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Abstract 

There exists a broad class of sequencing problems in soft materials such as proteins and polymers that 

can be formulated as a heuristic search algorithm that involve decision making akin to a computer game. 

AI gaming algorithms such as Monte Carlo tree search (MCTS) gained prominence after their 

exemplary performance in the computer Go game and are decision trees aimed at identifying the path 

(moves) that should be taken by the policy to reach the final winning or optimal solution. Major 

challenges in inverse sequencing problems are that the materials search space is extremely vast and 

property evaluation for each sequence is computationally demanding. Reaching an optimal solution by 

minimizing the total number of evaluations in a given design cycle is therefore highly desirable. We 

demonstrate that one can adopt this approach for solving the sequencing problem by developing and 

growing a decision tree, where each node in the tree is a candidate sequence whose fitness is directly 

evaluated by molecular simulations. We interface MCTS with MD simulations and use a representative 

example of designing a copolymer compatibilizer, where the goal is to identify sequence specific 

copolymers that lead to zero interfacial energy between two immiscible homopolymers. We apply the 

MCTS algorithm to polymer chain lengths varying from 10-mer to 30-mer, wherein the overall search 

space varies from 29 (512) to 229 (~0.5 billion). In each case, we identify a target sequence that leads to 

zero interfacial energy within a few hundred evaluations demonstrating the scalability and efficiency 

of MCTS in exploring practical materials design problems with exceedingly vast chemical/material 

search space. Our MCTS-MD framework can be easily extended to several other polymer and protein 

inverse design problems, in particular, for cases where sequence-property data is either unavailable 

and/or is resource intensive.  
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Introduction

There exists a broad class of soft-materials such as proteins and polymers where the 

arrangement of moieties i.e. the sequence plays a critical role in determining their functionality. 

For instance, the activities and functionalities of DNA and other biomolecules are determined 

by the exact sequence of amino acids and other chemical moieties in their back bones.1–3 As 

an example, the arrangement of amino acid sequence in viruses plays a key role in determining 

their mutations and hence the effectiveness of the drugs or vaccine used to treat them. Likewise, 

several recent studies indicate that the sequence specificity of the constituents chemical 

moieties of a copolymer can lead to more efficient materials – their thermodynamic properties 

such as miscibility and surface tension as well as structure/morphology is strongly influenced 

by the sequence in oligomers. It is therefore not surprising that a lot of effort has focused on 

controlling the sequence specificity in polymers, proteins and other biomolecules. 

On the experimental front, progress in synthetic chemistry has enabled us to exercise 

an unprecedented control over sequences in copolymers - such precision polymers remain an 

area of major focus in current fundamental and applied polymer research.4–6 Copolymers are a 

special class of polymers that comprise of  more than one type of chemical species; and shows 

a reach phase behaviour7–9 and tunability in its thermophysical properties.10–15 These 

copolymers are usually characterized by their mean block length and mass fraction. One of the 

area where sequence specificity is found to play an import role is the use of copolymer as 

interfacial compatibilizers.16,17 Copolymer compatibilizers are commonly employed to 

improve the thermodynamic stability of polymer interfaces, and they therefore have wide 

applicability in emulsions and composite materials.11,18 

A major challenge in the design of sequence specific polymers lies in the vast 

combinatorial space that precludes efficient exploration. For instance, a polymer chain with n 

number of possible monomers and m type of monomers will have nm possible combinations 

that can be likely explored. Even for a binary polymer i.e. 2 types with a chain length of ~30 

units, the total combinations possible (accounting for double counting) are 229 which is close 

to 0.5 billion. Given such an enormous sequence space that needs to be explored, it is highly 

desirable to minimize the number of trials needed to arrive at a sequence that corresponds to a 

desired target property. Fortunately, the emergence of artificial intelligence (AI) positions us 

uniquely to solve this seemingly intractable inverse design problem.

AI and machine learning (ML) has been increasingly interfaced with molecular 

simulations to solve the inverse problem and accelerate materials discovery/design. Molecular 

simulations such as molecular dynamics (MD) are powerful techniques to evaluate the 
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sequence-property relationships. Typically, MD simulations can sample the configurational & 

property space and create adequately large structure-property training datasets of a materials. 

On the other hand, ML methods can very efficiently screen this extensive dataset and identify 

sequences or configurations that correspond to desired optimal material properties. Such 

inverse problems have been traditionally addressed using evolutionary methods such as genetic 

algorithms (GA) or Bayesian optimization (BO) – these optimizers are combined with MD 

simulations to identify target properties for a wide range of materials from inorganic to 

semiconductor to polymers.17,19–23 In the last few years, such combination of MD and ML have 

been successfully deployed to explore the vast configurational space of materials. Their 

widespread application to problems of practical interest, however, requires addressing two 

bottlenecks. First, the GA and BO methods exhibit poor scalability as the design space 

increases.24 Typically, the search space of most practical sequencing problems exceeds several 

millions and higher. Second, they find difficulties in surmounting suboptimal solutions and 

tends to slow down near the optimal points. Third, each property evaluation in many design 

problems is computationally intensive (trajectories over several tens of nanoseconds and more), 

which precludes high-throughput exploration. 

Within a typical MD-ML materials design framework, one often requires several 

thousands to millions of direct evaluations or computations of materials properties. In the 

context of soft materials, this poses a major limitation, for instance, when the MD calculations 

for each sequence are computational very expensive such as, for instance, computing the 

thermophysical properties of polymeric materials. We note that the relaxation in polymeric 

materials is inherently slow and requires significantly long MD simulations to calculate their 

equilibrium properties. A key challenge in accelerating computer aided molecular-scale 

polymer design and address the sequence problems in materials design is to significantly 

reduce the number of direct computational evaluation of materials property that are required to 

identify an optimal candidate corresponding to the target property. 

The advent of big data analytics and powerful supercomputers have brought AI and ML 

techniques that can address the above challenges in materials design. In this front, Monte Carlo 

tress search (MCTS) has emerged as a powerful global optimization method that has found 

wide-spread applications in computer games such as Alpha Go, games such as Bridge, Poker 

and many other video games.25,26 MCTS is a probabilistic and heuristic search algorithm that 

integrates a tree search algorithm with machine learning principles of reinforcement learning. 

MCTS is a decision tree-based approach that builds a shallow tree of nodes where each node 

represents a point in the search space and downstream pathways are generated by a rollout 
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procedure. The algorithm simultaneously explores potentially better pathways to reach the 

optimal point in a search space and exploits a single pathway that has the greatest estimate 

value of the search function. This combination of exploration vs. exploitation and an 

appropriate trade-off mechanism between them are found to be the most efficient strategy of 

identifying optimal point for a given function. An advantage of the MCTS is that if the search 

gets trapped in a metastable or suboptimal point, it can quickly find another pathway by 

growing other branches of the tree utilizing the trade-off mechanism between exploration and 

exploitation. Recently, MCTS has been successfully adopted for material science problems 

such as predicting silicon-germanium alloy structure with optimal thermal conductance,24,27 

and discovering new synthetic routes of making organic molecules,28 optimal atoms 

segregation at grain boundary,29 predicting organic molecules with optimal partition coefficient 

and  other properties,30 and enhancing biomolecular sampling.31 

Here, we draw inspiration from the recent success of AI algorithms such as MCTS in 

computer games and aim to develop a design algorithm for sequence problems that are fast 

(time to solution) as well as highly scalable. We focus on a representative albeit complex 

polymer inverse design problem, viz., design of sequence of copolymer molecules that 

corresponds to a user-desired property. Our goal is to design the sequence of the compatibilizer 

that minimizes the interfacial tension between immiscible polymers. Block copolymers and 

random copolymers have long been used as compatibilizers that reduce interfacial tension 

between immiscible polymers and improve the stability of the composite materials.16,32 These 

copolymers manipulate nanoscale domain structure and interaction to enhance the stability and 

mechanical properties of composite materials. Recently, evolutionary search based on MD 

simulations (MD-GA) have identified sequence specific co-polymers that outperform block 

and random copolymers.17 However, an optimal solution (a sequence specific copolymer) for 

a  20 bead polymer chain via evolutionary search required several thousands of MD simulations 

within the MD-GA framework. In practice, the polymer chains can often involve several tens 

of monomers to several hundreds necessitating algorithms that are efficient and scalable. In 

our design workflow, we interface MCTS with MD simulations that is used for evaluating the 

objective function for any specific sequence. Our  MD simulation based Monte Carlo tree 

search (MD-MCTS) workflow rapidly identifies optimal sequence of copolymers 

corresponding to our desired interfacial tension. We demonstrate the scalability of our 

workflow by simulating chain lengths from 10 to 30 monomers – for each case the search 

required only a few hundred evaluations despite the search space extending from 512 to 0.5 
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billion, respectively. Our work demonstrates the success of AI in efficient and faster materials 

search and is applicable for a broad class of sequence related materials design problems. 

Model and Methodology

Molecular Dynamics of Polymers: We use a generic coarse-grained model to represent two 

homopolymers A and B that are immiscible. The compatibilizer is a copolymer consist with 

both the A and B type moieties. Within this model system, two adjacent coarse-grained 

monomers of a polymer is connected by the Finitely Extensible Nonlinear Elastic (FENE) 

potential of the form

 .𝐸 = ―
1
2𝐾𝑅2

0[1 ― ( 𝑟
𝑅0)

2]
Here,  and . Any two monomers in the system is interacted via the 𝑘 = 30𝜖/𝜎2 𝑅0 = 1.5𝜎

Lennard-Jones (LJ) potential of the form  

.𝑉(𝑟𝑖𝑗) = 4𝜖𝑖𝑗[( 𝜎
𝑟𝑖𝑗)

12
― ( 𝜎

𝑟𝑖𝑗)
6]

The  is the interaction energy between any two monomers i and j.  The size of all the 𝜖𝑖𝑗

monomers are .  The LJ interaction is truncated at a cut-off distance  to represent 𝑟𝑐 = 2.5𝜎

attractive interaction among the monomers of homopolymers viz., A-A and B-B interactions. 

The immiscibility between  homopolymer A and B is modelled by pure repulsion between A 

and B moieties. This is achieved by choosing  for A-B interaction. The orthogonal 𝑟𝑐 = 21/6𝜎

simulations box consist of a total of 693 homopolymer A and 693 homopolymer B  that form 

two interfaces as shown in Figure 1a. The compatibilizer chains are placed at both the 

interfaces. The interfacial area between the two homopolymers ( ) is kept constant 36𝜎 × 36𝜎

during the simulations. Also the compatibilizer concentration at each interface which is defined 

as the compatibilizer monomers per unit area of an interface, is kept constant. Three case 

studies are conducted each for varying compatibilizer chain length. A total of 414, 207 and  

138 compatibilizer copolymer chains of length N=10, 20 and 30, respectively, are placed at 

both the interfaces. This lead to a compatibilizer density of  All the systems consist of 1.59/𝜎2.

36000 CG beads. The system is periodic in all three direction. All the simulations employ the 

Verlet time integration scheme33 with a time step of , where the unit of time is 0.005𝜏 𝜏 = 𝜎

. The Nose-Hover thermostat and barostat34 are employed to keep the temperature and 𝑚/𝜖

pressure constant during the simulations. 
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Property Evaluation: All the MD calculations are conducted at a reduce temperature T=1 and 

zero pressure in the direction normal to the interface. During a MD summation, a system is 

initially equilibrated for 2x106 MD steps, followed by a production run of another 2x106 steps. 

During the production run, pressure tensor data are collected, and the surface tension of a 

system is calculated as 

.𝛾12 = 〈𝐿𝑧

2 (𝑃𝑧𝑧 ―
1
2(𝑃𝑥𝑥 + 𝑃𝑦𝑦))〉

Here z is the direction normal to the interface, the in-equilibrium box length along z is 

represented by Lz. The Pxx, Pyy and Pzz are the pressure components along three directions.  

All the MD simulations are conducted using LAMMPS molecular dynamics simulation 

package.35

Material Systems: We first model a base material where two immiscible homopolymers of 

type A and B form interfaces, as shown by the MD snapshot in Figure 1a.  A representative 

MD simulation depicting in-equilibrium energy and surface tension as a function of time is 

shown in Figure 1b. The system attains a steady state within the equilibrium run and all the 

properties are calculated by time averaging of data collected in these equilibrium region of the 

trajectory. The time average energy and surface tension of the system are -4.09 and 1.8/2, 

respectively. Here,  and  are the unit of energy and length, respectively. Next, the copolymer 

chains of both A and B type moieties, at the interfaces, are simulated.  We subsequently 

interface the MD simulations with MCTS to explore the sequence of A and B type moieties in 

a given copolymer or compatibilizer that reduces the surface tension of the system.  Three 

compatibilizer chains of length N = 10, 20 and 30 are considered and are shown in Figure 2. 

The total number of possible candidate structures for a binary chain is C= 2N/2. The 

Figure 1: A polymer blend: (a) MD snapshot of two immiscible homopolymers forming interfaces in a MD simulation box. (b) 
energy and surface tension of the system is shown as a function of time during the production run. The energy, time  and 
surface tension values are in LJ units.   
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denominator 2 is to avoid the double counting of configurations - a sequence and its reverse 

sequence are identical in this context. Therefore, the total number of candidate structures or 

sequences in the search space are 512, 524288 and 536870912 for N= 10, 20 and 30, 

respectively.  We seek to identify the sequence of moieties A and B that lead to lowest surface 

tension of the system for all the three cases by combining MD and MCTS. 

Monte Carlo Tree Search For Co-polymer Design: The MD-MCTS workflow for exploring 

the sequence search space is shown schematically in Fig. 3. The objective is to minimize the 

surface tension of the system in the presence of compatibilizer chains – the surface tension can 

be written as . Here,  represent a sequence of 0 and 1 of size N and 0 𝛾12 = 𝛾12(𝑥) 𝑥 ∈  {0,  1}𝑁

and 1 correspond to moieties A and B, respectively. We conduct three MD-MCTS calculations 

each for a specific value of N. For a given N,  the MD-MCTS begins with randomly generating 

a sequence of 0 and 1 of size N. This candidate serves as the root node of the search tree. A 

Figure 3:MD-MCTS design scheme for copolymer. It comprise of four steps – selection, expansion simulation and 
backpropagation that are sequentially conducted as shown by the arrows in a given iteration. In the simulation step,  MD 
calculations of a set of candidate structures are conducted parallelly. In the MD snapshot, homopolymers are shown as lines; 
and copolymers are shown as beads. The termination criteria is chosen to be  𝛾12 ≈ 0.0.

Figure 2: Binary Mapping of copolymers. Copolymer of length N=10,20 and 30 are shown in (a), (b) and (c), respectively. 
The grey and blue beads represent monomer of type A and B, respectively. The arrows point to the one dimensional binary 
strings where 0 and 1 correspond to monomer A and B, respectively. The binary string length is same as the copolymer chain 
length N. Here, the C represent total number of sequences possible for a given copolymer of size N.  
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search tree is built in an incremental and iterative way for searching optimal sequence of a 

copolymer as shown in Figure 3. Each node of the tress represent a specific sequence of the 

copolymer. Here the sequence is represented by a binary number of digit N for a copolymer of 

chain length N. Once the termination criteria is reached (set to be ), the search (growth 𝛾12 ≈ 0

of the tress) is stopped and the best performing candidate is returned. In each iteration, four 

steps – selection, expansion, simulations and back-propagation are carried out. A child node is 

selected during the selection process based on the upper confidence bound (UCB) score.36 The 

UCB of a node is defined as . Here,  is the surface tension of the k-th 𝑢𝑐𝑏𝑖 =
∑𝑁𝑖

𝑘 = 1𝛾𝑘

𝑣𝑖
+𝐶

2𝑙𝑛𝑣𝑝

𝑣𝑖
𝛾𝑘

playout performed by this node and all of its downstream child nodes, and vi is the visit/playout 

count of the node, vp is the visit/playout count of the parent of this node and C is a constant for 

balancing the exploration side (the right hand side of the plus sign) and the exploitation (the 

left hand side of the plus sign). All variables in this equation are aggregates of a node and it’s 

child nodes with exception of the exploration constant. The exploration constant, C, is of course 

a hyper parameter that is chosen by the user. However this is a highly critical choice given that 

the efficiency of the algorithm will be determined by this.  If the value of C is too small this 

will cause the exploitation side of the equation to be the dominant term and as a result nodes 

will only be selected according to which node has the best score at this moment.  This will off 

course cause the algorithm to quickly flow to the nearest local minima and get trapped. If the 

value is too large the selection process will wander aimlessly. Note that the node with the 

highest UCB score is always selected for a given step.  The MCTS algorithm doesn’t directly 

pick to exploit or explore, it instead picks according to the best combined total.  For a node to 

have a high UCB score, the node must have a good combination of both terms.  A good choice 

of the exploration constant is critical as this determines how these two terms combine to give 

a UCB score.

The primary benefit of the MCTS formalism is that when properly tuned the algorithm 

will make a weighted choice to continue down a path that appears to have a good solution 

hidden behind it or to cut it’s losses and look somewhere else when it appears to have exhausted 

its search space down a given path. As such the choice of the exploration constant is very 

critical for optimal performance as it will search a path well enough to potentially find a 

solution, but not waste valuable simulation time by over-sampling a given path. Instead of 

trying to manually tune the parameter, the value of C was controlled adaptively at each node 

according to the formula . Here, J is the meta parameter which is set to be 𝐶 =
2𝐽
4 (𝑧𝑚𝑎𝑥 ― 𝑧𝑚𝑖𝑛)
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one and it increases whenever the algorithm reach a “dead end” node to allow more exploration. 

At a dead-end node, the number of possible structures narrows to one. This happens when the 

numbers of k − 1 candidate structures reach the limit. Here, the J is updated as 𝐽←𝐽 + 𝑚𝑎𝑥

, where T is the total number of candidates to be evaluated, and t is the number of {𝑇 ― 𝑡
𝑇 ,0.1}

candidates for which the surface tension is already evaluated. Whenever a new node is added, 

it is by default selected for one simulation cycle as part of the initialization process.  Next, we 

perform the expansion of the tree by adding child nodes to the selected node. A new child node 

is created by randomly flipping a digit of the parent node. In the simulation step, a playout is 

performed from each of the added children. We roll out 10 structures randomly during a playout 

from a child node. In these playouts the structure contained within this node is changed by 

randomly flipping several polymer groups.  Initially the entire chain from the initial structure 

is allowed to flip randomly, but for nodes that are deeping in the tree (IE 2nd, 3rd, or 4th 

generation nodes) fewer polymer groups are allowed to flip.  This ensures a convergent 

behaviour where less and less of the chain is modified as the algorithm picks a path in the node 

tree to travel down. The scaling was set to be 100%, 60%, 30%, 20%, 10%, 5% for the 0th, 1st, 

2nd, 3rd, etc. generation node respectively in the tree. The final level was always set such that 

only 1 polymer unit was flipped. All 10 playout structures are evaluated via long-time scale 

MD simulations.  

Finally, in the back propagation step, the visit count of each ancestor node of i is 

incremented by one and the cumulative value is also updated to keep consistency. Note that 

the concept of back propagation (i.e. child nodes feeding their information back up the tree) is 

a key feature of this algorithm. Owing to this, a parent also shares the reward that is discovered 

by its child node. As such, the reward for every node, the branch starting from the child who 

discovered it up to the head node is updated.  This makes it possible for the algorithm to either 

choose to simply flip a few polymer units by selecting the deepest child node or return back up 

the tree to one of the higher parent nodes in the branch, where it has more freedom in how 

many flips one can perform. This effectively means the algorithm is allowed to pick how many 

flips it wishes to try by selecting a node of a given depth. This balance allows it to both make 

fine-tuned adjustments or larger adjustments as needed.  In the absence of this, either the 

algorithm never converged because it was changing too much all the time or it would become 

trapped because it was not making a large enough change to the polymer. 

The initial layer of nodes effectively is given a random sequence of polymer chains and 

the child nodes are refined based on the reward. MCTS then picks between either large changes 
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or small ones depending on finding sufficient reward down a particular branch. If a child node 

is failing to find better rewards than its parent, the UCB will start favoring the parent node 

instead of the child node. This will result in the algorithm making larger adjustments instead 

of smaller ones.  (i.e. single polymer unit flips are failing to result in further minimize the 

surface tension suggesting larger number of flips are required).  At any given point, any node 

in the tree regardless of depth, can be chosen if its UCB score becomes the largest. As such, it 

is possible to sample any point in the total statistical space. Finally, we point out that the depth 

scaling rates are an arbitrary hyperparameter, but in this case were chosen to ensure a smooth 

transition between all the polymer units being randomly assigned and only 1 being flipped. We 

find this is obtained by a tree depth of 6 nodes which strikes a good balance between speed and 

accuracy.

Results: 
We first assess the performance of our MCTS-MD workflow as shown in Figure 4.  The lowest 

surface tension as a function of total number of candidate evaluated during the MCTS iterations 

is shown in Figure 4a for the three different polymer chain lengths. We find that the MD-MCTS 

is able to identify optimal sequences that bring down the surface tension to near zero for each 

of the three cases.  An optimal sequence for  for each case is shown in Figure 4b.  It 𝛾12 ≈ 0.0

is interesting to note that all the optimal sequences are non-periodic and non-intuitive. These 

machine learned sequences combine small and long segments of blocks. These specific 

arrangement of blocks in the compatibilizer structure lead to more interfacial crossings at the 

interface than regular di-block copolymers or other periodic copolymers of large block length. 

The ML identified polymers outperform di-block copolymers due to their ability to form large 

number of interfacial crossings at the interface. MCTS demonstrates exceptional scalability 

Figure 4: Performance and prediction of MD-MCTS.  (a) The lowest surface tension achieved during the MD-MCTS run is 
shown as a function of  total number of candidate materials directly evaluated via MD simulations for all three cases. The 
optimal sequences for copolymers for all three cases are depicted in (b).
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and is able to achieve zero interfacial energy irrespective of the size or chain length of the 

polymer compatibilizer

We access the scalability of the MD-MCTS algorithm by plotting the total number of candidate 

structures evaluated during a given search cycle as a function of the size of the compatibilizer 

(Figure 5a). This is especially important considering the long timescale MD simulations that 

are necessary to perform each evaluation for a specific sequence. MCTS performs direct 

evaluation of materials properties of 114, 388 and 415 candidates to achieve an optimal 

sequence that correspond to our target i.e. zero interfacial energy of the system for copolymers 

of length 10, 20 and 30, respectively. We only note a marginal increase in the  number of MD 

simulations with an increase in the system size. This is incredible considering that the design 

space i.e. the total number of candidates, C increase from 1024 to 1 billion when the chain 

lengths increase from 10 to 30. MCTS is thus able to attain an optimal solution by screening 

lower percentage of candidate viz.,  22%, 0.07 % and 7.7x10-5 % of total possible structures 

for  chain length 10, 20 and 30, respectively. Figure 5b depicts this ratio Cs/C as a function of 

N, clearly indicating the exponentially lower fraction of candidates required to be screened 

during the design cycle as  polymer chain length increases. This strongly suggests that the MD-

MCTS design scheme is scalable to extremely large system sizes, which has hitherto posed a 

challenge to evolutionary search strategies.

Figure 5: MD-MCTS complexity. (a) The total number of candidate structures screened(CS) during a MCTS cycle is shown as 
a function of number of monomer in a copolymer chain. (b) The fraction of candidate structures (CS/C) screened during a 
design cycle is plotted as a function of polymer chain length.
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Mean block length of a copolymer has long been perceived as an important descriptor 

of a copolymer’s properties. Therefore, we closely analyse the correlation between any given 

sequence i.e. the relative statistics of type-1 and type-0 moieties present in a copolymer chain 

and the computed surface tension of the system. Surface tension vs. mean block length for each 

of the three systems (N=10, 20 and 30) is shown in Fig. 6. Here, the mean block length is 

calculated as the arithmetic mean of the size of all the blocks of 0’s and 1’s presence in a 

copolymer. The MCTS identifies multiple mean block lengths that correspond to highest 

performance compatibilizer ( ). For example, there are copolymers of size N=10 with 𝛾12 ≈ 0

mean block length bl = 1.8, 2.6 and 3.3 that yield  (Fig. 6a). Similar observation can be 𝛾12 ≈ 0

made for N=20 and N=30 from Figure 6b and 6c, respectively. We also find that sequences 

with the same mean block length as the optimal sequence can exhibit a wide range of interfacial 

energies. The interfacial energy varies from 0 to 1.2/2, approximately, for a mean block 

length of 3.3 for N=10. A similar variation of surface tension for a given mean block is 

observed for N=20 and 30 as evident in Figure 6b, and 6c, respectively. Thus, the mean block 

length alone is a poor predictor of a compatibilizer performance.

To further understand the uniqueness of the optimal polymer sequence, we study the 

interrelationship between mean block length, monomer mole fraction and the interfacial energy 

of the system. Here, the mole fraction is defined as the ratio of the number of monomer of one 

particular moiety viz. type-1 moiety to the total number of monomers in a chain. Figure 7a, b 

and c show the variation of interfacial energy for N=10, 20 and 30, respectively, as a function 

of mean block length (lb) and mole fraction of type-1 (q). The deep blue contours in Figure 7 

corresponds to lowest surface tension of the system. For N=10, we observe  for 𝛾12 ≈ 0.0

 and .  As N increases, there are larger patches of isolated blue contours that 𝑞 ≈ 0.5 𝑙𝑏 = 3.3

appear in the q-lb surface, indicating greater number of global optimal points in the q-lb surface.   

Figure 6: Variation of interfacial energy is shown as a function of the mean block length for all the candidate 
structures screened in this study for N = 10, 20 and 30 in (a), (b) and (c), respectively.  Both the surface tension 
and mean block length are in LJ unit.  
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As the chain length further increases, it is possible to achieve many more sequences that can 

lead to zero interfacial energy of the system. Often times, the optimal regions are separated by 

large regions of suboptimal points as evident from Figure 7b and7c. Many of the local 

optimization strategies and even global ones struggle to navigate around these sub-optimal 

points. Thus, the complexity as well as the degeneracy of this configurational space increases 

for longer chain length and poses challenges. The MCTS algorithm is however able to 

effectively navigate around these sub-optimal regions by growing other branches of the tree 

effectively utilizing the trade-off mechanism between exploration and exploitation. MCTS thus 

simultaneously explores potentially better pathways to reach the optimal point in a search space 

and exploits pathways that have the greatest estimate value of the search function. This 

combination of exploration vs. exploitation and an appropriate trade-off mechanism between 

them, represents a powerful strategy of identifying optimal point for a given function. 

Conclusions 

In summary, sequence control in soft matter systems such as polymers and proteins has been a 

longstanding goal and is highly desirable for a wide variety of applications. In particular, the 

emergence of sequence control polymers provides tremendous opportunities for material 

design. By controlling the sequence of a copolymer, one can reliably tune their functionality 

over a wide range which can be mapped on to their chemical information. The vast 

combinatorial search space that is required to be explored for these sequence problems pose a 

major challenge. To overcome this, we interface a gaming AI algorithm viz., MCTS with an 

MD simulator to tackle the complexity of copolymer design. Our MD-MCTS design algorithm 

is employed to identify optimal copolymers sequences which can be used as compatibilizer to 

improve thermodynamics stability of two immiscible homopolymer blends. Unlike other 

molecular inverse design strategies i.e. genetic algorithm (GA) or Bayesian optimization (BO) 

Figure 7: Heat map of interfacial energy. The interfacial energy  is  shown as a function of  mole fraction of A type  𝛾12
monomer, q, and mean block length, lb. The surface tension and block length are in LJ unit.
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where design time grows rapidly with the system size, MCTS interfaced with MD appears to 

require relatively much smaller number of candidate evaluations in any given design cycle. We 

show that one can engineer the sequence of chemical moieties that will nullify the interfacial 

tension between immiscible polymers irrespective of the size of compatibilizer polymer chain. 

Our work also elucidates the correlation between interfacial energy and the sequence statistics 

of copolymer compatibilizer molecules and illustrates the complexities associated with 

sequence control over larger polymer chain lengths. Finally, we show that MCTS is highly 

scalable and efficiently able to navigate large design spaces typical of most practical sequence 

control related design problem. More broadly, the work provides new strategy that can be used 

for sequence control and inverse design of copolymers for materials applications. 
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