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Elasticity of colloidal gels: structural heterogeneity, floppy modes,
and rigidity†

D. Zeb Rocklin,∗,a,b Lilian Hsiao,c Megan Szakasits,d Michael J. Solomond and Xiaoming
Mao∗,a

Rheological measurements of model colloidal gels reveal that large variations in the shear moduli
as colloidal volume-fraction changes are not reflected by simple structural parameters such as the
coordination number, which remains almost a constant. We resolve this apparent contradiction by
conducting a normal-mode analysis of experimentally measured bond networks of gels of colloidal
particles with short-ranged attraction. We find that structural heterogeneity of the gels, which leads
to floppy modes and a nonaffine-affine crossover as frequency increases, evolves as a function of the
volume fraction and is key to understanding the frequency-dependent elasticity. Without any free
parameters, we achieve good qualitative agreement with the measured mechanical response. Further-
more, we achieve universal collapse of the shear moduli through a phenomenological spring-dashpot
model that accounts for the interplay between fluid viscosity, particle dissipation, and contributions
from the affine and non-affine network deformation.

1 Introduction
Colloidal gels are soft matter with disordered structure and slow
dynamics due to short-range, attractive inter-particle forces1,2.
The attractive interactions stabilize a sample-spanning network
of particles. This network displays mechanical features of a soft
solid, including a finite linear elastic modulus at low frequency,
the existence of a yield stress at the low shear rate limit3,4, and
time-dependent thixotropic properties5,6. Recent work has estab-
lished how pair potential interactions and colloidal volume frac-
tion determine the onset of gelation7–16. Observation, by simu-
lation and experiment, of the coincidence of this gel line and the
spinodal decomposition boundary suggests a mechanism in which
phase instability generates connected regions of high colloidal
density. A prevailing hypothesis is that if the colloidal density of
these regions is greater than the glass transition volume fraction,
gelation can occur through this heterogeneous mechanism of se-
quential phase separation and vitrification14,17,18. Alternatively,
attractive interactions of sufficient strength might yield gelation
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through a homogeneous mechanism in which low-coordination
number (i.e., the number of a particle’s contacting neighbors)
networks are stabilized, perhaps only kinetically, through a mech-
anism such as dynamic percolation19,20. Functionally, either gela-
tion mechanism yields a structure in which nearly all particles are
spatially localized within a single, sample-spanning network.

This paper addresses the outstanding fundamental question of
how such a low volume fraction, disordered network of the col-
loid mediates the solid-like rheological properties that are char-
acteristic of gels.

The low-frequency elasticity of colloidal gels has been pre-
dicted from pair potential interactions and microstructure in a
few instances. The linear elastic modulus of fractal cluster gels
has been modeled by a microrheological approach, in which
the elastic modulus is inversely proportional to the fractal clus-
ter radius and the mean-squared localization length of colloids
in the gel. The localization length can be predicted by sum-
ming over the hierarchy of normal modes of the fractal cluster21.
Mode coupling theory has also been applied to yield the elastic
modulus from the localization length in attractive colloidal sys-
tems22, albeit with a rescaling required for the effects of voids
and clusters in the gel15,23–25. A key feature of these theories
for the linear elastic modulus is that they connect linear elasticity
through two ensemble-averaged quantities, a dynamical localiza-
tion length and a structural (cluster or particle) scale. The struc-
tural heterogeneity of colloidal gels, which originates from dy-
namical arrest and phase separation and plays an important role
in the elasticity of gels26, is therefore captured in these models
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in only a mean-field way. Moreover, frequency-dependent prop-
erties, which would require incorporation of viscous losses, have
not been accounted for in these studies.

Here we address these gaps by presenting a theoretical frame-
work to not only compute the frequency-dependent linear vis-
coelastic modulus of colloidal gels, but also reveal the physics be-
hind the frequency, volume-fraction, and attraction strength de-
pendence of the modulus, as a result of the interplay between
floppy modes and mechanical stability, and between affine and
nonaffine deformations. Our theory includes two parallel ap-
proaches to characterize the elasticity of colloidal gels. The first
approach is a microscopic model, in which we take particle po-
sitions from measured 3D microstructures of a model colloidal
gel and perform normal mode analysis. Harmonic springs are
introduced between neighboring particles with a spring constant
extracted from the inter-particle potential in the presence of ther-
mal fluctuations; viscous drag against the affinely-deforming fluid
medium is also included in the model. This microscopic model
predicts frequency-dependent shear moduli, showing a crossover
from low frequency nonaffine deformations with low rigidity to
high frequency affine deformation with high rigidity, in good qual-
itative agreement with our rheological measurements. The ori-
gin of this crossover is a collection of floppy modes, i.e., par-
ticle displacements that don’t change bond lengths27–33, which
are present in colloidal gels as a result of their low coordination
numbers and structural heterogeneities. This observation leads to
our second approach, a phenomenological spring-dashpot model
based on the Maxwell–Wiechert model of linear solids34,35, in-
corporating affine and nonaffine limits of deformations and the
viscous drag. We obtain good collapse of our experimental
shear modulus using this phenomenological model. Compared
to the first approach, this phenomenological model needs no in-
formation about the microstructures. The collapse supports the
nonaffine-affine crossover scenario for the frequency dependent
shear modulus at different attraction strength and volume frac-
tions.

Another important factor that affects gel rheology is hydrody-
namic interactions, which has been shown to significantly lower
the critical volume fraction for gelation36,37. Recently, in a com-
prehensive study that combined experiments and simulations38,
it was shown that gel linear viscoelasticity at higher volume frac-
tions can still be well described with Brownian Dynamics5,6,39,40

when entropic and hydrodynamic interactions contributions are
captured via rescaling. Here we take this simple approach, since
the focus of this paper are the structure and rigidity aspects of
colloidal gel rheology.

2 Experiment
The 3D structure of the colloidal gels is studied in conjunc-
tion with linear rheological characterization. We synthesize
poly(methyl methacrylate) (PMMA) colloids (radius a= 0.58µm±
4% characterized with scanning electron microscopy) that are
sterically stabilized and suspended at various volume fractions
(φ = 0.15,0.20,0.25,0.30,0.35, and 0.40) with charge screening.
Non-adsorbing polystyrene (radius of gyration Rg = 41 nm, ≈%7
of colloidal radius, in accord with previous experiments41–45) is

added at a dilute concentration (c/c∗ = 0.4 and 0.5, where c∗ is
the overlap concentration of the depleting polymer) to induce a
short-ranged depletion attraction (ξ = Rg/a = 0.07) that leads to
gelation.

2 μm

5 μm

a b c

d e f

Fig. 1 (a) Scanning electron micrographs of sterically stabilized PMMA
colloids used to generate gel networks. Representative confocal laser
scanning microscopy (CLSM) images of colloidal gels at (b) φ =

0.15,c/c∗ = 0.4 and (c) φ = 0.40,c/c∗ = 0.4. We collect raw images in
3D and use image processing to detect particle centroids for theoretical
modeling. (d) is a 3D stack of a gel (φ = 0.15,c/c∗ = 0.4) that has been
projected onto a 2D plane; (e) shows a rendering of the microstructure
after image analysis. (f) Bonds of attractive contact (blue) between
particles (red) are constructed for particle pairs of distance below 1.5µm.

Fig. 2 (a) Pair correlation function g(r) for each φ and c/c∗. (b) dis-
tribution of coordination number, P(z). Inset shows the mean, 〈z〉 as a
function of φ at c/c∗ = 0.4,0.5.

Gels are allowed to quiescently equilibrate for 30 minutes prior
to imaging and rheological characterization [more details in the
Electronic Supplementary Information (ESI)]. Figure 1 shows
that as φ increases, the void space of the heterogeneous mi-
crostructure is replaced with colloid-rich networks with densely
packed, high coordination number regions. The confocal mi-
croscopy images are obtained from three independent locations
within the same sample, at a distance of ≥ 15µm above the cov-
erslip. In order to locate particle centroids, we identify the par-
ticles using a local regional maximum of intensity in 3D space
after smoothing out digital noise in the images46. Fig. 1(e) is a
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rendering of the 3D microstructure in Fig. 1(c), which shows that
the 3D structural information used as inputs in our microscopic
theory are representative of the gel structure captured from the
experiments.

The radial distribution function, g(r), and the coordination
number distribution, P(z), are directly computed using the loca-
tion of the particles in 3D. The g(r) for gels with c/c∗ = 0.4 and
c/c∗ = 0.5 are plotted in Fig. 2(a). Particles are considered to be
in attractive contact if their separation distance is less that that
of the first minimum in the g(r), which is 1.5µm. A sensitivity
analysis (SI) reveals that the response is qualitatively robust for
cutoffs ranging from this choice to the naive theoretical cutoff,
2(a+Rg) = 1.24µm. Figure 2(b) and inset show that the mean co-
ordination number, 〈z〉, remains close to six despite the changes
in c/c∗ and φ . The quantitatively similar nature of the structure
for gels with 0.15 ≤ φ ≤ 0.40 is surprising in light of rheological
measurements (Fig. 3), in which the low-frequency shear mod-
ulus spans more than two orders of magnitude as a function of
volume fraction. As we discuss below, the large variation of shear
modulus results from the evolution of the structural heterogene-
ity, which changes the normal mode structures of the gel, whose
coupling with macroscopic deformations determines the elastic
moduli.

3 Microscopic Model
We model colloidal gels as disordered spring networks. Parti-
cle positions are taken from 3D confocal images of the gels, and
springs are added to pairs of particles in contact with one an-
other. Additionally, we treat the fluid medium as moving affinely
(i.e., homogeneous deformation field) in response to the external
stress, allowing us to approximate the complex effects of the hy-
drodynamics36,37,47,48 as a simple Stokes drag against this affine
background49–51. The resulting force on particle i is:

Fi =−keff ∑
〈i, j〉

r̂i j
[
r̂i j ·

(
ui−u j

)]
+6πiωη f a

(
ui−uaff

i

)
, (1)

where r̂i j is the unit vector pointing from particle i to its bonded
neighbor j, ui is the displacement of particle i from its equilibrium
position, uaff

i is the affine displacement which is (Λ− I) · ri for a
particle with equilibrium position ri under deformation gradient
Λ, η f = 0.0025Pa · s is the fluid viscosity, ω is the frequency of
the driving force (with the physical portion of quantities scaled
by exp(iωt) being the real part), and keff the effective spring con-
stant.

In order to obtain this spring constant, we start from
the Asakura-Oosawa potential for depletion interaction UAO(r),
where r is the distance between the centers of the two particles52.
Additionally, the particles also experience a screened electrostatic
repulsion of the DLVO form, UDLVO(r), leading to a total potential
U(r)53,54. Expressions for these potentials are included in the SI.
While this interaction is not harmonic, given that the depth of
this potential is ≈ 5.7kBT (c/c∗ = 0.4) and ≈ 7.9kBT (c/c∗ = 0.5),
thermal fluctuations cause the distance between the pair of par-
ticles to explore a significant portion of this potential well. Thus,
instead of taking the curvature of U(r) at the minimum, the ef-
fective spring constant should be extracted from the thermal fluc-

tuations of the pair distance through a fluctuation-dissipation ap-
proach as described in the SI, resulting in an effective spring con-
stant that accommodates the nonlinearity of the pair interaction
over thermal fluctuations in the pair separations:

keff =
kBT

〈r2〉−〈r〉2
, (2)

where 〈r2〉,〈r〉2 are evaluated over all possible bonded separation
lengths, 2a ≤ r ≤ 2

(
a+Rg

)
for an isolated pair with Boltzmann

factor e−U(r)/kBT . This results in spring constants of 9.2× 10−5

N/m and 1.8×10−4 N/m for depletant concentrations c/c∗ of 0.4
and 0.5, respectively. In Fig. 3(a), we compare the potentials,
with the horizontal and vertical offset of the harmonic effective
potential chosen to be the average separation 〈r〉 and the average
energy under thermal fluctuations (note that only the curvature
of the potential, keff, enters our calculation for shear modulus
below). A similar calculation was used to estimate the effective
spring constant of weakly-aggregated colloidal gels13.

This model permits the direct calculation of the mode structure
of the several thousand particles in the CLSM scan (Fig. 3b). We
find that in all samples the calculation indicates a significant frac-
tion of collective modes (on the order 10%) are floppy modes,
as a result of the low coordination numbers and the heteroge-
neous structures27,28. It is worth noting that the existence of
these floppy modes does not preclude a finite shear modulus, as
the macroscopic shear deformation may not completely overlap
with these floppy modes, most of which are localized. The rest
of the vibrational modes exhibit a plateau in the density of states
(DOS), sharing similarity to the DOS in jammed packings55.

This spring network model recovers the rheological storage
shear moduli G′ without any free parameters, as shown in
Fig. 3(c-d) (agreement for the loss shear moduli G′′ is included
in the SI). To determine the model’s storage modulus G′(ω), we
subject boundary particles to oscillating shear displacements, al-
low internal dynamics given by Eq. (1) and measure the bound-
ary force, as described in more detail in the SI. We find three
regimes of behavior. In the high-frequency regime, beyond ∼ 104

rad/s, Stokes forces dominate, driving the gel to affine displace-
ments and resulting in a plateau in the storage modulus. In the
low-frequency regime, in contrast, the drag term is negligible and
the system is free to assume nonaffine deformations (i.e., a spa-
tially varying strain field due to heterogeneity56), dominated by
the floppy modes, to minimize energy while accommodating the
shear boundary conditions. For most samples, these boundary
conditions cannot be met purely with the floppy modes, resulting
in a low-frequency plateau, in accord with previous studies that
observed finite elastic moduli even below the isostatic point26.
The upper limit frequency of this regime is where the fluid drag is
comparable to the nonaffine shear modulus, as we discuss more
below. In the third regime, which corresponds to intermediate
frequencies, shear moduli increase somewhat sublinearly in fre-
quency, displaying nontrivial behavior as nonaffinity is reduced.
This is the regime accessible via the rheometer, and good quali-
tative agreement is found between direct measurements and the
spring model developed from the scans as shown in Fig. 3. The
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Fig. 3 (a) Interaction potential between a pair of particles and the har-
monic effective potential with spring constant keff as in Eq. (2). (b)
Vibrational density of states calculated from microstructures. Floppy
modes (modes with ω = 0) are included in the peak at ω = 0.05 (fre-
quency normalization

√
keff/m where m is particle mass), which gives the

number of modes in the system within 0 ≤ ω < 0.1. (c-d) Experimental
(symbols) and model (curves, same color of symbol and curve correspond
to the same parameters) values of G′(ω) at c/c∗ = 0.4 (c) and c/c∗ = 0.5
(d) for different values of φ . The symbols and colors in (b-d) are the
same as in Fig. 2. Insets show the same plot of model result G′ in a wider
frequency window, illustrating the crossover.
.

model (without free parameters) accurately captures the range
of moduli observed, the sublinear power-law dependence on fre-
quency and the rough dependence on concentrations of parti-
cles and depletant, but falls short of reliable quantitative agree-
ment. The discrepancies at low frequencies between microscopic
model and experimental data, especially for high density sam-
ples, are due to the fact that the microscopic models are based
on microstructures in a small scan window. The true shear re-
sponse from rheological measurements at the lowest frequencies
involves significantly nonaffine deformations over volumes large
compared to the scan window. Similar types of nonaffine-affine
crossovers have been discussed theoretically in the context of dis-
ordered spring networks near isostaticity50,51.

4 Phenomenological Spring-Dashpot Model
The agreement between our microscopic model and the rheo-
logical data suggests a phenomenological picture as shown in
Fig. 4(a-b). The shear response of the gel is a combination of
the following effects: at zero frequency shear deformations of the
gel are determined by energy minimization which projects the
deformation to a collection of the lowest frequency modes, yield-
ing the nonaffine shear modulus GNA (which may vanish at small
φ). We characterize this shear modulus component by a spring of
spring constant GNA in our diagram. At high frequencies, the fluid
which moves affinely drags particles in the gel to move affinely as
well, resulting in a much higher shear modulus GA. This increase
of shear modulus GA −GNA is a result of fluid drag, so it can
be characterized by a spring of spring constant GA−GNA ' GA

in series with the fluid drag which is characterized by a viscous
dashpot of viscosity ηc (where the subscript c denote for coupling
between fluid and particles). In addition, in parallel with parts
of the diagram described above, there is also the fluid contribu-
tion with viscosity η f . Because our systems are driven below the
yield stress, we do not include a sliding block of the sort that is
sometimes incorporated to permit yielding.

Fig. 4 (a) Diagram for the phenomenological spring-dashpot model. (b)
Schematic shear modulus - frequency relation for the model in (a). (c-d)
Collapse of G′(ω) data using the formula in Eq. (4) for c/c∗ = 0.4 (c)
and c/c∗ = 0.5 (d). Colors and symbols are the same as in Fig. 2.

Adding up these contributions, the total shear modulus is

G(ω) = GNA +
[
G−1

A − (iηcω)−1
]−1
− iη f ω. (3)

Taking the real and imaginary parts of this equation and assuming
that ηcω � GA, we have

GA[G
′(ω)−GNA] = (ηcω)2

G′′(ω) = (ηc +η f )ω, (4)

which suggests that our rheological data G′(ω) can be collapsed
into a master straight line.

To obtain this collapse, we use GA from a simple estimate that
all bonds are in random orientations (uniformly, independently
distributed) in the network (see ESI for derivation),

GA '
φ〈z〉ke f f

10πa
. (5)

The same formula for gel affine shear modulus has been discussed
in Refs.57,58. We obtain GNA from the low-frequency plateau in
G′(ω) data (computed as average G′(ω) for ω < 0.2rad/s). We ex-
tract ηc for each set of parameters (φ ,c/c∗) by fitting G′′(ω)−η f ω

as a linear function of ω for ω < 1rad/s (where the linear approx-
imation works well) according to Eq. (4). It is worth noting that
although the affine shear modulus GA is linear in φ , the non-
affine one GNA increases much faster than linearly (see the SI for
a list of fitting parameters). Using these parameters, we obtain
good collapse of G′(ω) according to Eq. (4) into a straight line
in the log-log plot, as shown in Fig. 4c-d. Interestingly, the slope
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of the line, instead of 2, is closer to 1, indicating perhaps more
complicated couplings between the heterogeneous gel structure
with the fluid than a simple dashpot. Related types of scaling
collapse of G(ω), but focusing on the low-frequency plateau to
intermediate-frequency regime crossover which yields a nonlin-
ear master curve, have been discussed in Refs.7,59. In contrast
with previous work, we include the high-frequency plateau and
explain the origin of the parameters from the network mechan-
ics and derive them independently rather than fitting from the
collapse.

This collapse supports the nonaffine-affine crossover scenario
for the frequency dependent shear modulus of colloidal gels,
and provides a simple formula to predict gel rheology. This
crossover also shares interesting similarities with the rheology
of arrested phase separation in protein suspensions60, although
both plateaus of G′ at high and low frequencies in Ref.60 increase
exponentially with φ , indicating more complicated interactions
between the network and the fluid.

5 Conclusions
We propose a theoretical framework to understand mechani-
cal properties of colloidal gels, including a method to compute
the frequency-dependent linear shear modulus G′(ω) from ex-
perimentally observed microstructures, and a phenomenological
spring-dashpot model that collapses G′(ω) into a master line for
different φ and c/c∗. Our theory is based on analyzing normal
modes of the colloidal gel structure as a spring network, which
exhibits a large number of floppy modes due to the structural
heterogeneity, and gives rise to dramatically different static shear
moduli at different φ and c/c∗. The static shear modulus, which
involves nonaffine deformations of the network, gives way to a
much higher affine shear modulus as a result of viscous drag of
the fluid as frequency increases. The affine shear modulus dis-
plays a much smaller spread as a function of φ and c/c∗, because
it is not sensitive to the structural heterogeneity. Our computa-
tional model, without any free parameters, accurately predicts
the range of moduli observed, roughly how they vary between
samples of different particle and depletant densities, and their
sub-linear dependence on frequency.

Detailed characterization of the heterogeneous network struc-
ture, especially at larger scales which is important in understand-
ing the low frequency shear modulus, and how that affects the
gelation transition, as well as how we can control the heterogene-
ity in experiment and thus tune mechanical response of gels, may
be interesting questions in future studies61,62.
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