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General and Practical Intramolecular Decarbonylative Coupling of 
Thioesters via Palladium Catalysis 
Han Cao,a Xuejing Liu,a* Fusheng Bie,a Yijun Shi,a Ying Han,a Peng Yan,a Michal Szostakb* and 
Chengwei Liub*

We report a general and practical palladium-catalyzed intramolecular decarbonylative coupling of thioesters via C–S bond 
cleavage, decarbonylation and C–S bond reformation. This robust approach shows excellent functional group tolerance 
and broad substrate scope using commercially-available, cheap, and practical Pd(OAc)2 catalyst and phosphine ligands. 
This strategy operates under base-free conditions. The catalytic system represents the simplest method for intramolecular 
decarbonylation of thioesters by palladium catalysis reported to date. This versatile protocol is readily performed on a 
gram scale and applied in late-stage drug derivatization.

Introduction
Thioethers are similar to ethers except that they feature a 

sulfur atom instead of oxygen, which embodies them with 
increased lipophilicity and represents one of the most 
important moieties in pharmaceutical development (Figure 
1A).1,2 Thus, the development of methodologies for the 
synthesis of thioethers is highly desirable.3 Typical methods 
involve preparation of thioethers by alkylation of thiols,4 
reaction between disulfides and Grignard reagents,5 addition 
of thiols to alkenes by thiol-ene reactions,6 and Pummerer 
rearrangement.7 With the invention of new methodologies in 
this field, cross-couplings of aryl halides or pseudohalides with 
thiols have emerged as the most powerful method for the 
synthesis of thioethers.8 It noteworthy that recent progress in 
transition-metal-catalyzed cross-couplings involve 
decarbonylation of readily available and bench-stable amides, 
esters and carboxylic acids.9-15 Typical electrophiles used for 
the synthesis of thioethers via cross-coupling involve 
functionalized substrates. From the standpoints of atom 
economy and practicality, transition-metal-catalyzed 
intramolecular decarbonylation represents the most direct 
strategy for the synthesis of thioethers. In 1991, Wenkert 
reported the first intramolecular decarbonylation of thioesters 
using stoichiometric nickel as a promoter and zinc as a 
reducing agent, which was successfully applied to 12 examples 
in up to 86% yield (Figure 1B).16 In Ni-catalysis, in 2018, 
Sanford reported a nickel-catalyzed base-free intramolecular 
decarbonylation of thioesters, which performed under 
catalytic conditions and without reducing reagents; however, 

the experimental conditions necessitated operating in a glove 
box due to air- and moisture-sensitive Ni(cod)2 catalyst.17 In 
2018, we disclosed a nickel-catalyzed intramolecular 
decarbonylation of thioesters using air- and moisture-stable 
nickel precatalysts, which allowed for the reactions to be 
performed on a bench-top and glove box set-up was not 
required.18 Shortly afterwards, another Ni-catalyzed 
intramolecular decarbonylation of thioesters with Ni(OAc)2 as 
a catalyst and P(n-Bu)3 or dppb as ligands was reported.19

Pd-catalyzed intramolecular decarbonylation of thioesters is 
another robust approach for the synthesis of thioethers. In 
1987, Yamamoto reported the first Pd-catalyzed 
intramolecular decarbonylation of thioesters, which proceed 
with 5-20 mol% of the air-sensitive Pd(PCy3)2 as a catalyst;20 
however, the method was showed to be effective in only 3 
examples. Afterwards, Kambe group also reported a 
palladium-catalyzed intramolecular decarbonylation of 
thioesters using Pd(PPh3)4 as a precatalyst, which is similar to 
Yamamoto’s catalyst.21 Unsurprisingly, the method using the 
coordinatively saturated and unstable Pd(0) complex showed 
narrow substrate scope and very low functional group 
tolerance. For broadening the scope and improving the 
functional group tolerance, Sanford group reported a 
palladium-catalyzed intramolecular decarbonylation of 
thioesters, which employed 10 mol% Pd[P(o-tol)3]2 precatalyst 
and 20 mol% PAd2Bn ligand.17 This method was successfully 
applied to 23 examples in up to 85% yield for the synthesis of 
thioethers. In 2020, Lee reported Pd-catalyzed decarbonylative 
thioetherification of 2-pyridyl thioesters.22 Other Ni catalyzed 
methods have been reported.11d,19 In light of these findings, 
herein, we report our study on the development of a general 
and practical palladium-catalyzed method for thioether 
synthesis via a robust palladium-catalyzed base-free 
intramolecular decarbonylation of thioesters.

The following features of our findings are noteworthy: (1) 
this powerful method represents the first general and practical 
palladium-catalyzed base-free intramolecular decarbonylation 
of thioesters; (2) the method uses cheap, air-stable, 
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commercially-available catalysts and ligands; (3) the method 
offers a complementary avenue to nickel-catalyzed and other 
palladium-catalyzed methods for intramolecular 
decarbonylation of thioesters; (4) the method holds a 
significant potential for the industrial synthesis of thioethers 
using thioesters as the ultimate precursors. 

Results and Discussion
For optimization, PhCOSPh 1a was selected as a modular, 

unbiased substrate (Table 1). After experimentation, we 
identified the optimal conditions for the Pd-catalyzed 
intramolecular decarbonylation of thioesters, furnishing the 
desired thioether product in excellent 95% yield (Table 1, entry 
1). As expected, no product was formed in the absence of the 
catalyst (<2%) (Table 1, entry 2). Control experiments indicated 
that organic and inorganic bases lead to a decrease in catalytic 
ability (Table 1, entries 3-4). A range of phosphine ligands was 
investigated. It is noteworthy that dppp, dpppent, SPhos, 
PCyPh2 and PPh3 are able to deliver the decarbonylative 
product in high yields under these conditions (Table 1, entries 
5-15). Furthermore, Pd(OAc)2 is preferred over Pd2(dba)3 
(Table 1, entry 16), and toluene is a superior solvent to 
dioxane in this methodology (Table 1, entry 17). Further 
optimization revealed that the catalyst loading could be 
decreased to 3 mol% (Table 1, entry 18), while appreciable 
conversion was observed at as low temperatures as 100 °C 
(Table 1, entry 22), consistent with high efficiency under these 
conditions.

Table 1. Optimization of the Reaction Conditions.a,b

Entry catalyst ligand base Yield [%]

1 Pd(OAc)2 dppb - 95
2 - - - <2
3 Pd(OAc)2 dppb Et3N 59
4 Pd(OAc)2 dppb Na2CO3 40
5 Pd(OAc)2 dppp - 95
6 Pd(OAc)2 dpppent - 90
7 Pd(OAc)2 dppf - 80
8 Pd(OAc)2 BINAP - 85
9 Pd(OAc)2 XantPhos - 72

10 Pd(OAc)2 DavePhos - 74
11 Pd(OAc)2 XPhos - 67
12 Pd(OAc)2 SPhos - 95
13 Pd(OAc)2 PCy3HBF4 - 65
14 Pd(OAc)2 PCyPh2 - 92
15 Pd(OAc)2 PPh3 - 93
16 Pd2(dba)3 dppb - 66
17c Pd(OAc)2 dppb - 73
18d Pd(OAc)2 dppb - 95
19e Pd(OAc)2 dppb - 61
20d,f Pd(OAc)2 dppb - 85
21d,g Pd(OAc)2 dppb - 80
22d,h Pd(OAc)2 dppb - 79
aConditions: thioester (1.0 equiv), catalyst (5 mol%), ligand (10 mol%),  base 

(1.5 equiv), toluene (0.20 M), 160 °C, 15 h. bGC/1H NMR yields. cdioxane as 

solvent. dcatalyst (3 mol%), ligand (6 mol%). ecatalyst (1 mol%), ligand (2 

mol%). f140 °C. g120 °C. h100 °C.

Under the optimal conditions, this method exhibits a very 
broad scope with respect to aryl-aryl, aryl-heteroaryl and aryl-
alkyl products (Schemes 1-2). As shown, a range of 
electronically-diverse thioesters underwent efficient 
intramolecular decarbonylation (2a-j), including electron-
neutral (2a-c), electron-rich (2d), and electron-deficient 
substrates (2e). Importantly, halide-functionalized substrates, 
such as fluoro- (2f) and chloro- (2g) thioesters can be well 
tolerated. Full conversion was achieved for a cyano- 
containing-substrate (2h). It is important that full selectivity for 
decarbonylation was observed in the reaction of ester and 
ketone containing substrates (2i-j), attesting to the high 
chemoselectivity of this method. Steric hindrance was well 
tolerated (2k-l). Meta-functionalization was well compatible 
(2m). In addition, heterocyclic thioesters can be readily 
incorporated to furnish thioethers in excellent yields (2n-o). 
Finally, styryl-thioester was also well tolerated in this method 
(2p).

With respect to the thiophenol moiety, we were delighted 
to find that a broad range of electron-neutral (2c’), electron-
donating (2d’) and electron-withdrawing (2e’-f’) thioesters can 
be readily engaged to generate the thioether products in good 
to excellent yields (Scheme 2). Furthermore, steric-hindrance 
(2k’) and heterocyclic thioesters (2o’) readily participate in this 
practical approach. Finally, the method is also feasible for aryl-
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Scheme 1. Scope of Pd-Catalyzed General Intramolecular 
Decarbonylation of Thioesters.

alkyl coupling to deliver to desired thioether product (2q), 
which is a challenging substrate in this manifold.

To further demonstrate the synthetic utility of this general 
and practical Pd-catalyzed decarbonylative coupling of 
thioesters, we conducted selectivity studies, gram scale 
synthesis and drug derivatization (Scheme 3). In 2017, 
Yamaguchi and Itami reported the intramolecular 
decarbonylation of esters, which effectively enabled 
decarbonylative etherification of aromatic esters.23 Thus, we 
were curious to test if the carbonyl group in the ester 
functional group could be tolerated under our catalytic 
conditions. Thus, the compound containing ester and thioester 
functional group was synthesized and applied to our protocol 
(Scheme 3A).21 The result showed that the carbonyl group in 
thioester group can be readily removed under our catalytic 
conditions but the carbonyl group in ester group remains fully 
intact, demonstrating the excellent chemoselectivity of this 
approach. Furthermore, we conducted the coupling on a gram 
scale, which resulted in 92% yield (0.80 g) of the thioether 
product, showing the scalability of the method (Scheme 3B). 
Finally, we employed Probenecid, an antihyperuricemic drug, 
which could be readily converted to the corresponding 
thioether in 89% yield (Scheme 3C). Notably, this protocol is 
superior to previous palladium- and nickel-catalyzed methods 
in terms of operational-simplicity, broad scope, and excellent 
functional group tolerance.

Scheme 2. Scope of Pd-Catalyzed General Intramolecular 
Decarbonylation of Thioesters.

Scheme 3. (A) Selectivity Study. (B) Gram Scale Reaction. (C) 
Expedient Synthesis of Probenecid Thioether.

Finally, a plot of conversion vs. time for thioester 1a was 
conducted to provide insight into the kinetic profile of the 
reaction (Figure 2). The plot showed that the method can 
deliver the desired thioether product in >90% yield within 5 h, 
which is in accord with the high efficiency of this catalytic 
system.
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Figure 2. Kinetic profile of 1a. Conditions: 1a (1.0 equiv), 
Pd(OAc)2 (3.0 mol%), dppb (6.0 mol%), toluene, 160 °C. 

Conclusions
In summary, in this Update article, we have reported the 

general and practical palladium-catalyzed base-free 
intramolecular decarbonylation of thioesters. The developed 
catalytic system employs commercially-available, cheap, and 
practical Pd(OAc)2 as a catalyst and phosphine as ligands. The 
system shows major advantages over other palladium- and 
nickel-catalyzed methods and should be considered as the 
first-choice protocol for performing intramolecular 
decarbonylation of thioesters to furnish valuable thioether 
products. The method was successfully applied to achieve 
intramolecular decarbonylations of a wide range of 
electronically- and sterically-varied thioesters to thioethers in 
good to excellent yields under operationally practical 
conditions. The scalability of the method was evaluated on a 
gram scale reaction. The synthetic application to late-stage 
derivatization was demonstrated. We anticipate that the 
findings reported in this manuscript will facilitate the 
development of general methods for the synthesis of 
thioethers using palladium catalysis. Future studies will focus 
on the development of tandem reactions utilizing CO recycling 
and mechanistic studies on this reaction manifold. 
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