | | represents absolute value. As depicted in Figure 4b, the 

mechanical response of individual fibers has a substantial influence on the local strain distribution. 

In models with linear elastic fibers, the majority of segments, i.e. about 97% of them, takes small 

strains (R < 0.4), nearly 2.5% of segments takes medium strains (0.4 < R < 0.6), and only less than 

0.5% takes very large local strains (R > 0.6). In other words, there is a significantly large unbalance 

between the numbers of elements with high and low strains. As the nonlinearity in the material 

behavior of fibers increases, the number of fibers with higher local strain shows a significant 

increase, i.e. about 72%, 20%, and 8% of fiber segments following material Model III have small 

(R < 0.4), medium (0.4 < R <0.6), and large (R > 0.6) local strains, respectively. This observation 

is an indication of a more uniform strain distribution in networks composed of nonlinear fibers. 

The uniformity of local strain distribution is a crucial factor in defining the damage response of 

fiber networks. While fibers with high local strains define the damage onset, the strain distribution 

inside the domain determines how the damage progresses. 

Figure 4
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Fig 4 a) The maximum local strain in individual fibers as a function of the applied shear strain for 
networks composed of fibers with linear and nonlinear mechanical response and   = 10-2. b) The 𝜅
probability distribution function of the local strain magnitude when the applied shear is  = 100%. 

Effect of network connectivity on mechanical response of nonlinear fiber networks

The numerical simulations have so far been obtained from fiber networks with an average 

connectivity of about 3.10. It is known that the average connectivity plays an important role in 

defining the mechanical response of random fiber networks 29, 31, 41. In the following, we briefly 

investigate the effects of material behavior of individual fibers on the mechanical properties of 

networks with various connectivity. We leave a more complete study of this topic for a future 

study and only consider networks with 3 < z < 4 (consistent with what typically found in 

biopolymer networks). 

Figure 5 plots the shear modulus as a function of the applied shear strain for networks with various 

connectivity in order to show the effect of the nonlinear response of fibers. Increasing z enhances 

the effect of the material nonlinearity of fibers on the network stiffness even for those composed 

of fiber with very low , Figure 5a. Furthermore, increasing z causes d to shift towards smaller 𝜅

strains, which means that fibers reach their yielding strain at smaller applied shear strain. Previous 

studies on the mechanical response of linear random networks show that both the network 

connectivity and the bending rigidity of fibers determine the dominant mode of deformation during 

initial stages of shearing (  0) 
14, 15. With increasing the bending rigidity of fibers, the dominant 

mode of deformation switches from bending to stretching even for networks with low network 

connectivity. In particular, d shows small variations with z at  = 0.01, Figure 5b. For these 𝜅
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networks, the far-field shear strain causes the fibers to deform in stretching mode and to reach their 

yielding strain at about 2-5% independent of z.

The average connectivity also affects the stiffening rate of random networks. As discussed before, 

networks composed of nonlinear fibers exhibit stiffer response compared to those with linear 

elastic fibers. To quantify the stiffening as a function of network connectivity, we plot the ratio of 

maximum shear moduli obtained using Model III and linear elastic model in Figure 5c. The 

stiffness of networks composed of Model III fibers is 5-fold and 17-fold higher than that of the 

similar networks with linear fibers for z = 3 and z = 3.84, respectively. Figure 5c shows that 

bending rigidity of fibers has little effects on this ratio. This is because the dominant mode of 

deformation at very large shear strain of 100% is stretching.

Fig 5 The effect of the nonlinear response of fibers on the mechanical properties of random fiber 
networks with various average connectivity a) The shear modulus K is plotted as a function of the applied 
shear strain for networks composed of linear and Model III fibers when   = 10-4. b) The variation of 

d
 𝜅

as a function of network connectivity z is shown for networks with   = 10-2 and   = 10-4. c) The ratio 𝜅 𝜅
of differential moduli at    for networks composed of nonlinear fibers (Model III) and those with  
linear fibers is plotted as a function of network connectivity when   = 10-2 and   = 10-4.𝜅 𝜅

Effect of nonlinear stress-strain behavior of fibers on failure response of random networks

In the last section of the present study, we briefly investigate the effects of fiber material 

nonlinearity on the failure response of random networks. The fracture behavior of disordered fiber 

networks is a complex problem because of the non-uniform distribution of defects, which creates 

stress concentration with different intensities throughout the simulation domain. Since the roles of 

Figure 5
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network connectivity and flexibility of fibers in the fracture process have recently been studied 42, 

we primarily explore the effects of the nonlinear response of fibers. For this purpose, we consider 

subisostatic networks with fixed connectivity z ~ 3.1 under shear strain. The shear strain is applied 

incrementally and possible stress/strain redistribution associated with the failure of fibers is 

quantified at each step. The incremental strain is selected such that the successional appearance 

and disappearance of force chains could be captured throughout the failure process. Here, we use 

a strain-based failure criterion in which fiber segments are removed when their maximum strain 

reaches the failure strain f
max = 0.325. The applied shear strain is increased until networks break 

into two separate pieces. Figure 6 shows the force-displacement curve related to step-wise damage 

process of fiber networks with   = 0.06 and   = 0.001. It is seen that regardless of the material 𝜅 𝜅

model of fibers and their bending rigidity, the onset of damage occurs in the strain stiffening 

regime (  ). In other words, with increasing the applied shear deformation, a few primary force 

chains appear in networks. These force chains continue to carry the applied load until a fiber 

segment along them fails. Upon further shearing of the networks, new primary force chains 

emerge. The appearance and disappearance of force chains, causing the stress redistribution, 

continue until the final failure. With increasing the material nonlinearity of fibers, the damage 

onset and complete failure shift to larger applied shear strain. This is because nonlinear fibers 

create more homogeneous local strain distribution throughout the network microstructure (see 

Figure 4); thus, more fiber segments contribute to the overall strength of fiber networks. With 

increasing the rigidity of linear fibers, the failure behavior of networks become more brittle, i.e. a 

single crack in a serrated pattern will lead to the final failure of the structure, Figure 6c. On the 

other hand, diffusive form of failure dominates networks composed of nonlinear fibers, Figure 6d. 

A diffusive failure occurs when fiber segments fail at (and are subsequently removed from) 
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different locations in networks; this failure pattern is observed when local strain distribution is 

homogenous. In this failure pattern, there exists a notable lag between the damage onset and the 

final failure of the networks; this lag is proportional to the nonlinearity of the fibers, Figure 6e. 

Keeping the bending rigidity constant and increasing the nonlinearity of fibers’ mechanical 

behavior result in a more diffusive form of damage propagation, Figure 6.  The bending rigidity 

of fibers directly influences the diffusive crack propagation rate in networks composed nonlinear 

fibers. The distinct damage locations and stress redistribution are primary factors causing the 

appearance of fluctuation in the force-displacement curves. Accordingly, more fluctuation is 

observed between the onset and final failure of networks with nonlinear fibers; this phenomenon 

is more obvious in networks composed of more flexible fibers.

Fig. 6 The effects of material nonlinearity of individual fibers on the shear stress-strain curves for 
networks with a)  = 0.06 b)  = 0.001. The influence of material properties of individual fibers on the 𝜅 𝜅
damage propagation pattern is also shown for networks at  = 0.06; c) a single crack is formed and 𝜅
expands for networks composed of linear elastic fibers while d) multiple cracks are formed and expand 
throughout networks of nonlinear fibers (material Model III) e) The effect of material nonlinearity of 
fibers on the lag between the onset (  

0
) and the complete (  

f
) failure of random networks composed 

of fibers with different bending rigidity.

Conclusion

The present study characterizes the effects of material properties of individual fibers on the 

mechanical response of random networks with nonlinear fibers. Different material models ranging 

from an almost linear elastic model to nonlinear constitutive models are considered for the 

Figure 6
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mechanical response of fibers. The nonlinear behavior of fibers is represented by an exponential 

material model such that the amount of nonlinearity could be tuned in different numerical 

simulations. All networks show initially a linear stress-strain response upto a critical strain 0. In 

networks composed of nonlinear fibers, with further increase of the applied shear strain, strain in 

fiber segments increases and the linear elastic behavior switches to an exponential form when the 

local strain reaches Y. The applied shear strain at which at least one of the fibers reaches strain Y 

is represented by d, this strain depends on the bending rigidity of fibers. A significant strain-

stiffening is observed with increasing the applied shear strain beyond d. The networks of nonlinear 

fibers exhibit stronger stiffening as a function of applied strain; the amount of this stiffening is 

directly proportional to the intensity of the nonlinearity of fibers. The material properties of fibers 

have a direct influence on the local strain distribution inside the networks. The local strains tend 

to have a more homogenous and uniform distribution in networks of nonlinear fibers.  The network 

connectivity plays a significant role in the way that the material nonlinearity of individual fibers 

influences the overall elasticity of random networks. The networks with higher connectivity are 

more sensitive to the material properties of fibers; decreasing the flexibility of fibers intensifies 

this effect. The nonlinearity of fibers also changes the failure response of random networks. In 

particular, compared to networks of linear fibers, the damage propagation becomes more diffusive 

in networks with nonlinear fibers. 
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Figure captions
Figure 1 a) The microstructure of disordered fiber networks is represented by diluted triangular 

lattices b) The normalized stress-strain response of fibers; the parameter B determines the amount 

of nonlinearity and the constitutive relation, eq. (1), is defined such that the fibers show an initial 

linear elastic response in all models.

Figure 2 The effect of nonlinear elastic properties of individual fibers on the mechanical response 

of fibrous networks. The normalized network stiffness, K/Klinear, as a function of the normalized 

applied shear strain d > 1 for a)  = 10-2 and b)   = 10-5. The insets show the variation of the  𝜅 𝜅

network stiffness K versus the applied shear strain c) The variation of d versus the dimensionless 

bending rigidity ; the linear modulus G0 at  = 1% is plotted as a function of  in the inset. d) The 𝜅 𝜅

network stiffness K is plotted as a function of   at shear strains  = 60% and  = 100%. The effect 𝜅

of material nonlinearity of fibers is more pronounced when the applied shear strain increases and 

when the bending rigidity of fibers increases. The relative contributions of stretching energy Hs 

and bending energy Hb versus the applied shear strain for e)  = 10-2 and f)   = 10-5; H = Hs + Hb.  𝜅 𝜅

The critical shear strain c is a function of bending rigidity of the fibers and a significant difference 

between the linear and nonlinear network especially for  > c.

Figure 3 The variation of the differential shear modulus of nonlinear fiber networks versus the 

shear stress. The results are shown for Model III fibers and  0.00001-0.1.Three different 𝜅 =

regions are observed. Initially, the network stiffness is independent of the stress. With increasing 

the stress, the stiffness increases as K ~  where  varies from 0.6 to 1.5 as  decreases from 10-1 𝜅

to 10-5 (the inset). With further increase of the stress, the stiffness increases as K ~  where  ~ 

1. The shear modulus and stress are plotted in units of .𝜇/𝑙
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Figure 4 a) The maximum local strain in individual fibers as a function of the applied shear strain 

for networks composed of fibers with linear and nonlinear mechanical response and   = 10-2. b) 𝜅

The probability distribution function of the local strain magnitude when the applied shear is  = 

100%.

Figure 5 The effect of the nonlinear response of fibers on the mechanical properties of random 

fiber networks with various average connectivity a) The shear modulus K is plotted as a function 

of the applied shear strain for networks composed of linear and Model III fibers when   = 10-4. b) 𝜅

The variation of d as a function of network connectivity z is shown for networks with   = 10-2 𝜅

and   = 10-4. c) The ratio of differential moduli at    for networks composed of nonlinear 𝜅  

fibers (Model III) and those with linear fibers is plotted as a function of network connectivity when 

  = 10-2 and   = 10-4.𝜅 𝜅

Figure 6 The effects of material nonlinearity of individual fibers on the shear stress-strain curves 

for networks with a)  = 0.06 b)  = 0.001. The influence of material properties of individual fibers 𝜅 𝜅

on the damage propagation pattern is also shown for networks at  = 0.06; c) a single crack is 𝜅

formed and expands for networks composed of linear elastic fibers while d) multiple cracks are 

formed and expand throughout networks of nonlinear fibers (material Model III) e) The effect of 

material nonlinearity of fibers on the lag between the onset (  0) and the complete (  f) failure 

of random networks composed of fibers with different bending rigidity.
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The effects of nonlinearity at the fiber level on the nonlinearity at the network level in subisostatic 
random network structures.
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